
Time Measurement
Oct. 24, 2002

Time Measurement
Oct. 24, 2002

TopicsTopics
Time scales
Processes
Interval counting
Cycle counters
K-best measurement scheme

class18.ppt

15-213
“The course that gives CMU its Zip!”

A sequência destes

slid
es fo

i a
lte

rada

– 2 – 15-213, F’02

Computer Time ScalesComputer Time Scales

Two Fundamental Time ScalesTwo Fundamental Time Scales
Processor: ~10–9 sec.
External events: ~10–2 sec.

Keyboard input
Disk seek
Screen refresh

ImplicationImplication
Can execute many
instructions while waiting
for external event to occur
Can alternate among
processes without anyone
noticing

Time Scale (1 Ghz Machine)

1.E-09 1.E-06 1.E-03 1.E+00Time (seconds)

1 ns 1 µs 1 ms 1 s

Integer Add
FP Multiply

FP Divide
Keystroke
Interrupt
Handler

Disk Access
Screen Refresh
Keystroke

Microscopic Macroscopic

– 3 – 15-213, F’02

Measurement ChallengeMeasurement Challenge
How Much Time Does Program X Require?How Much Time Does Program X Require?

CPU time
How many total seconds are used when executing X?
Measure used for most applications
Small dependence on other system activities

Actual (“Wall”) Time
How many seconds elapse between the start and the
completion of X?
Depends on system load, I/O times, etc.

Confounding FactorsConfounding Factors
How does time get measured?
Many processes share computing resources

Transient effects when switching from one process to another
Suddenly, the effects of alternating among processes become
noticeable

– 4 – 15-213, F’02

ProcessesProcesses
Def: A Def: A processprocess is an instance of a running program.is an instance of a running program.

One of the most profound ideas in computer science.
Not the same as “program” or “processor”

Process provides each program with two key Process provides each program with two key
abstractions:abstractions:

Private address space
Each program seems to have exclusive use of main memory.

Logical control flow
Each program seems to have exclusive use of the CPU.

How are these Illusions maintained?How are these Illusions maintained?
Process executions interleaved (multitasking)
Address spaces managed by virtual memory system

– 5 – 15-213, F’02

Private Address Spaces (1)Private Address Spaces (1)

Linux Memory LayoutLinux Memory Layout
StackStack

Runtime stack (8MB limit)
HeapHeap

Dynamically allocated storage
When call malloc, calloc, new

DLLsDLLs
Dynamically Linked Libraries
Library routines (e.g., printf, malloc)
Linked into object code when first executed

DataData
Statically allocated data
E.g., arrays & strings declared in code

TextText
Executable machine instructions
Read-only

FF

BF

7F

3F

C0

80

40

00

Stack

DLLs

Text
Data
Heap

Heap

08

Upper
2 hex
digits of
address

Red Hat
v. 6.2
~1920MB
memory
limit

– 6 – 15-213, F’02

Private Address Spaces (2)Private Address Spaces (2)

Each process has its own private address space.Each process has its own private address space.

kernel virtual memory
(code, data, heap, stack)

memory mapped region for
shared libraries

run-time heap
(managed by malloc)

user stack
(created at runtime)

unused0

%esp (stack pointer)

memory
invisible to
user code

brk

0xc0000000

0x08048000

0x40000000

read/write segment
(.data, .bss)

read-only segment
(.init, .text, .rodata)

loaded from the
executable file

0xffffffff

– 7 – 15-213, F’02

Logical Control FlowsLogical Control Flows

Time

Process A Process B Process C

Each process has its own logical control flow

– 8 – 15-213, F’02

Altering the Control FlowAltering the Control Flow

Up to Now: two mechanisms for changing control flow:Up to Now: two mechanisms for changing control flow:
Jumps and branches
Call and return using the stack discipline.

Both react to changes in program state.Both react to changes in program state.

Insufficient for a useful systemInsufficient for a useful system
Difficult for the CPU to react to changes in system state.

Data arrives from a disk or a network adapter.
Instruction divides by zero
User hits ctl-c at the keyboard
System timer expires

System needs mechanisms for System needs mechanisms for
“exceptional control flow”“exceptional control flow”

– 9 – 15-213, F’02

Exceptional Control FlowExceptional Control Flow
Mechanisms for exceptional control flow exists at all levels
of a computer system.

Low level MechanismLow level Mechanism
Exceptions

change in control flow in response to a system event (i.e.,
change in system state)

Combination of hardware and OS software

Higher Level MechanismsHigher Level Mechanisms
Process context switch
Signals
Nonlocal jumps (setjmp/longjmp)
Implemented by either:

OS software (context switch and signals).
C language runtime library: nonlocal jumps.

– 10 – 15-213, F’02

System context for exceptionsSystem context for exceptions

Local/IO BusLocal/IO Bus

MemoryMemory Network
adapter

Network
adapter

IDE disk
controller
IDE disk

controller
Video

adapter
Video

adapter

DisplayDisplay NetworkNetwork

ProcessorProcessor Interrupt
controller
Interrupt
controller

SCSI
controller

SCSI
controller

SCSI busSCSI bus

Serial port
controller

Serial port
controller

Parallel port
controller

Parallel port
controller

Keyboard
controller

Keyboard
controller

KeyboardKeyboard MouseMouse PrinterPrinterModemModem

disk

disk CDROM

– 11 – 15-213, F’02

Exceptions

An An exceptionexception is a transfer of control to the OS in response is a transfer of control to the OS in response
to some to some eventevent (i.e., change in processor state)(i.e., change in processor state)

User Process OS

exception
exception processing
by exception handler

exception
return (optional)

event current
next

– 12 – 15-213, F’02

Asynchronous Exceptions (Interrupts)Asynchronous Exceptions (Interrupts)

Caused by events external to the processorCaused by events external to the processor
Indicated by setting the processor’s interrupt pin
handler returns to “next” instruction.

Examples:Examples:
I/O interrupts

hitting ctl-c at the keyboard
arrival of a packet from a network
arrival of a data sector from a disk

Hard reset interrupt
hitting the reset button

Soft reset interrupt
hitting ctl-alt-delete on a PC

– 13 – 15-213, F’02

Synchronous ExceptionsSynchronous Exceptions

Caused by events that occur as a result of executing an Caused by events that occur as a result of executing an
instruction:instruction:

Traps
Intentional
Examples: system calls, breakpoint traps, special instructions
Returns control to “next” instruction

Faults
Unintentional but possibly recoverable
Examples: page faults (recoverable), protection faults
(unrecoverable).
Either re-executes faulting (“current”) instruction or aborts.

Aborts
Unintentional and unrecoverable
Examples: parity error, machine check.
Aborts current program

– 14 – 15-213, F’02

Context SwitchingContext Switching
Processes are managed by a shared chunk of OS code Processes are managed by a shared chunk of OS code

called the called the kernelkernel
Important: the kernel is not a separate process, but rather
runs as part of some user process

Control flow passes from one process to another via a Control flow passes from one process to another via a
context switch.context switch.

Process A
code

Process B
code

user code

kernel code

user code

kernel code

user code

Time
context switch

context switch

– 15 – 15-213, F’02

“Time” on a Computer System“Time” on a Computer System

real (wall clock) time

= user time (time executing instructions in the user process)

+ = real (wall clock) time

We will use the word “time” to refer to user time.

= system time (time executing instructions in kernel on behalf
of user process)

+

= some other user’s time (time executing instructions in
different user’s process)

cumulative user time

– 16 – 15-213, F’02

Activity Periods: Light LoadActivity Periods: Light Load

Most of the time spent
executing one process
Periodic interrupts every
10ms

Interval timer
Keep system from
executing one process to
exclusion of others

Other interrupts
Due to I/O activity

Inactivity periods
System time spent
processing interrupts
~250,000 clock cycles

Activity Periods, Load = 1

0 10 20 30 40 50 60 70 80

1

Time (ms)

Active

Inactive

– 17 – 15-213, F’02

Activity Periods: Heavy LoadActivity Periods: Heavy Load

Sharing processor with one other active process
From perspective of this process, system appears to be
“inactive” for ~50% of the time

Other process is executing

Activity Periods, Load = 2

0 10 20 30 40 50 60 70 80

1

Time (ms)

Active

Inactive

– 18 – 15-213, F’02

Interval CountingInterval Counting
OS Measures Runtimes Using Interval TimerOS Measures Runtimes Using Interval Timer

Maintain 2 counts per process
User time
System time

Each time get timer interrupt, increment counter for
executing process

User time if running in user mode
System time if running in kernel mode

– 19 – 15-213, F’02

Interval Counting ExampleInterval Counting Example

Au Au Au As Bu Bs Bu Bu Bu Bu As Au Au Au Au Au Bs Bu Bu Bs Au Au Au As As

A 110u + 40s
B 70u + 30s

(a) Interval Timings

B BAA A

(b) Actual Times

B
AA

B
A 120.0u + 33.3s
B 73.3u + 23.3s

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

A

Au Au Au As Bu Bs Bu Bu Bu Bu As Au Au Au Au Au Bs Bu Bu Bs Au Au Au As As

A 110u + 40s
B 70u + 30s

(a) Interval Timings

B BAA A
Au Au Au As Bu Bs Bu Bu Bu Bu As Au Au Au Au Au Bs Bu Bu Bs Au Au Au As As

A 110u + 40s
B 70u + 30s

(a) Interval Timings

B BAA A

(b) Actual Times

B
AA

B
A 120.0u + 33.3s
B 73.3u + 23.3s

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

A
(b) Actual Times

B
AA

B
A 120.0u + 33.3s
B 73.3u + 23.3s

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

A

– 20 – 15-213, F’02

Unix time CommandUnix time Command

0.82 seconds user time
82 timer intervals

0.30 seconds system time
30 timer intervals

1.32 seconds wall time
84.8% of total was used running these processes

(.82+0.3)/1.32 = .848

time make osevent
gcc -O2 -Wall -g -march=i486 -c clock.c
gcc -O2 -Wall -g -march=i486 -c options.c
gcc -O2 -Wall -g -march=i486 -c load.c
gcc -O2 -Wall -g -march=i486 -o osevent osevent.c . . .
0.820u 0.300s 0:01.32 84.8% 0+0k 0+0io 4049pf+0w

– 21 – 15-213, F’02

Accuracy of Interval CountingAccuracy of Interval Counting

Worst Case AnalysisWorst Case Analysis
Timer Interval = δ
Single process segment measurement can be off by ±δ
No bound on error for multiple segments

Could consistently underestimate, or consistently overestimate

0 10 20 30 40 50 60 70 80

A

A

Minimum

Maximum

0 10 20 30 40 50 60 70 80

A

A

Minimum

Maximum

• Computed time = 70ms

• Min Actual = 60 + ε

• Max Actual = 80 – ε

– 22 – 15-213, F’02

Accuracy of Int. Cntg. (cont.)Accuracy of Int. Cntg. (cont.)

Average Case AnalysisAverage Case Analysis
Over/underestimates tend to balance out
As long as total run time is sufficiently large

Min run time ~1 second
100 timer intervals

Consistently miss 4% overhead due to timer interrupts

0 10 20 30 40 50 60 70 80

A

A

Minimum

Maximum

0 10 20 30 40 50 60 70 80

A

A

Minimum

Maximum

• Computed time = 70ms

• Min Actual = 60 + ε

• Max Actual = 80 – ε

– 23 – 15-213, F’02

Time of Day ClockTime of Day Clock
Unix gettimeofday() function
Return elapsed time since reference time (Jan 1, 1970)
Implementation

Uses interval counting on some machines
» Coarse grained

Uses cycle counter on others
» Fine grained, but significant overhead and only 1 microsecond

resolution

#include <sys/time.h>
#include <unistd.h>
struct timeval tstart, tfinish;
double tsecs;
gettimeofday(&tstart, NULL);
P();
gettimeofday(&tfinish, NULL);
tsecs = (tfinish.tv_sec - tstart.tv_sec) +

1e6 * (tfinish.tv_usec - tstart.tv_usec);
– 24 – 15-213, F’02

Measurement SummaryMeasurement Summary
Timing is highly case and system dependentTiming is highly case and system dependent

What is overall duration being measured?
> 1 second: interval counting is OK
<< 1 second: must use cycle counters

On what hardware / OS / OS version?
Accessing counters

» How gettimeofday is implemented
Timer interrupt overhead
Scheduling policy

Devising a Measurement MethodDevising a Measurement Method
Long durations: use Unix timing functions
Short durations

If possible, use gettimeofday
Otherwise must work with cycle counters
K-best scheme most successful

