
Cache Memories
Oct. 10, 2002

Cache Memories
Oct. 10, 2002

TopicsTopics
Generic cache memory organization
Direct mapped caches
Set associative caches
Impact of caches on performance

class14.ppt

15-213
“The course that gives CMU its Zip!”

A sequência destes

slid
es fo

i a
lte

rada

– 2 – 15-213, F’02

Cache MemoriesCache Memories
Cache memories are small, fast SRAMCache memories are small, fast SRAM--based memories based memories

managed automatically in hardware. managed automatically in hardware.
Hold frequently accessed blocks of main memory

CPU looks first for data in L1, then in L2, then in main CPU looks first for data in L1, then in L2, then in main
memory.memory.

Typical bus structure:Typical bus structure:

main
memory

I/O
bridgebus interfaceL2 cache

ALU

register file
CPU chip

cache bus system bus memory bus

L1
cache

– 3 – 15-213, F’02

Inserting an L1 Cache Between
the CPU and Main Memory
Inserting an L1 Cache Between
the CPU and Main Memory

a b c dblock 10

p q r sblock 21

...

...

w x y zblock 30

...

The big slow main memory
has room for many 4-word
blocks.

The small fast L1 cache has room
for two 4-word blocks.

The tiny, very fast CPU register file
has room for four 4-byte words.

The transfer unit between
the cache and main
memory is a 4-word block
(16 bytes).

The transfer unit between
the CPU register file and
the cache is a 4-byte block.

line 0

line 1

– 4 – 15-213, F’02

General Org of a Cache MemoryGeneral Org of a Cache Memory

• • • B–110

• • • B–110

valid

valid

tag

tag
set 0:

B = 2b bytes
per cache block

E lines
per set

S = 2s sets

t tag bits
per line

1 valid bit
per line

Cache size: C = B x E x S data bytes

• • •

• • • B–110

• • • B–110

valid

valid

tag

tag
set 1: • • •

• • • B–110

• • • B–110

valid

valid

tag

tag
set S-1: • • •

• • •

Cache is an array
of sets.

Each set contains
one or more lines.

Each line holds a
block of data.

– 5 – 15-213, F’02

Addressing CachesAddressing Caches
t bits s bits b bits

0m-1

<tag> <set index> <block offset>

Address A:

• • • B–110

• • • B–110

v

v

tag

tag
set 0: • • •

• • • B–110

• • • B–110

v

v

tag

tag
set 1: • • •

• • • B–110

• • • B–110

v

v

tag

tag
set S-1: • • •

• • •
The word at address A is in the cache if
the tag bits in one of the <valid> lines in
set <set index> match <tag>.

The word contents begin at offset
<block offset> bytes from the beginning
of the block.

– 6 – 15-213, F’02

Direct-Mapped CacheDirect-Mapped Cache
Simplest kind of cacheSimplest kind of cache
Characterized by exactly one line per set.Characterized by exactly one line per set.

valid

valid

valid

tag

tag

tag

• • •

set 0:

set 1:

set S-1:

E=1 lines per setcache block

cache block

cache block

– 7 – 15-213, F’02

Accessing Direct-Mapped CachesAccessing Direct-Mapped Caches
Set selectionSet selection

Use the set index bits to determine the set of interest.

valid

valid

valid

tag

tag

tag

• • •

set 0:

set 1:

set S-1:
t bits s bits

0 0 0 0 1
0m-1

b bits

tag set index block offset

selected set

cache block

cache block

cache block

– 8 – 15-213, F’02

Accessing Direct-Mapped CachesAccessing Direct-Mapped Caches
Line matching and word selectionLine matching and word selection

Line matching: Find a valid line in the selected set with a
matching tag
Word selection: Then extract the word

1

t bits s bits
100i0110

0m-1

b bits

tag set index block offset

selected set (i):

(3) If (1) and (2), then
cache hit,

and block offset
selects

starting byte.

=1? (1) The valid bit must be set

= ?
(2) The tag bits in the cache

line must match the
tag bits in the address

0110 w3w0 w1 w2

30 1 2 74 5 6

– 9 – 15-213, F’02

Set Associative CachesSet Associative Caches
Characterized by more than one line per setCharacterized by more than one line per set

valid tag
set 0: E=2 lines per set

set 1:

set S-1:

• • •

cache block

valid tag cache block

valid tag cache block

valid tag cache block

valid tag cache block

valid tag cache block

– 10 – 15-213, F’02

Accessing Set Associative CachesAccessing Set Associative Caches
Set selectionSet selection

identical to direct-mapped cache

valid

valid

tag

tag
set 0:

valid

valid

tag

tag
set 1:

valid

valid

tag

tag
set S-1:

• • •

t bits s bits
0 0 0 0 1

0m-1

b bits

tag set index block offset

Selected set

cache block

cache block

cache block

cache block

cache block

cache block

– 11 – 15-213, F’02

Accessing Set Associative CachesAccessing Set Associative Caches
Line matching and word selectionLine matching and word selection

must compare the tag in each valid line in the selected set.

1 0110 w3w0 w1 w2

1 1001

t bits s bits
100i0110

0m-1

b bits

tag set index block offset

selected set (i):

=1? (1) The valid bit must be set.

= ?
(2) The tag bits in one

of the cache lines must
match the tag bits in

the address

(3) If (1) and (2), then
cache hit, and

block offset selects
starting byte.

30 1 2 74 5 6

– 12 – 15-213, F’02

Multi-Level CachesMulti-Level Caches
Options: separate Options: separate datadata and and instruction cachesinstruction caches, or a , or a

unified cacheunified cache

size:
speed:
$/Mbyte:
line size:

200 B
3 ns

8 B

8-64 KB
3 ns

32 B

128 MB DRAM
60 ns
$1.50/MB
8 KB

30 GB
8 ms
$0.05/MB

larger, slower, cheaper

MemoryMemory

L1
d-cache

Regs
Unified

L2
Cache

Unified
L2

Cache

Processor

1-4MB SRAM
6 ns
$100/MB
32 B

L1
i-cache

diskdisk

– 13 – 15-213, F’02

Processor ChipProcessor Chip

Intel Pentium Cache HierarchyIntel Pentium Cache Hierarchy

L1 Data
1 cycle latency

16 KB
4-way assoc

Write-through
32B lines

L1 Instruction
16 KB, 4-way

32B lines

Regs. L2 Unified
128KB--2 MB
4-way assoc
Write-back

Write allocate
32B lines

L2 Unified
128KB--2 MB
4-way assoc
Write-back

Write allocate
32B lines

Main
Memory

Up to 4GB

Main
Memory

Up to 4GB

– 14 – 15-213, F’02

Cache Performance MetricsCache Performance Metrics
Miss RateMiss Rate

Fraction of memory references not found in cache
(misses/references)
Typical numbers:

3-10% for L1
can be quite small (e.g., < 1%) for L2, depending on size, etc.

Hit TimeHit Time
Time to deliver a line in the cache to the processor (includes
time to determine whether the line is in the cache)
Typical numbers:

1 clock cycle for L1
3-8 clock cycles for L2

Miss PenaltyMiss Penalty
Additional time required because of a miss

Typically 25-100 cycles for main memory

– 15 – 15-213, F’02

Writing Cache Friendly CodeWriting Cache Friendly Code
Repeated references to variables are good (temporal Repeated references to variables are good (temporal

locality)locality)
StrideStride--1 reference patterns are good (spatial locality)1 reference patterns are good (spatial locality)
Examples:Examples:

cold cache, 4-byte words, 4-word cache blocks

int sumarrayrows(int a[M][N])
{

int i, j, sum = 0;
for (i = 0; i < M; i++)

for (j = 0; j < N; j++)
sum += a[i][j];

return sum;
}

int sumarraycols(int a[M][N])
{

int i, j, sum = 0;
for (j = 0; j < N; j++)

for (i = 0; i < M; i++)
sum += a[i][j];

return sum;
}

Miss rate = Miss rate = 1/4 = 25% 100%
– 16 – 15-213, F’02

Concluding ObservationsConcluding Observations
Programmer can optimize for cache performanceProgrammer can optimize for cache performance

How data structures are organized
How data are accessed

Nested loop structure
Blocking is a general technique

All systems favor “cache friendly code”All systems favor “cache friendly code”
Getting absolute optimum performance is very platform
specific

Cache sizes, line sizes, associativities, etc.
Can get most of the advantage with generic code

Keep working set reasonably small (temporal locality)
Use small strides (spatial locality)

