
AJProença 2002/03 DI-UMinho 1

Análise do desempenho de execução de aplicações (3)
(adaptado das aulas 10 e 12 do Bryant)

• Análise de técnicas de optimização (s/w)

– técnicas de optimização independentes da
máquina

• ponto da situação
• optimizações efectuadas pelo Gcc
• identificação dos "gargalos" de desempenho

– program profiling
– uso dum profiler para apoio à optimização
– lei de Amdahl

– técnicas de optimização dependentes da
máquina

• dependentes do processador (já visto)
• dependentes da hierarquia da memória

– introdução à hierarquia de memória e à cache

Code Optimization I:
Machine Independent Optimizations

Sept. 26, 2002

Code Optimization I:
Machine Independent Optimizations

Sept. 26, 2002
• Topics

– Machine-Independent Optimizations
• Code motion
• Reduction in strength
• Common subexpression sharing

– Tuning
• Identifying performance bottlenecks

class10.ppt

15-213
“The course that gives CMU its Zip!”Algun dos

próxim
os slid

es

foram re
tira

dos desta

aula do Prof. B
ryant

AJProença 2002/03 DI-UMinho 3

Machine-Independent Opt. SummaryMachine-Independent Opt. Summary
CodeCode MotionMotion

– Compilers are good at this for simple loop/array
structures

– Don’t do well in presence of procedure calls and
memory aliasing

Reduction in StrengthReduction in Strength
– Shift, add instead of multiply or divide

• compilers are (generally) good at this
• exact trade-offs machine-dependent

– Keep data in registers rather than memory
• compilers are not good at this, since concerned with

aliasing
Share Common Share Common SubexpressionsSubexpressions

– Compilers have limited algebraic reasoning
capabilities

AJProença 2002/03 DI-UMinho 4

MeasurementMeasurement
– Accurately compute time taken by code

• Most modern machines have built in cycle counters
• Using them to get reliable measurements is tricky

– Profile procedure calling frequencies
• Unix tool gprof

ObservationObservation
– Generating assembly code

• Lets you see what optimizations compiler can make
• Understand capabilities/limitations of particular compiler

Important ToolsImportant Tools

AJProença 2002/03 DI-UMinho 5

Options That ControlOptions That Control OptimizationOptimization
These options control various sorts ofThese options control various sorts of optimizationsoptimizations: :
--O O
--O1O1

OptimizeOptimize.. OptimizingOptimizing compilation takes somewhat more time, and a lot more compilation takes somewhat more time, and a lot more
memory for a large function.memory for a large function. (...)(...)
With With --O, the compiler tries to reduce code size and execution time, O, the compiler tries to reduce code size and execution time,
without performing anywithout performing any optimizationsoptimizations that take a great deal of that take a great deal of
compilation time. compilation time.

--OO22
OptimizeOptimize even more. GCC performs nearly all supportedeven more. GCC performs nearly all supported optimizationsoptimizations that that
do not involve a spacedo not involve a space--speedspeed tradeofftradeoff. . (...)(...) this option increases both this option increases both
compilation time and the performance of the generated code. compilation time and the performance of the generated code.
--O2 turns on all optionalO2 turns on all optional optimizations optimizations except for loop unrolling, except for loop unrolling,
functionfunction inlininginlining, and register renaming. , and register renaming.

--O3O3
OptimizeOptimize yet more. yet more. --O3 turns on allO3 turns on all optimizationsoptimizations specified by specified by --O2 and O2 and
also turns on the also turns on the --finlinefinline--functions and functions and --frenamefrename--registers options. registers options.

--O0 O0
Do notDo not optimizeoptimize. .

--OsOs
OptimizeOptimize for size. for size. --Os enables all Os enables all --O2O2 optimizationsoptimizations that do not that do not
typically increase code size. It also performs furthertypically increase code size. It also performs further optimizationsoptimizations
designed to reduce code size.designed to reduce code size.

Optimizações no Gnu C Compiler(1)Optimizações no Gnu C Compiler(1)
(de http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/)

AJProença 2002/03 DI-UMinho 6

Optimizações para código com Optimizações para código com arraysarrays e e loopsloops::
--funrollfunroll--loops loops

Unroll loops whose number of iterations can be determined at Unroll loops whose number of iterations can be determined at
compile time or upon entry to the loop. compile time or upon entry to the loop. --funrollfunroll--loops implies loops implies
both both --fstrengthfstrength--reduce and reduce and --frerunfrerun--csecse--afterafter--loop. This option loop. This option
makes code larger, and may or may not make it run faster. makes code larger, and may or may not make it run faster.

--funrollfunroll--allall--loops loops
Unroll all loops, even if their number of iterations is Unroll all loops, even if their number of iterations is
uncertain when the loop is entered. This usually makes programs uncertain when the loop is entered. This usually makes programs
run more slowly. run more slowly. --funrollfunroll--allall--loops implies the same options as loops implies the same options as
--funrollfunroll--loops, loops,

--fprefetchfprefetch--looploop--arrays arrays
If supported by the target machine, generate instructions to If supported by the target machine, generate instructions to
prefetch memory to improve the performance of loops that access prefetch memory to improve the performance of loops that access
large arrays. large arrays.

--fmovefmove--allall--movables movables
Forces all invariant computations in loops to be moved outside Forces all invariant computations in loops to be moved outside
the loop. the loop.

--freducefreduce--allall--givs givs
Forces all generalForces all general--induction variables in loops to be strengthinduction variables in loops to be strength--
reduced. reduced.

Optimizações no Gnu C Compiler(2)Optimizações no Gnu C Compiler(2)
(de http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/)

AJProença 2002/03 DI-UMinho 7

Optimizações para inserção de funções emOptimizações para inserção de funções em--linha:linha:
--finlinefinline--functions functions

Integrate all simple functions into their callers. The compiler Integrate all simple functions into their callers. The compiler
heuristically decides which functions are simple enough to be heuristically decides which functions are simple enough to be
worth integrating in this way. If all calls to a given function worth integrating in this way. If all calls to a given function
are integrated, and the function is declared static, then the are integrated, and the function is declared static, then the
function is normally not output as assembler code in its own function is normally not output as assembler code in its own
right. right.

--finlinefinline--limit=limit=nn
By default,By default, gccgcc limits the size of functions that can belimits the size of functions that can be
inlinedinlined. This flag allows the control of this limit for . This flag allows the control of this limit for
functions that are explicitly marked as inline (functions that are explicitly marked as inline (ieie marked with marked with
the inline keyword the inline keyword ...)...) nn is the size of functions that can beis the size of functions that can be
inlinedinlined in number of pseudo instructions (not counting in number of pseudo instructions (not counting
parameter handling). The default value of parameter handling). The default value of nn is 600. Increasing is 600. Increasing
this value can result in morethis value can result in more inlinedinlined code at the cost of code at the cost of
compilation time and memory consumption. Decreasing usually compilation time and memory consumption. Decreasing usually
makes the compilation faster and less code will bemakes the compilation faster and less code will be inlinedinlined
(which presumably means slower programs). (which presumably means slower programs).

Optimizações no Gnu C Compiler(3)Optimizações no Gnu C Compiler(3)
(de http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/)

AJProença 2002/03 DI-UMinho 8

Code ProfilingCode Profiling
Augment Executable Program with Timing FunctionsAugment Executable Program with Timing Functions

– Computes (approximate) amount of time spent in each
function

– Time computation method
• Periodically (~ every 10ms) interrupt program
• Determine what function is currently executing
• Increment its timer by interval (e.g., 10ms)

– Also maintains counter for each function indicating number
of times called

UsingUsing
gcc –O2 –pg prog. –o prog
./prog

• Executes in normal fashion, but also generates file gmon.out
gprof prog

• Generates profile information based on gmon.out

AJProença 2002/03 DI-UMinho 9

Uso do profiling program (1)Uso do profiling program (1)
Uso Uso do do GProfGProf em em 3 3 passospassos::

– compilar com indicação explícita (-pg)
• ex.: análise do combine1_sum_int (vector com 107 elementos)
gcc -O2 -pg combine1_sum_int.c -o
comb1

– executar o programa
./comb1

• vai gerar automaticamente o ficheiro gmon.out
– invocar o GProf para analisar os dados em gmon.out

gprof comb1.exe [> comb1.txt]

• análise parcial do ficheiro comb1.txt a seguir…

AJProença 2002/03 DI-UMinho 10

Uso do profiling program (2)Uso do profiling program (2)
AnáliseAnálise dada primeira parteprimeira parte de de comb1.txtcomb1.txt::

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total
time seconds seconds calls s/call s/call name

39.33 2.58 2.58 _mcount

38.57 5.11 2.53 20000000 0.00 0.00 get_vec_element

12.65 5.94 0.83 mcount

6.40 6.36 0.42 2 0.21 1.57 combine1

3.05 6.56 0.20 20000002 0.00 0.00 vec_length

0.00 6.56 0.00 2 0.00 0.00 access_counter

0.00 6.56 0.00 1 0.00 0.00 get_counter

0.00 6.56 0.00 1 0.00 0.00 new_vec

0.00 6.56 0.00 1 0.00 0.00 start_counter

AJProença 2002/03 DI-UMinho 11

Uso do profiling program (3)Uso do profiling program (3)
AnáliseAnálise em árvore da execução em árvore da execução do do progprog. . ((emem comb1.txt)comb1.txt)::

index % time self children called name
0.42 2.73 2/2 main [2]

[1] 100.0 0.42 2.73 2 combine1 [1]
2.53 0.00 20000000/20000000 get_vec_element [3]
0.20 0.00 20000002/20000002 vec_length [4]

<spontaneous>

[2] 100.0 0.00 3.15 main [2]
0.42 2.73 2/2 combine1 [1]
0.00 0.00 1/1 new_vec [11]
0.00 0.00 1/1 start_counter [12]
0.00 0.00 1/1 get_counter [10]

2.53 0.00 20000000/20000000 combine1 [1]

[3] 80.3 2.53 0.00 20000000 get_vec_element [3]

0.20 0.00 20000002/20000002 combine1 [1]
[4] 6.3 0.20 0.00 20000002 vec_length [4]

0.00 0.00 1/2 start_counter [12]
0.00 0.00 1/2 get_counter [10]

[9] 0.0 0.00 0.00 2 access_counter [9]
…

AJProença 2002/03 DI-UMinho 12

Code Profiling ExampleCode Profiling Example
TaskTask

– Count word frequencies in text document
– Produce sorted list of words from most frequent to least

StepsSteps
– Convert strings to lowercase
– Apply hash function
– Read words and insert into hash table

• Mostly list operations
• Maintain counter for each unique word

– Sort results
Data SetData Set

– Collected works of Shakespeare
– 946,596 total words, 26,596 unique
– Initial implementation: 9.2 seconds

thatthat11,51911,519
inin11,72211,722
mymy12,93612,936
youyou1401014010
aa15,37015,370
ofof18,51418,514
toto20,95720,957
II21,02921,029
andand27,52927,529
thethe29,80129,801

Shakespeare’s
most frequent words

AJProença 2002/03 DI-UMinho 13

Profiling ResultsProfiling Results

Call StatisticsCall Statistics
– Number of calls and cumulative time for each function

Performance LimiterPerformance Limiter
– Using inefficient sorting algorithm
– Single call uses 87% of CPU time

% cumulative self self total
time seconds seconds calls ms/call ms/call name
86.60 8.21 8.21 1 8210.00 8210.00 sort_words
5.80 8.76 0.55 946596 0.00 0.00 lower1
4.75 9.21 0.45 946596 0.00 0.00 find_ele_rec
1.27 9.33 0.12 946596 0.00 0.00 h_add

AJProença 2002/03 DI-UMinho 14

Code OptimizationsCode Optimizations

– First step: Use more efficient sorting function
– Library function qsort

0
1
2
3
4
5
6
7
8
9

10

Initial Quicksort Iter First Iter Last Big Table Better Hash Linear Lower

C
PU

 S
ec

s.

Rest
Hash
Lower
List
Sort

AJProença 2002/03 DI-UMinho 15

Further OptimizationsFurther Optimizations

– Iter first: Use iterative function to insert elements into
linked list

• Causes code to slow down
– Iter last: Iterative function, places new entry at end of list

• Tend to place most common words at front of list
– Big table: Increase number of hash buckets
– Better hash: Use more sophisticated hash function
– Linear lower: Move strlen out of loop

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Initial Quicksort Iter First Iter Last Big Table Better Hash Linear Lower

C
PU

 S
ec

s.

Rest
Hash
Lower
List
Sort

AJProença 2002/03 DI-UMinho 16

Profiling ObservationsProfiling Observations

BenefitsBenefits
– Helps identify performance bottlenecks
– Especially useful when have complex system with many

components
LimitationsLimitations

– Only shows performance for data tested
– E.g., linear lower did not show big gain, since words are

short
• Quadratic inefficiency could remain lurking in code

– Timing mechanism fairly crude
• Only works for programs that run for > 3 seconds

AJProença 2002/03 DI-UMinho 17

Amdahl's law states that the performance
improvement to be gained from using some faster
mode of execution is limited by the fraction of the
time the faster mode can be used.

where f - fraction of a program that is enhanced,
s - speedup of the enhanced portion

Lei de AmdahlLei de Amdahl

Overall speedup =
1

(1- f) + f / s

Ex.1
If 10% of a program runs

90 times faster, then

Overall speedup = 1.11

Ex.2
If 90% of a program runs

90 times faster, then

Overall speedup = 9.09

The Memory Hierarchy
Oct. 3, 2002

The Memory Hierarchy
Oct. 3, 2002

Topics
– Storage technologies and trends
– Locality of reference
– Caching in the memory hierarchy

class12.ppt

15-213
“The course that gives CMU its Zip!”

Os próxim
os slid

es

foram re
tira

dos desta

aula do Prof. B
ryant

AJProença 2002/03 DI-UMinho 19

The CPU-Memory GapThe CPU-Memory Gap
• The increasing gap between DRAM, disk, and

CPU speeds.

1
10

100
1,000

10,000
100,000

1,000,000
10,000,000

100,000,000

1980 1985 1990 1995 2000

year

ns

Disk seek time
DRAM access time
SRAM access time
CPU cycle time

AJProença 2002/03 DI-UMinho 20

LocalityLocality
• Principle of Locality:

– Programs tend to reuse data and instructions near those
they have used recently, or that were recently referenced
themselves.

– Temporal locality: Recently referenced items are likely to
be referenced in the near future.

– Spatial locality: Items with nearby addresses tend to be
referenced close together in time.

Locality Example:
• Data

– Reference array elements in succession
(stride-1 reference pattern):

– Reference sum each iteration:
• Instructions

– Reference instructions in sequence:
– Cycle through loop repeatedly:

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
return sum;

Spatial locality

Spatial locality
Temporal locality

Temporal locality

AJProença 2002/03 DI-UMinho 21

Memory HierarchiesMemory Hierarchies
Some fundamental and enduring properties of hardware

and software:
– Fast storage technologies cost more per byte and have less

capacity.
– The gap between CPU and main memory speed is widening.
– Well-written programs tend to exhibit good locality.

These fundamental properties complement each other
beautifully.

They suggest an approach for organizing memory and
storage systems known as a memory hierarchy.

AJProença 2002/03 DI-UMinho 22

An Example Memory HierarchyAn Example Memory Hierarchy

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,

and
cheaper
(per byte)
storage
devices

remote secondary storage
(distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers.

Main memory holds disk
blocks retrieved from local
disks.

off-chip L2
cache (SRAM)

L1 cache holds cache lines retrieved
from the L2 cache memory.

CPU registers hold words retrieved
from L1 cache.

L2 cache holds cache lines
retrieved from main memory.

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and

costlier
(per byte)
storage
devices

AJProença 2002/03 DI-UMinho 23

CachesCaches
• Cache: A smaller, faster storage device that acts as a

staging area for a subset of the data in a larger,
slower device.

• Fundamental idea of a memory hierarchy:
– For each k, the faster, smaller device at level k serves

as a cache for the larger, slower device at level k+1.
• Why do memory hierarchies work?

– Programs tend to access the data at level k more often
than they access the data at level k+1.

– Thus, the storage at level k+1 can be slower, and thus
larger and cheaper per bit.

– Net effect: A large pool of memory that costs as much
as the cheap storage near the bottom, but that serves
data to programs at the rate of the fast storage near the
top.

AJProença 2002/03 DI-UMinho 24

Caching in a Memory HierarchyCaching in a Memory Hierarchy

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Larger, slower, cheaper storage
device at level k+1 is partitioned
into blocks.

Data is copied between
levels in block-sized transfer
units

8 9 14 3
Smaller, faster, more expensive
device at level k caches a
subset of the blocks from level k+1

Level k:

Level k+1: 4

4

4 10

10

10

AJProença 2002/03 DI-UMinho 25

Request
14

Request
12

General Caching ConceptsGeneral Caching Concepts
• Program needs object d, which is

stored in some block b.
Cache hit

– Program finds b in the cache at
level k. E.g., block 14.

Cache miss
– b is not at level k, so level k cache

must fetch it from level k+1.
E.g., block 12.

– If level k cache is full, then some
current block must be replaced
(evicted). Which one is the
“victim”?

• Placement policy: where can the
new block go? E.g., b mod 4

• Replacement policy: which block
should be evicted? E.g., LRU

9 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Level
k:

Level
k+1:

1414

12

14

4*

4*12

12

0 1 2 3

Request
12

4*4*12

AJProença 2002/03 DI-UMinho 26

Cache Performance MetricsCache Performance Metrics
Miss Rate

– Fraction of memory references not found in cache
(misses/references)

– Typical numbers:
• 3-10% for L1
• can be quite small (e.g., < 1%) for L2, depending on size, etc.

Hit Time
– Time to deliver a line in the cache to the processor (includes

time to determine whether the line is in the cache)
– Typical numbers:

• 1 clock cycle for L1
• 3-8 clock cycles for L2

Miss Penalty
– Additional time required because of a miss

• Typically 25-100 cycles for main memory

AJProença 2002/03 DI-UMinho 27

Writing Cache Friendly CodeWriting Cache Friendly Code
Repeated references to variables are good

(temporal locality)
Reference array elements in succession are good

(spatial locality)
Examples:

– cold cache, 4-byte words, 4-word cache blocks
int sumarrayrows(int a[M][N])
{

int i, j, sum = 0;
for (i = 0; i < M; i++)

for (j = 0; j < N; j++)
sum += a[i][j];

return sum;
}

int sumarraycols(int a[M][N])
{

int i, j, sum = 0;
for (j = 0; j < N; j++)

for (i = 0; i < M; i++)
sum += a[i][j];

return sum;
}

Miss rate = Miss rate = 1/4 = 25% 100%

