A sequencia destes 15-213 A sequencia alterada 15-213 15-213 A sequencia alterada 15-213 A sequencia alterada 15-213 A sequencia destes 15-213 A sequencia destes 15-213 A sequencia destes 15-213 A sequencia destes 15-213

Oct. 10, 2002

Topics

- Generic cache memory organization
- Direct mapped caches
- Set associative caches
- Impact of caches on performance

Cache Memories

Cache memories are small, fast SRAM-based memories managed automatically in hardware.

Hold frequently accessed blocks of main memory

CPU looks first for data in L1, then in L2, then in main memory.

Typical bus structure:

class14.ppt

Inserting an L1 Cache Between the CPU and Main Memory

General Org of a Cache Memory

-4-

Cache size: $C = B \times E \times S$ data bytes 15-213. F'02

Direct-Mapped Cache

Simplest kind of cache

Characterized by exactly one line per set.

Accessing Direct-Mapped Caches

Set selection

Use the set index bits to determine the set of interest.

Accessing Direct-Mapped Caches

Line matching and word selection

- Line matching: Find a valid line in the selected set with a matching tag
- Word selection: Then extract the word

Set Associative Caches

Characterized by more than one line per set

Accessing Set Associative Caches

Set selection

identical to direct-mapped cache

Accessing Set Associative Caches

Line matching and word selection

must compare the tag in each valid line in the selected set.

Multi-Level Caches

Options: separate data and instruction caches, or a unified cache

-9-

- 10 -

15-213, F'02

Intel Pentium Cache Hierarchy

- 13 -

Writing Cache Friendly Code

Repeated references to variables are good (temporal locality)

Stride-1 reference patterns are good (spatial locality)

Examples:

cold cache, 4-byte words, 4-word cache blocks

Cache Performance Metrics

Miss Rate

- Fraction of memory references not found in cache (misses/references)
- Typical numbers:
 - 3-10% for L1
 - can be quite small (e.g., < 1%) for L2, depending on size, etc.

Hit Time

- Time to deliver a line in the cache to the processor (includes time to determine whether the line is in the cache)
- Typical numbers:
 - 1 clock cycle for L1
 - 3-8 clock cycles for L2

Miss Penalty

- Additional time required because of a miss
 - Typically 25-100 cycles for main memory

- 14 -

15-213. F'02

15-213, F'02

15-213, F'02

Concluding Observations

Programmer can optimize for cache performance

- How data structures are organized
- How data are accessed
 - Nested loop structure
 - Blocking is a general technique

All systems favor "cache friendly code"

- Getting absolute optimum performance is very platform specific
 - Cache sizes, line sizes, associativities, etc.
- Can get most of the advantage with generic code
 - Keep working set reasonably small (temporal locality)
 - Use small strides (spatial locality)