
Parallel computing, data and
storage

“Grids, Clouds and distributed filesystems”

Mário David - LIP Lisbon

david@lip.pt

Overview

➢ Batch clusters

➢ Grid computing

➢ Cloud computing
○ Infrastructure as a Service (IaaS)

○ Platform as a Service (PaaS)

○ Software as a Service (SaaS)

➢ Distributed data and storage
○ Objects, Blocks and Filesystems (POSIX)

○ Parallel filesystems (Lustre filesystem case)

○ Object storage (Ceph case)

2

Batch clusters: Introduction

➢ Set of compute nodes connected through a LAN
➢ Execute computational tasks
➢ Orchestrated by a master server:

○ Scheduler
○ Batch (queue) system

➢ Compute nodes in general: homogeneous hardware and
operating system (OS):
○ Different hardware and OS can be grouped into different partitions

(batch queues)

➢ Input and Output data for the computational tasks are
served through a shared/distributed filesystem

3

Batch clusters: usage (simplified view)

4

User submits a
computational task to
the master server

Task/job submission

Master server:
- Task is inserted into a batch

queue
- The scheduler, schedules

the task to run in one (or
more) of the compute nodes
that are “free”

- If there are no free compute
nodes the will stay in “wait”
for free node(s)

Compute nodesTask/job scheduling

for execution

 Cluster: compute nodes

Batch clusters: Typical architecture

5

Shared/Distributed filesystem

……...

……...
Login node

OR
Master server

Internet

Resource/Data Center

 Cluster: compute nodes

Batch clusters: High Throughput Computing

6

Shared/Distributed filesystem

……...

……...
Login node

OR
Master server

Internet

Resource/Data Center

LAN: 1/10GbE

 Cluster: compute nodes

Batch clusters: High Performance Computing

7

Shared/Distributed filesystem

……...

……...
Login node

OR
Master server

Internet

Resource/Data Center
LAN: Fiber Channel/Infiniband

Batch clusters: Types - HTC

➢ High Throughput Computing (HTC):
○ Computing paradigm that focuses on the efficient execution of a large

number of loosely-coupled tasks.

○ Adequate both for data intensive (I/O bound) and compute intensive

(CPU bound) applications
○ Adequate for serial applications.
○ Embarrassingly parallel applications.

For example, processing/analysis of independent events ↦

IF:
you have 1000 events, and 100 CPUs

THEN:
distributing the processing of 10 events/CPU would yield a gain of 100 over a
serial processing of all events in a single CPU

8

Batch clusters: Types - HPC
➢ High Performance Computing (HPC):

○ Focus on tightly coupled parallel jobs and fast job execution.

○ Main difference in HW with respect to HTC, LAN is “low latency” such as

Infiniband.
○ Adequate for compute intensive applications (CPU bound)
○ Adequate for parallel applications:

➢ Very common making use of parallel programing, such as
using some implementation of MPI (Message Passing
Interface) standard.

➢ Processes/Tasks need to communicate (send/receive
messages) from other Processes/Tasks.

9

1/10 GbE over TCP/IP Latency ~ 10-100μs
Infiniband 10 - 100 Gb/s Latency ≲ 1μs

Grid computing: Introduction

➢ Federation of clusters that are geographically
distributed:
○ Each cluster is independent from the others: increase

in heterogeneity with respect to a single cluster.
○ It has different administrative domains and policies
○ BUT, the users/researchers want a single way of

“interaction” with all resources/clusters of the Grid:
■ Common APIs, CLIs
■ Common/single Authentication and Authorization system

10

Grid computing: Architecture

11

G
rid

 M
id

le
w

ar
e

Grid computing: Grid middleware I

12

G
rid

 M
id

le
w

ar
e

● Common Authentication mechanism:
○ X.509 certificates
○ Certification Authorities

● Common Authorization mechanism:
○ Users grouped by Virtual Organizations (VOs)
○ Resource providers authorize VOs to access and

use their resources (computing and storage)
● Compute Element (CE):

○ Frontend service exposing the local computing
cluster to users through a common API/CLI

● Storage Element (SE):
○ Frontend service exposing the local storage

system to users through a common API/CLI

Grid computing: Grid middleware II

13

G
rid

 M
id

le
w

ar
e

● Information services (IS):
○ Gather and publish information about the

resources
● Global data catalogs:

○ Global view of data/files that are spread through
several Storage Elements

○ Provide information about the physical location of
the files

● Orchestrator service/Resource Broker:
○ Schedules compute tasks to Compute Elements

based on the Information service and
authorization policies (supported VOs)

● File Transfer Service:
○ Management of data movement/transfer between

resource providers

Grid computing: Grid middleware III

14

G
rid

 M
id

le
w

ar
e

Orchestrator

User Interface

Information
Service

Data
catalog

RP_1

IS

CE

SE

Local cluster

Local storage/filesystem

RP_2

RP_N

...

Cloud Computing I
“(...) a model for enabling ubiquitous, convenient, on-demand network access to
a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction.”

➢ On-demand Self Service

○ The users are able to provision and manage their own computing

environment according to their needs, without further intervention from

the provider.
➢ Elastic Provisioning and Scalability

○ The cloud model tries to deliver easily and rapidly the resources to the

users, in a short-deadline basis.

○ Users are able to scale in and out their infrastructure so as to satisfy the

real demand, not only by increasing their capacity, but also by shrinking

it whenever it is not needed. 15

Cloud Computing II
➢ Metered Usage and Billing

○ Resources accounted by their usage, rather than following a subscription

mode.
➢ Multi-tenancy and Dynamic Resource Pooling

○ Ability for a software or provider to deliver a service to several parties

simultaneously.

○ Services owned by several users are being co-located in the same

resources.
○ Tenants resources are isolated from each other.

○ Each tenant manages creates and manages it’s own compute, storage and

local network.

○ Important for organizations supporting multiple projects/groups, and

service providers supporting multiple users.

16

Cloud Computing: X as a Service models

17

Compute
Resources

Network
Resources

Storage
Resources

Provisioning layer

Orchestration layer

IaaS

Cloud servicesPaaS

Cloud applicationsSaaS

In
cr

ea
se

 o
f a

bs
tr

at
io

n

Cloud Computing: Classification I

➢ Infrastructure as a Service (IaaS):
○ Lowest level of abstraction
○ Considered as the foundation of the cloud model.
○ Offers its infrastructure resources: computing, networking and storage.
○ Users can deploy its own OS, software, network configuration, etc.

○ Abstracts the underlying fabric (physical resources) into a uniform

resource layer:
■ Virtualization or encapsulation the raw resources.
■ Users get transparent access to this layer as if they were using the

bare metal resources.
■ Able to deploy any infrastructure on top of it without the extra

burden of directly managing the different physical resources.

18

IaaS: Openstack CFM

19

Openstack (Cloud Management Framework)

$ nova boot ...

Web - GUI/Dashboard

CLI

Instantiate a VM machine

IaaS: Openstack CFM

20

Openstack (Cloud Management Framework)

$ nova boot ...

Web - GUI/Dashboard

CLI

Instantiate a VM machine

IaaS: Openstack CFM

21

ssh

Login into the VM

Cloud Computing: Classification II

➢ Platform as a Service (PaaS):
○ Second step in the abstraction level

○ Resources coming from an IaaS are composed so that they can be

consumed by the users without requiring the management or the

knowledge of the underlying infrastructure.

○ Offer an environment where a user can deploy and manage its

applications using the libraries, software, tools, APIs, etc. supported by

the provider

○ Makes possible to deliver complex applications and services involving

different components to end-users:
■ No need of direct managing of the machine configurations and

deployment
■ Allows to define the requirements of those applications, so that the

platform layer is able to orchestrate the resources.
22

PaaS: Infrastructure Manager (IM)
From Univ. Valencia: http://www.grycap.upv.es/im/index.php
EC3 (Elastic Cloud Computing Cluster)

23

http://www.grycap.upv.es/im/index.php

Cloud Computing: Classification III

➢ Software as a Service (SaaS):
○ The highest level of abstraction.

○ Comprises the applications that are running on top of a cloud

infrastructure.

○ Access to SaaS applications are normally addressed using ad-hoc thin

clients executed inside web browsers or applications that are executed

on tablets or smartphones, directly addressing the end user.
○ Change in paradigm: FROM buy software TO buy service:

■ Delegate the software management (to service provider) and focus on the use of the

service/software

■ One example: the Primavera ERP http://www.famcorp.pt/publico/Solu%C3%A7%C3%

B5es-Solu%C3%A7%C3%B5es%20Online-Primavera%20SaaS.aspx

24

http://www.famcorp.pt/publico/Solu%C3%A7%C3%B5es-Solu%C3%A7%C3%B5es%20Online-Primavera%20SaaS.aspx
http://www.famcorp.pt/publico/Solu%C3%A7%C3%B5es-Solu%C3%A7%C3%B5es%20Online-Primavera%20SaaS.aspx
http://www.famcorp.pt/publico/Solu%C3%A7%C3%B5es-Solu%C3%A7%C3%B5es%20Online-Primavera%20SaaS.aspx

Cloud Computing: Classification III

➢ Software as a Service (SaaS):
○ The highest level of abstraction.

○ Comprises the applications that are running on top of a cloud

infrastructure.

○ Access to SaaS applications are normally addressed using ad-hoc thin

clients executed inside web browsers or applications that are executed

on tablets or smartphones, directly addressing the end user.
○ Change in paradigm: FROM buy software TO buy service:

■ Delegate the software management (to service provider) and focus on the use of the

service/software

■ One example: the Primavera ERP http://www.famcorp.pt/publico/Solu%C3%A7%C3%

B5es-Solu%C3%A7%C3%B5es%20Online-Primavera%20SaaS.aspx

25

http://www.famcorp.pt/publico/Solu%C3%A7%C3%B5es-Solu%C3%A7%C3%B5es%20Online-Primavera%20SaaS.aspx
http://www.famcorp.pt/publico/Solu%C3%A7%C3%B5es-Solu%C3%A7%C3%B5es%20Online-Primavera%20SaaS.aspx
http://www.famcorp.pt/publico/Solu%C3%A7%C3%B5es-Solu%C3%A7%C3%B5es%20Online-Primavera%20SaaS.aspx

SaaS: Galaxy science portal

26

SaaS: Public provider

27

Grids/Clusters versus Clouds

28

Grids/Clusters Clouds

Fixed environments: OS, applications Flexible environments: users choose OS,
applications, through virtualization (1)

Amount of resources are fixed apriori Amount of resources are elastic: can increase or
decrease according to users needs

Applications/tasks are executed during some fixed
amount of time

Can run applications/tasks during a fixed amount of
time, but can also run long term services such as
web and scientific portals, databases, etc.

Applications are scheduled to batch queues On demand “almost” real time provisioning of
resources

Grid is a federation of clusters (resource providers) Federation of clouds is still quite difficult and a strong
hot topic. One such case is the EGI FedCloud
infrastructure (2)

(1) It’s also possible to deploy flexible environment in bare metal (physical) nodes
(2) EGI - European Grid Infrastructure: Provides a Grid and a Federated Cloud infrastructure at

European level

EGI Federated cloud: Architecture

29

EG
I C

lo
ud

 S
er

vi
ce

 M
ar

ke
tp

la
ce

EF
I C

ol
la

bo
ra

tio
n

to
ol

s

Providers Cloud Management Framework
(Based on standards, cloud middleware agnostic)

Instance
Mgmt

EGI Cloud Infrastructure Platform

Storage Mgmt

Service
Registry

Information
Discovery

Federated
AAI Monitoring Accounting

Helpdesk
Support

Security
Coordination

Training
Outreach

Sustainable
Business
Models

OVF

EGI Core Platform

OCCI CDMI

GLUE2 GSI SAM UR

30

Distributed Data and Storage

Distributed data and storage

➢ Data + Metadata
○ Object storage
○ Block storage
○ File storage and filesystems (POSIX)

31

Data
MetaData

Distributed data and storage

➢ Data + Metadata
➢ Object storage
➢ Block storage
➢ File storage and filesystems (POSIX)

32

Data

Binary
block

MetaData

[Key=Value] ObjectID

Distributed data and storage

➢ Data + Metadata
➢ Object storage
➢ Block storage
➢ File storage and filesystems (POSIX)

33

MetaData

INodes

Data

Binary
block

Pointers to

Storage: POSIX vs Objects

Object storage
● Containers

○ Only metadata
○ Information about the objects

contained in _this_ container

● Objects
○ Metadata AND data AND ObjID

● Flat structure
○ Horizontal scalability

34

POSIX filesystem
● Directories

○ Only metadata
○ List of filenames and

corresponding inode
number, etc.

● Files
○ Metadata (inodes)
○ Data

● Hierarchical - Tree
structure

Storage: POSIX vs Objects

Objects (RESTful API)
PUT ("write"): PUT the object into the storage

GET ("read"): GET the object from the storage

DELETE: delete the object which is the file

POST: create, update, delete metadata

HEAD: returns an object's metadata

35

POSIX (partial list)

Object Storage

➢ Object storage is a storage architecture that manages
data as objects

➢ Each object typically includes
○ the data itself
○ a variable amount of metadata
○ a globally unique identifier: Object ID.

➢ Access through RESTful API

○ Example: Ceph object storage offers access through S3 and SWIFT APIs

36

Block Storage

A Device:
➢ Harddisk (and/or disk partition)
➢ CD
➢ DVD
➢ Disk array
➢ …

On the cloud:
➢ On demand request for a disk volume

○ Attach to a VM instance, as local storage to increase the storage
capacity available to the instance.

○ Can be formated with whatever filesystem the user wants.

37

Network File System: NFS
➢ Distributed filesystem:

○ Protocol originally developed by Sun Microsystems in 1984
○ Client/Server architecture.
○ Based on RPCs (Remote Procedure Calls)
○ Reads and writes on the client are mapped to read and writes on the server.

○ Only the server accesses the filesystem, managing all calls from the multiple
clients.

38

NFS client

Filesystem

Network
NFS server

Filesystem

NFS client

Filesystem

NFS client

Filesystem

Parallel filesystems

39

Clients

Metadata

Data

“queries”/”responses”

Data I/O

Parallel filesystems

40

Multiple

“queries”/”responses”

Multiple streamsData I/O

Lustre filesystem: Architecture

41

Lustre file system components

Lustre filesystem I

42

Layout Extended Attribute (EA) on MDT pointing to file data on OSTs

Lustre filesystem II

43

Lustre client requesting file data

Lustre filesystem III

44

File striping on a Lustre file system

Ceph: Architecture
Ceph uniquely delivers object, block, and file storage in one
unified system

45

Ceph: Components

➢ OSDs:
○ Stores data, handles data replication, recovery, etc.
○ Provides some monitoring information to Ceph Monitors

➢ Monitors:
○ Maintains maps of the cluster state, including the monitor map, the OSD

map, etc.

○ Maintains a history (called an “epoch”) of each state change in the Ceph

Monitors, Ceph OSD Daemons, etc.

➢ MDSs:
○ Stores metadata on behalf of the Ceph Filesystem (POSIX).
○ Ceph Block Devices and Ceph Object Storage do not use MDS.

○ Make it feasible for POSIX file system users to execute basic commands

like ls, find, etc. without placing an enormous burden on the Ceph

Storage Cluster.
46

Ceph: Object storage I

➢ Ceph Object Gateway - radosgw:
○ Object storage interface built on top of librados to provide applications

with a RESTful gateway to Ceph Storage Clusters.

➢ Ceph Object Storage supports two interfaces:
○ S3-compatible: Provides object storage functionality with an interface

that is compatible with a large subset of the Amazon S3 RESTful API.
○ Swift-compatible: Provides object storage functionality with an interface

that is compatible with a large subset of the OpenStack Swift API.

47

Ceph: Object storage II

➢ Ceph Object Gateway - radosgw:
○ Has its own user management
○ It can store data in the same Ceph Storage Cluster used to store data

from Ceph Filesystem clients or Ceph Block Device clients.
○ The S3 and Swift APIs share a common namespace, so you may write data

with one API and retrieve it with the other.

48

Ceph: Block storage

➢ Ceph block devices are:
○ Thin-provisioned, resizable and store data striped over multiple OSDs in a

Ceph cluster.

○ Leverage RADOS capabilities such as snapshotting, replication and

consistency.

➢ Ceph’s RADOS Block Devices (RBD) interact with OSDs
using kernel modules or the librbd library.

49

Ceph: Filesystem

➢ The Ceph Filesystem (Ceph FS):
○ POSIX-compliant filesystem that uses a Ceph Storage Cluster to store its

data.

○ Uses the same Ceph Storage Cluster system as Ceph Block Devices, Ceph

Object Storage with its S3 and Swift APIs, or native bindings (librados).

50

Putting it all together
The IaaS Openstack infrastructure

51

Thanks!!

Questions??

52

