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Nota introdutoéria

Este documento é um texto de apoio ao funcionamento de disciplinas na area da Arquitectura de
Computadores, complementando apenas a bibliografia basica recomendada. Nao pretendendo substitui-la,
adapta e resume alguns aspectos considerados essenciais durante a leccionagao da matéria; baseia-se em
documentos de anos anteriores e integra e complementa excertos de documentos de livros recomendados:

e "Computer Organization and Architecture - Designing for Performance", 6th Ed., W. Stallings, Prentice
Hall, 2002 (mais informagao em http://williamstallings.com/COAGe.html); adiante referido por COA

e "Computer Systems: A Programmer's Perspective", Randal Bryant and David O'Hallaron, Prentice Hall,
2003 (mais informacgao em http://csapp.cs.cmu.edu/); adiante referido por CSAPP

e Structured Computer Organization, 4th Ed., Andrew S. Tanenbaum, Prentice Hall, 1999; adiante referido
por SCO
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4.2 Acessos a memoria na execugao de instrugoes

Durante a execucgéo de cada instrugdo, o CPU necessita de aceder a memoaria para ir buscar a instrugao
(Fetch), e o(s) operando(s) sempre que estes estejam em memoéria. O processo de aceder a memoria para
ir buscar uma instrugao € idéntico ao de buscar um operando para efectuar uma operagéo (apresentado
com detalhe na préxima sub-secg¢do); i.e., 0 CPU coloca o conteudo do IP/PC no barramento de enderecos,
activa o sinal de leitura @ memoria no barramento de controlo, e o conteudo da(s) célula(s) de memdria
indicada(s) no barramento de enderecos & colocado no barramento de dados, de modo que o CPU o possa
ler e colocar no registo de instrugao (IR).

A sub-seccdo seguinte apresenta com mais detalhe os acessos a memadria nas operagbes de leitura e
escrita de dados na memodria.

4.3 Accessing Main Memory (retirado de CSAPP)

Data flows back and forth between the processor and the DRAM main memory over shared electrical
conduits called buses. Each transfer of data between the CPU and memory is accomplished with a series
of steps called a bus transaction. A read transaction transfers data from the main memory to the CPU.
A write transaction transfers data from the CPU to the main memory.

A bus is a collection of parallel wires that carry address, data, and control signals. Depending on the
particular bus design, data and address signals can share the same set of wires, or they can use different
sets. Also, more than two devices can share the same bus. The control wires carry signals that
synchronize the transaction and identify what kind of transaction is currently being performed. For
example, is this transaction of interest to the main memory, or to some other I/O device such as a disk
controller? Is the transaction a read or a write? Is the information on the bus an address or a data item?

Figure 6.6 shows the configuration of a typical desktop system. The main components are the CPU chip,
a chipset that we will call an I/O bridge (which includes the memory controller), and the DRAM
memory modules that comprise main memory. These components are connected by a pair of buses: a
system bus that connects the CPU to the I/O bridge, and a memory bus that connects the I/O bridge to
the main memory.

CPU chip

reqister file

: ALU

systemn bus memory bus

I’/ l
. e} main
oo [ o K T e

Figure 6.6: Typical bus structure that connects the CPU and main memory.

The I/O bridge translates the electrical signals of the system bus into the electrical signals of the
memory bus. As we will see, the I/O bridge also connects the system bus and memory bus to an I/O bus
that is shared by I/O devices such as disks and graphics cards. For now, though, we will focus on the
memory bus.

Consider what happens when the CPU performs a load operation such as

novl A, Yeax
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where the contents of address A are loaded into register %@ax. Circuitry on the CPU chip called the bus
interface initiates a read transaction on the bus.

The read transaction consists of three steps. First, the CPU places the address A on the system bus'. The
I/O bridge passes the signal along to the memory bus® (Figure 6.7(a)). Next, the main memory senses
the address signal on the memory bus’, reads the address from the memory bus, fetches the data word
from the DRAM, and writes the data to the memory bus®. The I/O bridge translates the memory bus
signal into a system bus signal, and passes it along to the system bus (Figure 6.7(b)). Finally, the CPU
senses the data on the system bus, reads it from the bus, and copies it to register Y@ax (Figure 6.7(c)).

register file
Yoeax ALU
ﬂ main memory
I/ bridge A 0
bus interface = A
{a) CPU places address A on the memory bus.
register file

Feeax C:| ALL
II main memaory
'O bridge x ]

g T N
bus interface \\J—l// r A

(b Main memory reads A from the bus, retrieves word @, and places it on the bus.

register file

Yoeax ¥ C:l ALU
main memory
!0 bridge 0

bus interface % A

(c) CPU reads word & from the bus, and copies it into register $eax.

Figure 6.7: Memory read transaction for a load operation: movl A, %eax.

Conversely, when the CPU performs a store instruction such as
nmovl %ax, A

' Mais concretamente, no barramento de enderecos, Address Bus

2 1dem

*Em conjunto com o sinal de controlo, indicando que a operacao é de leitura da memoéria
* Neste caso, no barramento de dados, Data Bus
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where the contents of register ¥@ax are written to address A, the CPU initiates a write transaction.
Again, there are three basic steps. First, the CPU places the address on the system bus. The memory
reads the address from the memory bus and waits for the data to arrive (Figure 6.8(a)). Next, the CPU
copies the data word in %@ax to the system bus (Figure 6.8(b)). Finally, the main memory reads the
data word from the memory bus and stores the bits in the DRAM (Figure 6.8(c)).

register file

Yoeax m c:| ALU

ﬁ main memory
Y0 bridge A ]
bus interface A

{a) CPU places address A on the memory bus. Main memory reads it and waits for the data word.

register file

: ALL

Yoeax -..-I
ﬂi main memaory
/ i i
$ | /3 bridoge ¥
bus interface A

(b) CPU places data word gy on the bus.

register file

ALL

Yheax M

ﬁ main Mmermory
140 bridge o o
bus interface <:::> . > M A

() Main memory reads data word ¢ from the bus and stores it at address A.

Figure 6.8: Memory write transaction for a store operation: novl %gax, A

4.4 Instruction-Level Parallelism (retirado de SCO)

Computer architects are constantly striving to improve performance of the machines they design.
Making the chips run faster by increasing their clock speed is one way, but for every new design, there
is a limit to what is possible by brute force at that moment in history. Consequently, most computer
architects look to parallelism (doing two or more things at once) a way to get even more performance
for a given clock speed.

Parallelism comes in two general forms: instruction-level parallelism and processor level parallelism. In
the former, parallelism is exploited within individual instructions to get more instructions/sec out of the
machine. In the latter, multiple CPUs work together on the same problem. Each approach has its own
merits. In this section we will look at instruction-level parallelism.
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Pipelining

It has been known for years that the actual fetching of instructions from memory is a major bottleneck
in instruction execution speed. To alleviate this problem, computers going back at least as far as the
IBM Stretch (1959) have had the ability to fetch instructions from memory in advance, so they would be
there when they were needed. These instructions were stored in a set of registers called the prefetch
buffer’. This way, when an instruction was needed, it could usually be taken from the prefetch buffer
rather than waiting for a memory read to complete.

In effect, prefetching divides instruction execution into two parts: fetching and actual execution. The
concept of a pipeline carries this strategy much further. Instead of dividing instruction execution into
only two parts, it is often divided into many parts, each one handled by a dedicated piece of hardware,
all of which can run in parallel.

Fig. 2-4(a) illustrates a pipeline with five units, also called stages. Stage 1 fetches the instruction from
memory and places it in a buffer until it is needed. Stage 2 decodes the instruction, determining its type
and what operands it needs. Stage 3 locates and fetches the operands, either from registers or from
memory. Stage 4 actually does the work of carrying out the instruction, typically by running the
operands through the data path of the CPU. Finally, stage 5 writes the result back to the proper register.

S S2 S3 S4 S5
Instruction Instruction Operand Instruction Write
fetch decode fetch »| execution back
unit unit unit unit unit

=

st: ([1]{[2]|[3]|[2]|(s])[e] |[7] ([&] |[=]

s2:| ([ |[=]|[=]|[4]|=] |Ce] | (=] | &]

s3: [1]{[=]|[3]|[2]|[=] |[s]|[7]

s4: [1])(2]|(3]|[4]|[5]|[e]

S5: 4E

1 2 3 4 5 6 7 8 9
Time —

C

Figure 2-4. (a) A five stage pipeline. (b) The state of each stage as a function of time. Nine clock cycles
are illustrated.

In Fig. 2.4(b) we show how the pipeline operates as a function of time. During clock cycle 1, stage S1 is
working on instruction 1, fetching it from memory. During cycle 2, stage S2 decodes instruction 1,
while stage S1 fetches instruction 2. During cycle 3, stage S3 fetches the operands for instruction 1,
stage S2 decodes instruction, and stage S3 fetches the third instruction. (...) Finally, during cycle 5, S5
writes the result of instruction 1 back, while the other stages work on the following instructions.

Suppose that the cycle time of this machine is 2 nsec’. Then it takes 10 nsec for an instruction to
progress all the way through the five-stage pipeline. At first glance, with an instruction taking 10 nsec, it
might appear that the machine can run at 100 MIPS’, but in fact it does much better than this. At every

®> O CPU dos primeiros PC’s, o Intel 8088, também tinha um prefetch buffer com 6 bytes.
e que corresponde a utilizagdo de um clock com uma frequéncia de 500MHz
"Millions of Instructions Per Second
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clock cycle (2 nsec), one new instruction is completed, so the actual rate of processing is 500 MIPS, not
100 MIPS®.

Superscalar Architectures

If one pipeline is good, then surely two pipelines are better. One possible design for a dual pipeline
CPU, based on Figure 2-4, is shown in Fig. 2-5. Here a single instruction fetch unit fetches pairs of
instructions together and puts each one into its own pipeline, complete with its own ALU for parallel
operation. To be able to run in parallel, the two instructions must not conflict over resource usage (e.g.,
registers), and neither must depend on the result of the other. As with a single pipeline, either the
compiler must guarantee this situation to hold (i.e., the hardware does not check ands gives incorrect
results if the instructions are not compatible), or conflicts are detected and eliminates during execution
using extra hardware.

S S2 S3 S4 S5
Instruction Operand Instruction Write

decode fetch execution back

Instruction unit unit unit unit

fetch

unit Instruction Operand Instruction Write
decode fetch execution back

unit unit unit unit

Figure 2-5. Dual five-stage pipelines with a common instruction fetch unit.

Although pipelines, single or double, are mostly used on RISC® machines (the 386 and its predecessors
did not have any), starting with 486 Intel began introducing pipelines into its CPUs. The 486 had one
pipeline and the Pentium had two five-stages pipelines roughly as Fig. 2-5, although the exact division
of work between stages 2 and 3 (called decode-1 and decode-2) was slightly different than in our
example. The main pipeline, called the u pipeline, could execute a arbitrary Pentium instruction. The
second pipeline, called the v pipeline, could execute only simple integer instructions.

Complex rules determined whether a pair of instructions were compatible so they could be executed in
parallel. If the instructions in a pair were not simple enough or incompatible, only the first one was
executed (in the u pipeline). The second one was then held and paired with the instruction following it.
Instructions were always executed in order.

®Nota: o aumento do desempenho muito raramente é proporcional ao n° de niveis de pipeline, pois nem
sempre se consegue manter o pipeline cheio; por ex., quando uma instrugdo precisa do resultado da
anterior, ou sempre que ha instrugdes de salto, o pipeline podera ter de ser empatado.

® Reduced Instruction Set Computer, conceito a ser detalhado adiante
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Anexo C: Arquitectura e conjunto de instrugoes do 1A32

31 15 a7 0
Feax $ax| %ah gal
Fecx sox| %ch tol
Fedx Fdx| %dh gdl
Yebx Fax %bh tbl
Fesl Fel

Fedi Fdi

¥esp TEp

Febp sbp

llustragado 1- Conjunto de registos inteiros do 1A32 (notag&o Linux)

Tvpe Form Operand value MName
[mmediate | = Imm I [mmediate
Register Eg R[Ea] Register
Memory Imm M[Frmam] Absolute
Memory (Ea) M[R[Ea]] Indirect
Memory Imm (Ey) M[Frm + R[Ey]] Base + displacement
Memory (Ey, E;) M[R[Ea] + R[E:]] [ndexed
Memory Imm (Ey, E;) M[Frm + R[Ey] + R[E{]] [ndexed
Memors {,E;, 3) M[R[E:] - ] Scaled indexed
Memory Imm ( ,E;, s) M[Fnm + R[E;] - 5] Scaled Indexed
Memory (Ey,E;, 5) M[R[Es] + R[E:] - =] Scaled indexed
Memory Imm (Ey, E;, 5) | M[Fmm + R[E,] + R[E{] - 5] | Scaled indexed

llustragao 2 - Modos de enderegamento 1A32: imediato, registo e valores em memoria. O factor de escala s
pode tomar o valor 1, 2, 4 ou 8; Imm pode ser uma constante de 0, 8, 16 ou 32 bits. O modo de enderegamento em
memoria reduz-se a forma Imm(EDb, Ei, s), em que alguns dos campos podem nao estar presentes.

Tabela 1- Codigos de condigbes (flags) . Descrevem atributos da ultima operagao logica ou aritmética
realizada. Usadas para realizar saltos condicionais.

Simbolo Nome Descricio
CF Carry Flag A ultima operagéo gerou transporte.
ZF Zero Flag A ultima operacgao teve resultado zero
SF Sign Flag A Ultima operacao teve resultado negativo
A Ultima operagéo causou overflow em
OF Overflow Flag complemento para dois.
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Tipo Instrucao Efeito Descrigédo
mov? S, D D&S Move (? = b,w,l)
Transferéncia movsbl S, D | D<SignExtend(S) Move Sign-Extended Byte
de movzbl S, D | D<ZeroExtend(S) Move Zero-Extended Byte
Informagao pushl S Y%esp € %esp - 4; Mem[%esp] € S Push
popl D D<Mem[%esp]; %esp € %esp+ 4 Pop
leal S, D D& &S Load Effective Address
incl D D< D +1 Increment
decl D D& D1 Decrement
negl D D« -D Negate
notl D D< D Complement
addl S, D D&D+S Add
subl S, D D&<D-S Subtract
imull S, D D« D*S 32 bit Multiply
Operagdes xorl S, D D&D”S Exclusive-Or
Aritméticas orl S,D D&« D|S Or
e andl S, D D&<D&S And
Logicas sallk, D D& D <<k Left Sh?ft
shll k, D D& D <<k Left Shift
sarl k, D D& D>>k Arithmetic Right Shift
shrlk, D D& D>>k Logical Right Shift
imull S %edx : %oeax < S x %eax Signed 64 bit Multiply
mull S %edx : %oeax € S x %eax Unsigned 64 bit Multiply
cltd %edx : %oeax € SignExtend(%eax) Convert to Quad Word
idivl S %edx € %edx : %eax mod S; %eax € %edx:%eax + S | Signed Divide
divl S Y%edx € %edx : %eax mod S; %eax € %edx : %eax + S | Unsigned Divide
Teste cmp? S2, S1|(CF, ZF, SF, OF) €& S1-82 Compare (? = b,w,l)
test? S2, S1 | (CF, ZF, SF, OF) €< S1 & S2 Test (7 = b,w,l)
sete R8 R8 < ZF (Sindnimo: setz R8) Equal/Zero
setne R8 R8 & ~ZF (Sin6énimo: setnz R8) Not Equal/Not Zero
sets R8 R8 <« SF Negative
setns R8 R8 < ~SF Non Negative
setg R8 R8 &« ~(SF*OF) & ~ZF (Sinénimo: setnle R8) Greater (signed >)
Instrugbes de |setge R8 R8 & ~(SF*OF) (Sinénimo: setnl R8) Greater or equal (signed >=)
set setl R8 R8 &« SFAOF (Sinénimo: setnge R8) Less (signed <)
setle R8 R8 € (SF*OF) | ZF (Sinénimo: setng R8) Less or equal (signed <=)
seta R8 R8 & ~CF & ~ZF (Sinénimo: setnbe R8) Above (unsigned >)
setae R8 R8 &« ~CF (Sinénimo: setnb R8) Above or equal (unsigned >=)
setb R8 R8 < CF (Sin6nimo: setnae R8) Below (unsigned <)
setbe R8 R8 & CF & ~ZF (Sinénimo: setna R8) Below or equal (unsigned <=)
jmp Label %eip € Label Unconditional jump
jmp *D Y%eip € *D Indirect unconditional jump
je Label Jump if ZF (Sinénimo: jz) Zero/Equal
jne Label Jump if ~ZF (Sinénimo: jnz) Not Zero/Not Equal
js Label Jump if SF Negative
jns Label Jump if ~SF Not Negative
Instrugbes de |jg Label Jump if ~(SF A"OF) & ~ZF (Sinénimo: jnle) Greater (signed >)
salto jge Label Jump if ~(SFAOF) (Sinénimo: jnl ) Greater or equal (signed >=)
jl Label Jump if SFAOF (Sinénimo: jnge ) Less (signed <)
jle Label Jump if (SF*OF) | ZF (Sinénimo: jng ) Less or equal (signed <=)
ja Label Jump if ~CF & ~ZF (Sinénimo: jnbe ) Above (unsigned >)
jae Label Jump if ~CF (Sinénimo: jnb ) Above or equal (unsigned >=)
jb Label Jump if CF (Sinénimo: jnae ) Below (unsigned <)
jbe Label Jump if CF & ~ZF (Sinénimo: jna ) Below or equal (unsigned <=)
call Label pushl %eip; %eip= Label Procedure call
Invocagéo de |call *Op pushl %eip; %eip= *Op Procedure call
Procedimentos | ret popl %eip Procedure return
leave movl %ebp, %esp; pop %ebp Prepare stack for return

D — destino [Reg | Mem]
D e S ndo podem ser ambos operandos em memoaria

S — fonte [Imm | Reg | Mem]
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