Silicon Virtual Machines
Alberto Manuel Brandao Simoes

Departamento de Informdtica, Universidade do Minho
4710-057 Braga, Portugal

albie@alfarrabio.di.uminho.pt

Abstract This communication looks into some virtual machine implementations,
from the common stack-based architecture to the newest register-based one. It
evaluates the feasibility of their implementation on silicon and how this approach
can improve performance while maintaining language flexibility. Silicon virtual
machines are not successful in the CPU market, mainly due to the inherent lim-
itations of a virtual machine architecture: these are developed too centered on a
language, making them very efficient for that language and very slow executing
applications developed for other languages. This communication concludes with
the statement that the best virtual machine we can make is a simple processor,
similar to the ones we use nowadays.

1 Introduction

Virtual machine is a wide spread term but is not a recent concept. A virtual machine is
nothing more than an emulation software, some code that translates from one language
to another. This first language is, normally, a high level language. The target language
is an assembler language or is interpreted for a more low level language or a different
paradigm language.

This is the virtual machine definition we will focus on this article. Meanwhile,
other Other virtual machine concepts are appearing not truly related with this level of
translation from one language to another. For example, on [5| we can see PVM (Parallel
Virtual Machine) which objective is to make parallel computation possible abstracting
the type and number of nodes in the system. In this case, we call it a virtual machine
because it is not really only one machine. As said in [6], we can turn the web into
a computer. In this case, we see the web as the virtual machine. Other concept
is programmable active memories. For example, on [7], they call virtual machine to
programmable active memories because while they are not really a processor they can
process data between the store and fetch of the data.

Back to the topic, we will start looking into the Java Virtual Machine. Some time
ago, Sun come up with a new language that would be revolutionary and become the
new programming language standard.

This object oriented language, with a source code very familiar to C and C++
programmers, was developed to be compiled to a bytecode that would be interpreted
later, on top of another application: the virtual machine. This bytecode would be
portable to any architecture where we could find a Java Virtual Machine (JVM for
short) binary.

ICCA’02 87

Your | i The

Program s —— = class . Java APIS
class files | loader . class files
bytecodes
5 Y ’
execution

i engine

Host operating system

Figure 1: Java Virtual Machine Architecture

This is the story of the term Virtual Machine but, this idea exists for years. If
we think a little more about specific languages, we can remember the old ideas to
develop language-centered machines. Prolog and Lisp are examples of languages that
had processors designs to make them faster, running on specific hardware solutions.
These monolithic machines could be very fast for that language but completely unusable
for common programming.

The virtual machine solution is based in this same idea. Create a specific virtual
machine for a language. This virtual stuff means that we will not find hardware for
that language. Instead, it will be develop an application that, running over traditional
hardware, takes some advantages about the kind of the language it is processing.

Many languages used and continue using virtual machines with this purpose. With
most of them, programmers don’t notice that code they write is compiled to an in-
termediate representation language that is interpreted. This code is maintained in
memory only for efficiency purposes. Examples for such languages are Perl, Python,
Forth or Haskell.

Now, big companies like Microsoft appear in the market with .net!, a new solu-
tion for all programmers, running all languages! The Perl community, for instance, is
developing a virtual machine (Parrot) to interpret Perl 6.

This is the era of virtual machines! But, why to make these all virtual? Can’t we
create a generic processor to make all these languages faster without this intermediate
layer? On the other hand, could we simply add some instructions to the instruction
set of common processors to make them faster for virtual machines?

In this communication we will look to some virtual machine architectures, their
features, why they are useful and what’s the problem regarding their silicon implemen-
tations.

'nothing more than a virtual machine

88 ICCA’02

2 Virtual Machine Architectures

This section will cover some virtual machine properties. First we will compare the
stack versus the register based approach for operations, following some information
about their instruction set.

2.1 Stack vs. Register based

Although almost all virtual machine have registers, they are full stack based. All
operands and instructions are manipulated directly in the stack, with the registers being
reserved for instruction pointers, stack pointers and miscellaneous flags. This means we
will store all temporary information on the stack, needing at least five memory accesses
to perform an operation: fetch the instruction, fetch the operators from the memory,
put them in the stack, get the result and store the result in the memory, again! Of
course some of these accesses can be omitted, for example if the result of the operation
will be needed as an operator in the next step.

To solve this fetch hell, Java developers introduced an array concept that is no
more than one cache. This array and the stack must be sufficiently polymorphic to
handle the eight data type present on JVM: byte, short, int, long, char, float, double
and reference. This last is used as a pointer to a generic object in memory. Because
each thread uses a different stack, the JVM uses a head shared among all threads.

Current stack implementations examples are JVM|2] and Perl 5.

More recently, appeared another virtual machine concept, like Parrot?|1], that uses
generic registers. In this virtual machine, like on real processors, all operations take
place on registers, accessing the memory as standard processors, to fetch instruction
and data operands. Parrot contains 32 registers for each data type: integers, numbers,
unicode strings and PMCs. This last type is an high level object type that can be
instantiated with any object defined. Parrot authors are taking advantage of knowledge
regarding register based code optimization, applying them to the parrot assembler,
making parrot code run faster.

This register approach is very nice, but it requires a stack as well, like standard
operating systems. On the other hand, cyclic operations could be made to fit the
system’s registers.

What the best approach depends on the situation. The stack approach is the more
used because it is the traditional way, and because stack instructions can be very
compact. While on a register based approach we have to refer the arguments for an
add instruction, on a stack based approach the machine knows that the two arguments
are in the top of the stack.

2.2 Instruction Set

Virtual Machines has instruction set like real processors, but at different levels. JVM
for example, has a standard instruction set, with some more instructions for class
hierarchy, exceptions and code robustness. JVM was developed for high quality code,
prohibiting the user to access directly the memory. This machine has 201 op-codes.
This can look a CISC (complex instruction set computer) machine but, really, most
operations are not polymorphic meaning that we have a load, store, restore and such

2This virtual machine is being developed for Perl 6 internals, claiming to be generic sufficient
to be used for any imperative language. We will focus this language internals because is the only
open-source register based virtual machine known.

ICCA’02 89

00 nop 01 aconst_null 02 iconst ml 03 iconst 0 04 iconst 1
05 iconst 2 06 iconst 3 07 iconst 4 08 iconst 5 09 lconst 0
10 lconst 1 11 fconst 0 12 fconst 1 13 fconst 2 14 dconst 0

15 dconst 1 16 bipush 17 sipush 18 1dc 191dec_w
20 1dc2_w 21 iload 22 lload 23 fload 24 dload
25 aload 26 iload 0 27 iload 1 28 iload 2 29 iload 3
30 lload 0 31 lload 1 32 lload 2 33 lload 3 34 fload 0
35 fload 1 36 fload 2 37 fload 3 38 dload 0 39 dload 1
40 dload 2 41 dload 3 42 aload 0 43 aload 1 44 aload 2
45 aload _3 46 iaload 47 laload 48 faload

Table 1: Extract from the JVM instruction set

instructions for each type of data available. Looking more in depth, JVM has at most
30 instructions. This low level of instructions and the fact that it uses a stack approach
makes the instruction set fit a 8 bit cell. All other values using more space than one
cell are split on 2, 4 or 8 cells.

On table 2.2 we can see that instructions were designed to take almost no arguments.
This is the reason there are operations indexed with a scalar that represent the index
of the cache array.

On the other hand, Parrot has a high level assembler language using a lot of space for
instructions op-codes. Examples of this high level is the unicode support directly on the
virtual machine, registers using strings instead of characters, trigonometric functions,
regular expression support and many more features. Parrot is still under development
and current version has 173 different polymorphic operations. This means that there
are really a lot of instructions in this virtual machine.

A sample code for Parrot:

Trivial example
print "Hello world!\n"
end

Comparing these two machines we can say JVM is RISC and Parrot CISC. Parrot
is taking advantage of the virtual approach, implementing operations we won'’t see
in hardware soon. So, if we would like to make it silicon, we will need an auxiliary
operating system with libraries for all this stuff.

3 Generic Virtual Machines

All virtual machines seen so far are, like old oriented computers, focused on specific
languages. Recently various projects started to make a generic virtual machine. This
generic would mean that we can compile any language to produce virtual machine
bytecode.

Parrot is one of these project, aiming a general purpose virtual machine for scripting
languages. Other more audacious project is Microsoft .net. At first this affirmation
can sound silly but looking more depth at Microsoft .net SDK and looking to what
they call intermediate description language, we have assembler code.

Microsoft have running examples for a lot of languages, from the Microsoft C# to
Haskell, Prolog, Standard ML, Perl or Python. They have examples of some specific

90 ICCA02

Appl i cations
Applications Vi rtual Machine Applications
. - Vi rtual erative
Qperative System Qperative System NBChi ne Q)Syst o
Har dwar e Har dwar e Har dwar e
St andard Approach Standard Virtual Machine M crosoft .net approach

Figure 2: Graphic representation for common virtual machine architectures

languages running in this platform, too. Indeed, .net is integrating all languages making
them work aside each other. This is the main advantage for using a virtual machine.
All these languages generate the same type of language that can be debugged on a
same application and run on top of the same virtual machine.

All these languages are working but traditional interpreted languages, like Haskell,
Prolog or Perl are not being full implemented. On some cases, some features are being
slightly changed or removed.

3.1 Problems regarding generality

Microsoft don’t make available much documentation about implementation of the vir-
tual machine (only the intermediate description language syntax), so we will look more
deeply to JVM and show why we can’t use one silicon processor for Java like picoJava
Sun implementation for generic languages.

Let’s take a first approach: make other languages produce Java bytecode and run
them on JVM. This is possible, but not really a good choice. JVM is very good for
Java and object oriented languages, but is totally inefficient for script and functional
languages.

On [4] we can read some JVM problems when used to implement a functional
language like Scheme. One of the problems referred in this text is object boxing. On
JVM, all variables are objects, stored in data memory with the instructions in the
bytecode simple pointing to the memory address. In Scheme, for example, there is a
huge need of atoms variables that would be placed in memory as standard objects.
This would make any operation very slow because of the need for argument fetching.

The author points a solution: we know that memory addresses bellow some address
are operative system reserved. In this case, remaining bytes can be used to encapsulate
the variable itself. This is a patch, not a solution to be used.

Other problem with generic virtual machines are the type of computation associated
with each type of programming language. For example, a virtual machine for Prolog
would need a backtracking module, while a Perl virtual machine had to be reflexive.

4 Making virtual real

If generality is difficult, making a silicon virtual machine is impossible. Each virtual
machine has it’s own architecture, instruction set and different processing rules, making

ICCA’02 91

a silicon virtual machine the agglomeration of all these functionalities.

We can see i8086 as a virtual machine Instruction Set. Modern processors like K6
map this old instruction format to their core instruction format. But, while we can
consider this a virtual machine, and a silicon one, this is hard wired and only works
for this low level language. This is not what we intend by a virtual machine.

In the processing approach, we have a problem to solve regarding stack oriented
machines: we need a quick stack, near the processor. The lack of registers make it
necessary to access the memory too much times. There are some approaches to solve
this problem. Some create a set of registers that work simulating the stack. These
registers will have the n top cells of the stack. Other approach creates a standard
cache used as a stack.

Both approaches are interesting, but became a really bad solution for threaded Java
programming. In Java, each thread has it’s own stack meaning how we increase the
number of processes, we decrease the velocity for each one.

Regarding the instruction set architecture, and as said before, some virtual ma-
chines have a too high level operations that aren’t suitable for silicon implementations.
For example, there is not a good solution for trigonometric or regular expression im-
plementations.

There is yet another level for code: firmware. We can develop a processor with the
possibility to add some new instructions in a code cache that is never deleted. This
mean that a virtual machine initialization could load a firmware to make most common
instruction faster.

Crusoe|3] is an approximation to his kind of processors. It is a two level architecture,
with a kernel processor and an adaptation layer that translate general code (x86, Power-
PC) to the instruction set used by the kernel processor. This is done with a flash ROM
that stores this virtual machine code. In this case, direct access to the kernel is not
possible. Such a processor could be used as a generic virtual machine if this code layer
could be reloaded on run-time when changing application requirements.

5 Conclusion

This communication presented various aspects about virtual machines, their problems
and solutions. It doesn’t want to take real conclusions but, instead, reflect over them.

First of all, we are using virtual because it is useful not only like Java for portability
but for reflexibility, backtracking and many other features needed on specific languages.
So, it’s a good choice to implement a virtual machine if we need to make a new compiler
for a newly created language.

Making a generic virtual machine will join all specific virtual machine modules in
one bigger virtual machine (like Microsoft .net). On the other hand, it is traditional
that when joining people to develop some sort of standard, many sub-standards arrive!

Finally, most of the virtual machines can’t be used for different kind of languages,
and almost all are difficult if not impossible to implement on silicon.

References

[1] Simon Cozens. Parrot: Some assembly required. O’Reilly Perl.com, September 18,
2001.

92 ICCA02

[2] Tim Lindholm and Frank Yellin. The Java(tm) Virtual Machine Specification.
Addison-Wesley, 1997. Second edition.

[3] Vasco Nuno Barreiro Capitdo Miranda. Crusoe: An approach for the new era com-
puting. In 3rd Internal Conference on Computer Architecture (ICCA’02), editor,
ICCA’02, January 28, 2002.

[4] Olin Shivers. Supporting dynamic languages on the java virtual machine. MIT
Artificial Intelligence Laboratory, April 25, 1996.

[5] V. S. Sunderam, G. A. Geist, J. Dongarra, and R. Manchek. The PVM concur-
rent computing system: Evolution, experiences, and trends. Parallel Computing,
20(4):531-545, 1994.

[6] A. Vahdat, M. Dahlin, and T. Anderson. Turning the web into a computer, Tech-
nical report, University of California, Berkeley, 1996.

[7] J. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. Touati, and P. Boucard. Pro-
grammable active memories: Reconfigurable systems come of age. IEEE Transac-
tions on VLSI Systems, 4(1):56-69, 1996.

ICCA’02 93

