
ICCA’02 113

Is There Any Chance for
Reconfigurable Processors Today?

Nelson Ezequiel Ferreira Nunes

Dep. Informática, Universidade do Minho
4710-057 Braga, Portugal

Mi5360@di.uminho.pt

Abstract: Reconfigurable processors are an emerging alternative to the increasing complex
and fixed ISA (Instruction Set Architecture) approach: they contain hardware resources that
are not pre-allocated to the execution of pre-defined functions, but instead can be config-
ured with some logic commands. This communication shows the main differences between
the traditional processor architecture and the reconfigurable processor, with some reference
to their internal organization, performances, compatibility and to companies that are pursu-
ing this novel approach. This communication also points out the motivations behind the
current availability of commercial reconfigurable processors.

1 Introduction

Recently, the idea of using reconfigurable resources along with a conventional processor
has lead to research into the area of reconfigurable computing and by this way, the concept
of a Reconfigurable Processor comes from the idea of having a general-purpose processor
coupled with some reconfigurable resources that allow implementation of custom applica-
tion with some specific instructions.

Modern application programs often contain hundreds of thousands of lines of code.
Operating systems are even more complex: Microsoft Windows 95 contains about 10 mil-
lion lines, most of it written in C, and Windows NT contains more than 5 million lines
written in C and C++. Imagine translating a million lines of C code into a set of instruc-
tions from 1 to perhaps 20 or 30 instructions each, and it is easy to see why software today
is so complicated, and so difficult to debug [1].

The main goal is to take advantage of the reconfigurable processors improving is
performance by migrating certain instructions of an application into reconfigurable hard-
ware. While the processor takes care of all the general-purpose computation, the recon-
figurable hardware acts as a specialized coprocessor that takes care of specialized applica-
tions. With such platforms, specific properties of applications, such as parallelism, regular-
ity of computation, and data granularity can be exploited by creating custom operators,
pipelines, and interconnection pathways. By allowing the programmer to change the hard-
ware of the machine to match the task at hand, computational efficiency can be increased
and an improvement in performance realized.

Following these lines, this communication presents a brief introduction on software
and current compilation techniques that support reconfigurable processor architectures. It
describes current programming models and compilation techniques that allow circuit im-
plementation of instructions, as well as programmable logic configuration management
issues. Finally, it presents a brief description of related university projects and currently
available industry reconfigurable processor products.

114 ICCA’02

A reconfigurable processor has the characteristic of being able to change its func-
tionality at run-time according to the current application. This characteristic is called Run-
time Reconfiguration and it is implemented in some chips that use a Dynamically Pro-
grammable Gate Array (DPGA) or Multi-Context FPGA. That is why FPGA is also refer-
enced in this communication. But first, in the next section, it is presented some main con-
cepts of Reconfigurable Processor Architecture.

2 Reconfigurable Processors Architecture

When measuring the performance of a processor, we could consider two things: execution
time, which is the elapsed time between the start and the completion of a task; or through-
put, which is how much work can be done in a given period.
 Execution time is affected by three major factors: Instructions per program, clock cycles
per instruction, and seconds per clock cycle as shown on the equation below. Sometimes
by improving one of these, the others may be affected.

 (1)

For the purpose of this communication, the last factor is not a major concern because the
clock rate is related to the hardware technology rather than the architecture.
Only the first two will be taken into account and so execution time measured in clock cy-
cles per program. By reducing the execution time of a program, we are improving the per-
formance of a system. The program will take less time to execute, so we say that we are
obtaining “speedup”.
 If we consider the ‘Execution time’ as a metric for measuring performance, we are con-
cerned about reducing it to get better performance. Several ways to accomplish this will be
briefly pointed.
 There are several techniques used nowadays to speed up processors: pipelining, supersca-
lar pipelining, dynamic scheduling and very long instruction word (VLIW) packing. The
purpose is to take advantage of a potential execution overlap among independent instruc-
tions. This characteristic is called instruction-level parallelism (ILP).
 In the next sections will be presented the main contributions to the appearance of a recon-
figurable processor, it also be pointed out some reconfigurable processors architectures
(See Section 4), and also some other reference points.

Figure 1 – A Reconfigurable Processor Architecture [2]

ICCA’02 115

3 RISC Architectures

Now will be referred the development of processors but with focus to RISC processors,
because the reconfigurable processors can not be limited like processors were, and to show
the configuration flexibility that this kind of processors must have in order to maintain
compatibility to every programs that were first created to work with the older Processors
architecture.
 When a program runs, the microprocessor reads, or fetches, the instructions one by one
and executes them. RISC’s original goal was to limit the number of instructions on the chip
so that each could be allocated enough transistors to make it execute in one clock cycle.
But today's RISC chips often have richer and more complex instruction sets than CISC
chips, with all the techniques for better performance referred above, like pipelining.
 Something important to refer in the RISC architecture is that it uses uniform instruction
lengths. On a Pentium, the length of one instruction varies. RISC designers, on the other
hand, made all instructions the same length, usually 32 bits. This simplifies the instruction
fetching and decoding logic and also means an entire instruction could be retrieved with
one 32-bit memory access. It does not change the length to get the best performance.
 In the RISC and CISC processors, the main difference between them are not the instruc-
tion sets, but of chip architectures. The designations RISC and CISC are no longer mean-
ingful in the original sense; what count is how fast a chip can execute the instructions it is
given and how well it runs existing software, and that’s the purpose of the Reconfigurable
Processors. These days, both RISC and CISC manufacturers are pulling out all the stops to
get an edge on the competition. And that’s why now is appearing the concept of Recon-
figurable Computing, and so the concept of Reconfigurable Processors is gaining so much
“adepts”. And with this, the FPGA’s, that will be referred next because they have a huge
importance in the appearance of Reconfigurable Processors.

4 FPGA (Field Programmable Gate Array)

The Reconfigurable Processors have some reconfigurable hardware, but how it works?
This is a subject that will be tried to be elucidated.
 First lets describe an FPGA, a FPGA (Field-Programmable Gate Array) is a general-
purpose, multi-level, programmable device with a very high logic density; it allows the
user to implement logic circuits in a very short period. It consists of an array of uncon-
nected logic blocks that can be connected by some interconnection resources. FPGA is
used to refer to any form of reconfigurable hardware.
 FPGA reconfigurable systems are implemented using arrays of reconfigurable processing
elements such as the one shown below:

Figure 2 - Reconfigurable Processing Element [3]

 The logic blocks are the building blocks for implementing a circuit in the FPGA. They
consist of some logic gates, multiplexers, look-up tables, flip-flops or any other logic used

116 ICCA’02

for implementing circuits. The structure and content of a logic block is what defines the
FPGA architecture.
 Programming elements controls some inputs in the logic blocks. These can be imple-
mented with fuses, anti-fuses, EPROM or EEPROM transistors, or static RAM (SRAM)
cells. The implementation used is what defines the FPGA programming technology. The
SRAM programming technology is the one most commonly used by FPGA companies.
These cells are referred to as configuration memory cells, which are distributed among the
logic they control.
 In the discussion of the architecture many points are can be analyzed, for example, al-
though the chip area required by each SRAM cell is larger than the other implementations
because of the number of transistors needed, the advantage of it is that it can be configured
very quickly gaining more performance.
 One variation of an SRAM-based FPGA that some researchers have looked into is a
DPGA (Dynamically Programmable Gate Array), also known as Multiple-Context FPGA.
This architecture can have more than one configuration cell multiplexed for each pro-
grammable element. The cells are arranged in a manner that they provide other new sets of
configuration cells, which are known as a configuration planes or contexts. One configura-
tion plane will be active at a time by selecting it through the multiplexors, and so defining
the current configuration of the FPGA. This allows a quick context switch between con-
figurations in the FPGA.
 DPGAs also provide a desired characteristic for reconfigurable computing which is form
of dynamic reconfiguration. At the same time that one configuration is active and execut-
ing, other configurations for the cells can be loaded or modified independently in the back-
ground without affecting the rest of the configurations like it is suppose to work with the
reconfigurable processors.
 The reprogramming capability of the SRAM-based FPGAs is what motivates their use in
reconfigurable computing. By using this technology, we can build a compute engine in
hardware to do some specialized computations. The goal is to have a shorter processing
time with the hardware implementation than by executing a sequence of instructions on a
general-purpose engine. In general, by coupling a general purpose processor with recon-
figurable hardware, one could take advantage of the capabilities and features of both.
While the processor takes care of all the general-purpose computation, the reconfigurable
hardware acts as a specialized coprocessor that takes care of specialized applications.
 But there are several ways in which an FPGA can be coupled to a CPU, as seen below.

Stand-alone Processor. Systems in this category are the most loosely coupled, where the
FPGA acts as a stand-alone processor. This integration requires the FPGA to communicate
with the CPU through an I/O interface. Because the communication though I/O interfaces
is relatively slow, this integration is useful only on systems where the communication oc-
curs with a very low frequency.

Attached Processor. In this category, the FPGA acts as an attached reconfigurable proc-
essing unit. It behaves as an additional processor in a multi-processor system. The commu-
nication between the FPGA and the CPU is done over a bus in the same way processors
communicate in a multi-processor system.

Coprocessor. The FPGA can also be used as a coprocessor that aids the processor with
certain computations. This allows the FPGA to do big amounts of computations in parallel
with the CPU, as well as getting access to its memory resources.

ICCA’02 117

Reconfigurable Functional Unit – RFU. Finally, the FPGA can be integrated into the
CPU as a Reconfigurable Functional Unit.
This unit can be located inside the processor pipeline in parallel with the existing func-
tional units of the CPU and has access to the processor’s register file. This allows dynamic
addition of application-specific instructions to the existing instruction set.

5 Compilers

Research in the area of reconfigurable computing has shown the performance benefits of
using reconfigurable hardware for doing computations. However, there is a need of a soft-
ware environment that lets a programmer use the reconfigurable resources without requir-
ing much knowledge of the underlying configurable hardware.
 The programmer usually uses a High-level Programming Language (HPL), such as
C/C++, Java or any other, and the compiler takes care of the translation and generation of
the correct machine code for the architecture. These compilers are specialized tools that
take advantage of the CPU architecture they are designed to target.
 There is a wide range of ways one compiler can program a reconfigurable system. On one
side there is a manual implementation of a program and adaptation to the processor as well
as the software running on it. In this approach, the knowledge required of both hardware
and software is high. On the other end, there is a concept of an automatic compilation that
detects pieces of code suitable for implementation in a custom reconfigurable hardware,
which makes the adaptation transparent to a programmer, and for doing this the compiler
must have some ‘Executions Statistics’ in order to get better performances from the proc-
essor, like is shown in the Figure 3.

 As been said, one of the major goals in reconfigurable computing is to adapt the hardware
into a high level programming abstraction. Automatic compilation systems should be able
to automatically analyze and detect which parts of an HPL abstraction of a program are
suitable for implementing in hardware. Also, compiler technology may be used for expos-
ing parallelism in loops with techniques such as loop unrolling, pipelining and trace sched-
uling depending on the processor capacities.
 An example of a C-Compiler Technology for Reconfigurable Processors that is on the
market is from the PACT Corporation (http://www.pactcorp.com). This compiler allows
programmer to use existing C code and work in familiar development environments with
virtually zero learning curve to program PACT parallel coprocessor for DSP/CPUs, using
ANSI C, the industry-leading sequential software language.

Figure 3–Simple Scalar Design methodology [3]

118 ICCA’02

 PACT Corporation is a semiconductor and intellectual property vendor that has devel-
oped a wave-reconfigurable architecture that combines the performance of an ASIC with
the flexibility of a DSP. PACT has developed a 32-bit processor core as a first implementa-
tion on the company's eXtreme Processor Platform (XPP™), which has demonstrated per-
formance up to 50X greater than conventional sequential processors and 20X higher than
DSPs. PACT provides XPP cores that can be easily tailored for next-generation mobile
telephones, base stations, workstations and other high-performance devices.
 There are others Compilers, witch some are referred in the next section.

6 Reconfigurable Processors Institutions

In this section will be referred some University Projects and some companies that have
developed and implemented configurable processors.
 In each subject will have a small introduction to the main architecture characteristics of
each reconfigurable processor and is performance.

6.1 University Projects

Chimaera [5]. Chimaera was developed at Northwestern University. It is a reconfigurable
array that is integrated to a processor as a Reconfigurable Functional Unit. The array has
access to shadow registers and consists only of configurable combinational logic.

Figure 4 - Chimaera Architecture [2]

Reconfigurable array treated as customizable ALU. Configurable to implement 9-input 1-
output operations. Compiler identifies common instruction sequences, defines as RFU-
OPs.. Compiler schedules RFUOPs like normal instructions
 With this processor is possible to get an average of 21% improvement on media bench-
marks over aggressive conventional processor [2]. To point that in this architecture is not
exploit parallelism.

Garp [6]. Garp was developed at University of California Berkeley. It belongs to the fam-
ily of Reconfigurable Coprocessors as it integrates a reconfigurable array that has access to
the processor’s memory hierarchy. The reconfigurable array may be partially reconfigured
as it is organized in rows. Configuration bits are included and linked as constants with or-
dinary C compiled programs.
 Relatively loose coupling requires large chunks of computation to map onto reconfigur-
able array. Compiler uses hyper block scheduling to coalesce long instruction sequences
into atomic regions. Aimed at very compute-intensive applications: 24x speedup over
UltraSPARC on DES encryption ; 9.4x speedup on image dithering; 2.1x speedup on sort-
ing [2]. To point that in this architecture is not exploit parallelism.

ICCA’02 119

 Relatively loose coupling requires large chunks of computation to map onto reconfigur-
able array. Compiler uses hyper block scheduling to coalesce long instruction sequences
into atomic regions. Aimed at very compute-intensive applications: 24x speedup over
UltraSPARC on DES encryption; 9.4x speedup on image dithering; 2.1x speedup on sort-
ing [2]. To point that in this architecture is not exploit parallelism.

PipeRench. Developed at Carnegie Mellon University. It is a reconfigurable fabric that
belongs to the family of Reconfigurable Attached Processors since it is interfaced with a
processor through a PCI bus. PipeRench consists of an interconnected network of process-
ing elements organized as pipeline stages. Each processing element consists of registers
and ALUs. An intermediate language is used to generate the fabric’s configurations.

MorphoSys. Developed at University of California Irvine. It is a Reconfigurable Cell Ar-
ray architecture that includes context memory and belongs to the family of Reconfigurable
Coprocessors. A DMA controller transfer data to the context memory, and to and from a
frame buffer that holds the data the array will operate on.

Remarc. Developed at Stanford University. It is a Reconfigurable Coprocessor with 64
programmable units, which targets multimedia applications. Each 16-bit unit has an entry
instruction RAM, ALUs, data RAM, instruction and several other registers. The recon-
figurable array operates on the coprocessor data registers and a control unit transfers data
between these registers and the processor.

Prisc. Developed at Harvard University. It integrates combinational reconfigurable logic as
Reconfigurable Functional Units with two inputs and one output. The compiler analyzes
opportunities the generated code and identifies sets of sequential instructions to execute on
the PFU.

Sonic. A project from the University of London. It is designed to exploit parallelism in
video image processing algorithms. It consists of a set of processing elements, called
PIPEs, interconnected by a bus. It belongs to the family of Reconfigurable Attached Proc-
essors since it is interfaced with a processor through a PCI bus.

6.2 Commercial Systems

Chameleon Systems. The Chameleon CS2000 family combines a 32-bit embedded proc-
essor with a 32-bit reconfigurable processing fabric. A 128-bit, split-transaction bus links
the two. The Chameleon compiler generates the final application from a C compiled object
code linked with the fabric’s previously generated bit stream configurations.

Figure 5 – Garp Architecture [2]

120 ICCA’02

Annapolis. The Annapolis Wildfire family are Reconfigurable Attached multi-processor
boards composed of an array of Xilinx FPGAs that are connected to a processor through a
VME or PCI bus. The Wildcard is another Reconfigurable Attached Processor as it is
PCMCIA sized card with an FPGA as processing element, memory and I/O connectors.
They are programmed using standard C and VHDL tools.

7 Conclusion

The answer to the question “Is there any chance for Reconfigurable Processors Today?” is
‘YES’.
 Like it is described in this communication the architectures implemented in the earliest
processors, like RISC processors, are “older” since they are limited to a fixed Instruction
Set Architecture, and with no flexibility and witch are incompatible with earliest (other)
architectures.
 We give this answer with some backup support, because of the appearance of Institutions
that are only focus the development and implementation of Reconfigurable Processors Ar-
chitectures. Also, in this communication could be saw that they follow different architec-
tures structures, but with the same purpose of creating a Reconfigurable Processor. Like
for example ‘Chimaera’, that uses a architecture with a tightly-coupled Reconfigurable
Functional Unit or a architecture with a Reconfigurable Coprocessor like used in ‘Garp’.
 Nowadays we are in the era of Reconfigurable Processors and Reconfigurable Computing
in order to get the best performance of a Computer to work with whatever our needs are.

References
[1] PC Magazine PC Tech (RISC vs_ CISC The Real Story). See http://

www.zdnet.com/pcmag/pctech/content/14/18/tu1418.002.html

[2] Professor Nicholas P. Carter, Coordinated Science Lab, University of Illinois.
See http://www.crhc.uiuc.edu/ece412/lectures/lecture27.pdf

[3] Majd F. Sakr, Steven P. Levitan, C. Lee Giles, Donald M. Chiarulli, ‘Reconfigurable
Processor Employing Optical Channels’, Proceedings of the 1998 International Topi-
cal Meeting on Optics in Computing (OC’98), Brugge, Belgium.
See http://www.neci.nec.com/homepages/giles/papers/OC98.reconfigurable.processor-
optics.channels.pdf

[4] Jonathan Hirshon, Horizon Communications, Pact Corporation. See http://
www.horizonpr.com/pact/2001/011003-compiler.html

[5] Scott Hauck, Matt Hosler, ‘The Chimaera Reconfigurable Functional Unit’, Proceed-
ings of IEEE Symposium on FPGAs for Custom Computing Machines (1997) 87-96.
See http://www.ee.washington.edu/faculty/hauck/chimaera.html

[6] BRASS Research Group, ‘Garp: Combining a Processor with a Reconfigurable Com-
puting Array’. See http://brass.cs.berkeley.edu/garp.html

[7] Communication Systems Design, January 2000See http://www.csdmag.com/
main/2000/01/0001top.htm

