609\0:’0
(',\'b &\0‘0 1 5'2 1 3

o) : I
NGl 1
900? (;\o\ The course that gives CMU its Zip!
O .
v Time Measurement
Oct. 24, 2002

Computer Time Scales

M:croscop:c Time Scale (1 Ghz Machine) Macroscop/c

Integer Add DISk Access
FP Multiply Keystroke Screen Refresh
FP Divide Interrupt Keystroke
f Handler

1Hs 1ms
1.E-03 1.E+00

1.E-09

1.E06 Time (seconds)

Topics

= Time scales Two Fundamental Time Scales Implication

= Processes = Processor: ~10-9 sec. = Can execute many

= Interval counting m External events: ~10-2 sec. instructions while waiting

= © Keyboard input for external event to occur

u o Disk seek m Can alternate among
e Screen refresh processes without anyone

noticing
classl8.ppt -2- 15-213, F'02

Measurement Challenge

How Much Time Does Program X Require?

m CPU time
® How many total seconds are used when executing X?
® Measure used for most applications
o Small dependence on other system activities

m Actual (“Wall”) Time
® How many seconds elapse between the start and the

completion of X?

e Depends on system load, I/O times, etc.

Confounding Factors
= How does time get measured?
= Many processes share computing resources
e Transient effects when switching from one process to another

e Suddenly, the effects of alternating among processes become
noticeable

-3- 15-213, F'02

Def: A process is an instance of a running program.
m One of the most profound ideas in computer science.
m Not the same as “program” or “processor”

Process provides each program with two key
abstractions:

m Private address space
o Each program seems to have exclusive use of main memory.

m Logical control flow
® Each program seems to have exclusive use of the CPU.

How are these lllusions maintained?
m Process executions interleaved (multitasking)
m Address spaces managed by virtual memory system

—-4- 15-213, F'02

Private Address Spaces ()

Upper
2 hex
digits of
address

Red Hat
v. 6.2
~1920MB
memory
limit

FF Linux Memory Layout
Stack
m Runtime stack (8MB limit)
co Heap
°E Stack m Dynamically allocated storage
® When call malloc, calloc, new
DLLs

m Dynamically Linked Libraries
m Library routines (e.g., printf, malloc)
m Linked into object code when first executed

m Statically allocated data
m E.g., arrays & strings declared in code

m Executable machine instructions
08 Text m Read-only
00

15-213, F'02

Private Address Spaces)

Each process has its own private address space.

OxfffEffff
kernel virtual memory memory
(code, data, heap, stack) invisible to
0xc0000000 user code
user stack
(created at runtime) .
“— %esp (stack pointer)
A
memory mapped region for
shared libraries
0x40000000
- T < brk
run-time heap
(managed by malloc)
read/write segment
(«data, .bss) loaded from the
read-only segment executable file
(.init, .text, .rodata)
0x08048000
0 unused
—6-— 15-213, F'02

Logical Control Flows

Each process has its own logical control flow

Process A Process B Process C

Time

15-213, F'02

Altering the Control Flow

Up to Now: two mechanisms for changing control flow:

= Jumps and branches
m Call and return using the stack discipline.

Both react to changes in program state.

Insufficient for a useful system
m Difficult for the CPU to react to changes in system state.
e Data arrives from a disk or a network adapter.
@ Instruction divides by zero
® User hits ctl-c at the keyboard
e System timer expires

System needs mechanisms for
“exceptional control flow”

-8- 15-213, F'02

Exceptional Control Flow

m Mechanisms for exceptional control flow exists at all levels
of a computer system.

System context for exceptions

Low level Mechanism Keyboard Mouse | | Modem Printer
m Exceptions | | | |
e change in control flow in response to a system event (i.e., Processor || Interrupt Keyboard Serial port Parallel port
change in system state) N controller controller controller controller
= Combination of hardware and OS software | | ‘ | |
Higher Level Mechanisms | Lol S
m Process context switch | | | | |
m Signals Memo IDE disk scsl Video Network
= Nonlocal jumps (setjmp/longjmp) v controller controller adapter adapter
= Implemented by either: | | |
e OS software (context switch and signals). ﬁ | SCSlbus | Display Network
e C language runtime library: nonlocal jumps.
-9- 15-213, F'02 -10- 15-213, F'02
E ti Asynchronous Exceptions (Interrupts)
Xceptions

An exception is a transfer of control to the OS in response

to some event (i.e., change in processor state)

User Process oS
event ——p current l exception -
next exception processing
by exception handler
exception

return (optional)

-11- 15-213, F'02

Caused by events external to the processor

m Indicated by setting the processor’s interrupt pin
m handler returns to “next” instruction.

Examples:
m |/O interrupts
@ hitting ctl-c at the keyboard
e arrival of a packet from a network
@ arrival of a data sector from a disk
m Hard reset interrupt
@ hitting the reset button
m Soft reset interrupt
o hitting ctl-alt-delete on a PC

_12- 15-213, F02

Synchronous Exceptions

Caused by events that occur as a result of executing an
instruction:

m Traps
@ Intentional
o Examples: system calls, breakpoint traps, special instructions
® Returns control to “next” instruction

= Faults
e Unintentional but possibly recoverable
® Examples: page faults (recoverable), protection faults
(unrecoverable).
o Either re-executes faulting (“current”) instruction or aborts.

= Aborts

e Unintentional and unrecoverable
® Examples: parity error, machine check.

Context Switching

Processes are managed by a shared chunk of OS code
called the kernel

= Important: the kernel is not a separate process, but rather
runs as part of some user process

Control flow passes from one process to another via a
context switch.

1
Process A | Process B
code ! code
: user code
i .
) kernel code } context switch
Time

user code

kernel code } context switch

® Aborts current program . user code
-13- 15-213, F'02 —14 - 15-213, F'02
“ . ,, L} L} L} - n
Time” on a Computer System Activity Periods: Light Load
L/ L/ L/
I 4 | 7R A |
. > Activity Periods, Load = 1
real (wall clock) time
I:l = user time (time executing instructions in the user process) L] Active
. Inactive
7////// = system time (time executing instructions in kernel on behalf A A A A A A A
A of user process) ‘ ‘ ; ; ; ; ‘
N . L) . 0 10 20 30 40 50 60 70 80
I:l = some other user’s time (time executing instructions in Time (ms)
different user’s process
P) m Most of the time spent m Other interrupts
7 _ . executing one process ® Due to I/O activity
:l * M * :l = real (wall clock) time m Periodic interrupts every m Inactivity periods
We will use the word “time” to refer to user time. 10ms e System time spent
e Interval timer processing interrupts
| I I | cumulative user time o Keep system from e ~250,000 clock cycles
executing one process to
exclusion of others
—15- 15-213, F'02 - 16— 15-213, F'02

Activity Periods: Heavy Load

Activity Periods, Load = 2

D Active
. Inactive

A A A A A A A A

0 10 20 30 40 50 60 70 80
Time (ms)

m Sharing processor with one other active process

m From perspective of this process, system appears to be
“inactive” for ~50% of the time
® Other process is executing

Interval Counting

OS Measures Runtimes Using Interval Timer

m Maintain 2 counts per process
® User time
o System time

m Each time get timer interrupt, increment counter for

executing process

o User time if running in user mode
o System time if running in kernel mode

-17 - 15-213, F'02 -18 - 15-213, F'02
Interval Counting Example Unix time Command
time make osevent
gcc -02 -Wall -g -march=i486 -c clock.c
gcc -02 -Wall -g -march=i486 -c options.c
. gcc -02 -Wall -g -march=i486 -c load.c
(a) Interval T|m|ngs gcc -02 -Wall -g -march=i486 -o osevent osevent.c .
A B I A B A A 110u + 40s 0.820u 0.300s 0:01.32 84.8% 0+0k 0+0io 4049pf+0w
T T T T T [T
Au Au Au As Bu Bs Bu Bu Bu Bu As Au Au Au Au Au Bs Bu Bu Bs Au Au Au As As B 70U + 303
' m 0.82 seconds user time
(b) Actual Times . .
e 82 timer intervals
. + . .
AT A | A | A 120.0u+333s = 0.30 seconds system time
[:3 [I| I II3 I |I [N B mrEE ® 30 timer infervals
m 1.32 seconds wall time
0 10 20 30 40 50 60 70 80 90 100110120130 140150 160 .
m 84.8% of total was used running these processes
® (.82+0.3)/1.32 = .848
-19- 15-213, F'02 -20- 15-213, F'02

Accuracy of Interval Counting

| Minimum * Computed time = 70ms

|
A

| ,lb\l L | Maximum ° Min Actual = 60 + ¢
| | | | + Max Actual =80 -¢

0 10 20 30 40 50 60 70 80

Worst Case Analysis
m Timer Interval =&
m Single process segment measurement can be off by +3

= No bound on error for multiple segments
® Could consistently underestimate, or consistently overestimate

Accuracy of Int. Cntg. (cont.)

1
A | Minimum ¢ Computed time = 70ms
[T T T T T ;
* Min Actual =60 + ¢
A

| Maximum
| | | + Max Actual =80 —¢

0 10 20 30 40 50 60 70 80

Average Case Analysis
m Over/underestimates tend to balance out
m As long as total run time is sufficiently large
® Min run time ~1 second
e 100 timer intervals
m Consistently miss 4% overhead due to timer interrupts

—21- 15-213, F'02 —22- 15-213, F'02
Time of Day Clock Measurement Summary
m Unix gettimeofday () function
= Return elapsed time since reference time (Jan 1, 1970) Timing is highly case and system dependent
= Implementation m What is overall duration being measured?
e Uses interval counting on some machines e > 1 second: interval counting is OK
» Coarse grained e << 1 second: must use cycle counters
® Uses cycle counter on others .
» Fine grained, but significant overhead and only 1 microsecond = On what hardware / OS / OS version?
resolution ® Accessing counters
» How gettimeofday is implemented
#include <sys/time.h> ® Timer |nferrupt'overhead
#include <unistd.h> ® Scheduling policy

struct timeval tstart, tfinish; Devising a Measurement Method

CRIT) VLG m Long durations: use Unix timing functions

gettimeofday (&tstart, NULL) ; 9) 9

P(); m Short durations

gettimeofday(&tfinish, NULL); e If possible, use gettimeofday

tsecs = (tfinish.tv_sec - tstart.tv_sec) + o .

le6 * (tfinish.tv usec - tstart.tv usec); e Otherwise must work with cycle counters
o K-best scheme most successful 15-213. F'02

23— 15-213, F'02

_24—

