o
&
S
et 15-213
&)0 ,\6\0“The course that gives CMU its Zip!”
® 2
" O

2 Cache Memories

Oct. 10, 2002

Topics
m Generic cache memory organization
m Direct mapped caches
m Set associative caches
m Impact of caches on performance

classl4d.ppt

Cache Memories

Cache memories are small, fast SRAM-based memories
managed automatically in hardware.
m Hold frequently accessed blocks of main memory

CPU looks first for data in L1, then in L2, then in main
memory.

Typical bus structure:

CPU chip
register file

L1
cache

cache bus ﬁ
po 1T s ! _
. main
L2 cache bus interface <::::> bridge \,/‘::> memory|

o 15-213, F'02

ALU

system bus memory bus

Inserting an L1 Cache Between
the CPU and Main Memory

} The tiny, very fast CPU register file
The transfer unit between has room for four 4-byte words.

the CPU register file and {

the cache is a 4-byte block.

line 0 The small fast L1 cache has room
line 1 |:| for two 4-word blocks.
The transfer unit between 7y
the cache and main {
memory is a 4-word block 4 N
(16 bytes). block 10
The big slow main memory
block 21 > has room for many 4-word
blocks.
block 30
_3- 7 15-213, F02

General Org of a Cache Memory

1 valid bit t tag bits B = 2" bytes

Cache is an array per line per line per cache block
of sets. —a ——
[li t 0 1] eee [B
Each set contains |va Id | = |.|" | | | E lines
one or more lines. set 0: per set
valid | tag || 0 [1 [«ee B
Each line holds a
block of data. valid [tag [[o0]1]--- [B]
set 1: ce°
5= 2 sets Caiid [tag | [0] 1] -~ 5]
valid | tag || 0 [1] «ce [B|
set S-1: ce°
valid | tag || 0] 1] «ee |B1|

Cache size: C =B x E x S data bytes 15213, F02

Addressing Caches

[v] [tag J[01 -~

Address A:
t bits s bits b bits

m-1

<tag> <set index> <block offset>

set 0: °°°
[v] [tag J[0[1]---]B1
tag |[0[1[ee[p1] [
set 1: °°°

v
[v] [tag |[0[1[---]p1

[v] [tag J[0]1]---]B
set S-1: Al

[v] [tag J[01[---]p

The word at address A is in the cache if
the tag bits in one of the <valid> lines in
set <set index> match <tag>.

The word contents begin at offset
<block offset> bytes from the beginning
of the block.

15-213, F'02

Direct-Mapped Cache

Simplest kind of cache

Characterized by exactly one line per set.

set 0: |va|id| | tag | | cache block | }E=1 lines per set
set 1: |va|id| | tag | | cache block |
set S-1: |va|id| | tag | | cache block |
-6- 15-213, F02

Accessing Direct-Mapped Caches

Set selection

m Use the set index bits to determine the set of interest.

set 0:
selected set > set1:
t bits s bits b bits
| (00001 | | set S-1:
™1 tag set index block offset’

valid	tag		cache block	
valid	tag		cache block	
va	ic1	tag		cache block

15-213, F'02

Accessing Direct-Mapped Caches

Line matching and word selection

m Line matching: Find a valid line in the selected set with a
matching tag

m Word selection: Then extract the word

=1? (1) The valid bit must be set
A

0 1 2 3 4 5 6 7
selectedset(i):| | 1 | [o110 J| [| [[w|[w|w,[w,]
(2) The tag bits in the cache - (3) If (1) and (2)’ then
line must match the cache hit
tag bits in the address and block off’set
. . . lects
t bits s bits b bits Se
o110 | ; | 100 | starting byte.
™1 tag set index block offsef’

-8- 15-213, F'02

Set Associative Caches

Characterized by more than one line per set

|valid | tag | | cache block |
set 0: E=2 lines per set
|valid | tag | | cache block |
set1: |valid | tag | | cache block |
|vali4 | tag | | cache block |
set S-1: }valid | tag | cache block |
|valid | tag | | cache block |
—9- 15-213, F'02

Accessing Set Associative Caches

Set selection
m identical to direct-mapped cache

ali tag cache block
set 0:
|valid | tag | | cache block |
Selected set set 1: |va|id | tag | | cache block |
|va|id | tag | | cache block |
|va|id | tag | cache block |
I t bits I o:l(a)itos1 | b bits lSEt S-1: [tag | [cacheblock |
™1 tag set index block offset’
~10— 15-213, F'02

Accessing Set Associative Caches

Line matching and word selection
= must compare the tag in each valid line in the selected set.

=1? (1) The valid bit must be set.

TA
1 2 3 4 5 6 7

0
Lo JI T T [T [[[]

selected st WF] [lotto 11 | | | [wo[wilwe we]

=y

(2) The tag bits in one v v (3) If (1) and (2), then

of the cache lines must =? o CT(Ch';fhitt, anld .
match the tag bits in ock offset selects

the address starting byte.

t bits s bits b bits
[0110] i [100 |
™1 tag set index block offsef’

-11- 15-213, F'02

Multi-Level Caches

Options: separate data and instruction caches, or a
unified cache

L1
L2 Memory @
L1 Cache

i-cache
— .
size: 200B 8-64 KB 1-4MB SRAM 128 MB DRAM 30 GB
speed: 3ns 3 ns 6 ns 60 ns 8 ms
$/Mbyte: $100/MB $1.50/MB $0.05/MB
line size: 8B 32B 32B 8 KB
larger, slower, cheaper

>

_12- 15-213, F'02

Intel Pentium Cache Hierarchy

L1 Data
1 cycle latency
N 16 KB
Reas. len 4-way assoc L2 Unified
9S- [4— rite-through 128KB--2 MB .
32B lines 4-way assoc Main
€ Memory
Write-back Up to 4GB
Write allocate P
L1 Instruction 32B lines
16 KB, 4-way
32B lines
Processor Chip

13- 15-213, F'02

Cache Performance Metrics

Miss Rate

m Fraction of memory references not found in cache
(misses/references)
m Typical numbers:
® 3-10% for L1
® can be quite small (e.g., < 1%) for L2, depending on size, etc.

Hit Time
m Time to deliver a line in the cache to the processor (includes
time to determine whether the line is in the cache)

m Typical numbers:
® 1 clock cycle for L1
® 3-8 clock cycles for L2

Miss Penalty

m Additional time required because of a miss
e Typically 25-100 cycles for main memory
14— 15-213, F'02

Writing Cache Friendly Code

Repeated references to variables are good (temporal
locality)

Stride-1 reference patterns are good (spatial locality)

Examples:
m cold cache, 4-byte words, 4-word cache blocks

int sumarrayrows (int a[M] [N]) int sumarraycols(int a[M][N])
{ {
int i, j, sum = 0; int i, j, sum = 0;
for (i = 0; i < M; i++) for (j = 0; j < N; j++)
for (j = 0; j < N; j++) for (i = 0; i < M; i++)
sum += a[i][j]; sum += a[il[j];
return sum; return sum;

Miss rate = 1/4 = 25% Miss rate = 100%
15 15-213, F'02

Concluding Observations

Programmer can optimize for cache performance
m How data structures are organized

= How data are accessed
o Nested loop structure
® Blocking is a general technique

All systems favor “cache friendly code”
m Getting absolute optimum performance is very platform
specific
® Cache sizes, line sizes, associativities, etc.
m Can get most of the advantage with generic code
o Keep working set reasonably small (temporal locality)
o Use small strides (spatial locality)

-16 - 15-213, F'02

