
ICCA’02 163 

High Throughput Computing: Stealing Unused Cycles 
 

Luís Filipe Ferreira 
 

Departamento de Informática, Universidade do Minho 
4710 – 057 Braga, Portugal 

mail@LuFiL.net 
 
 

Abstract. High Throughput Computing systems (HTC) enable otherwise idles cycles to be 
available to computations that involve many independent tasks. In a Distributed Computing 
environment, distributed ownership of computing resources is the major obstacle HTC has to 
overcome to take advantage of under-utilized systems in the network. This paper addresses 
HTC and how it fits in current parallel and distributed computing architectures such as Cluster 
Computing, Internet Computing and Metacomputing. Some of the available HTC packages are 
presented with a focus on the Condor system. It concludes on the importance of HTC to de-
crease the gap from personal computing to true parallel departmental computing on existing 
companies. Finally it addresses the importance of this technology to the future of global com-
puting across multiple organizations (GRID environments). 
 

 
 

1 Introduction 
 

Corporate networks are typically composed of several hundreds or thousands of personal 
computers interconnected over standard LANs. Many of these machines sit idle for long 
periods of time while their users are absent or busy. Some of them are equipped with top 
market processors that remain vastly under-utilized performing simple duties like word 
processing, opening mail or printing documents. These tasks rarely consume more than 
10% of the available computing power on a machine.  

The fact is that there is a huge amount of wasted computing power which has been paid 
for, and that aggregately could be the equivalent to a supercomputer. However, if a distrib-
uted computing structure is about to be set on this environment, some considerations like 
geographical distance, system heterogeneity, and distributed ownership of computing re-
sources will have to be dealt with. The high latency and low bandwidth that typically char-
acterize these networks will impose some limitations on the granularity and coupling of 
computational jobs. In that sense, one could say that coarse-grained computations from 
“embarrassingly parallel” large-scale applications are the best suited for this environment. 

High Throughput Computing (HTC) systems fit nicely into these requirements and al-
low the harnessing of all this wasted computing power. These systems are able to deliver 
large amounts of computational power over a long period of time. The emphasis is not on 
providing high performance on the execution of a single job (High Performance Comput-
ing - HPC) but rather a high throughput for a lot of jobs with a common goal (hence the 
name). HPC environments are often measured in terms of Floating Operations Per Second 
(FLOPS) while HTC environments are more concerned in how many jobs can complete 
over a month or a year. 

This paper presents HTC systems as the supporting technology for distributed parallel 
computing over corporate or departmental networks. These could range from a typical 
LAN within a small company to a big set of interconnected networks within a large or-
ganization. Some of these systems have a clear orientation towards Internet Computing and 
allow the remote execution of computational jobs outside the corporate network. 

Section 2 presents the main problems this technology has to overcome, and how this re-



164 ICCA’02 

flects on the design of its components and on the features they have to support. A distinc-
tion is made between native HTC systems (NHTC) like Condor, and Internet Computing 
oriented ones (IHTC) like those derived from the SETI@home project (ex: Entropia). 

Section 3 relates this technology to other distributed computing technologies like Grid 
Computing and places HTC systems within parallel computing architectures. 

Existing HTC systems are presented in section 4 together with other related systems that 
also have to support this computation paradigm. Special emphasis is put on the Condor 
system as a true natively oriented system to HTC computing. 

Finally some conclusions are drawn on the last chapter regarding the future of parallel 
computing over corporate networks and the importance of HTC to global computing across 
multiple organizations (Grid computing). 

 
 

2 Components and Features 
 

2.1 Components 
 

HTC systems are composed of three essential software components: 

• Job Providers, responsible for submitting jobs for remote execution. 
In native HTC systems (NHTC), they can be found within every user’s machine. Job 
binaries will remain on the submitting machine until they are transferred to the execut-
ing machine. 
Internet oriented HTC systems (IHTC) tend to place this control on special privileged 
users and within the scope of a larger application on whose behalf the jobs will be run-
ning. Applications are then placed within a server from where job binaries are to be 
transferred. 

• Job Executants, sometimes called Agents, 
These must be placed on every machine where jobs are to be remotely run. These jobs 
are typically run in a dedicated manner until they are completed, cancelled, or migrated 
into another machine. Heterogeneity of these machines is an important issue, especially 
in IHTC systems. 

• Job Managers, responsible for job scheduling and monitoring and related functions.  
An important task is that of matching computational jobs to executing machines. Job 
Managers are run within one or more management servers that control the HTC envi-
ronment. 
 

2.2 Features 
 

Low network performance is a big issue in HTC. This performance is also affected by the 
overhead on communication protocols (ex: TCP/IP). In order to maximize the efficiency of 
such an environment, computational jobs must have a sufficiently coarse-grained nature. 
The time they take to migrate over the network into a remote computer and to return their 
results to the submitting machine must be reduced compared to the time they take to exe-
cute on the remote machine. Message passing between jobs should also be reduced to a 
minimum. The ratio between computation and communication time must be maximized. 
These job requirements are typical of applications sometimes referred to as  “embarrass-
ingly parallel”. 

Another important issue is the fact that the machines in the network are “owned” by 
their personal users. These distributed owners are only willing to include their resources in 



ICCA’02 165 

a HTC environment when they are convinced that their needs will be addressed and their 
rights protected. They want to control the way their resources are “offered” to external 
usage. They want to be able to say that only certain external jobs can be scheduled to their 
machines, only during certain periods of time, and if there’s no keyboard or mouse activity 
for more than n seconds and processor activity is low. In the end it all goes down to com-
promising enterprise and user needs with user rights. 

There are some important features that HTC systems should be able to support in order 
to overcome these and other problems: 

• Adaptive load distribution. 
HTC systems have to deal with a dynamic pool of resources that is constantly changing 
as machines are added/subtracted or becoming available/unavailable. There must be a 
way for the system to adapt its job scheduling mechanism to these constant changes. 

• Matchmaking. 
Matchmaking allows for intelligent scheduling policies where a match is made between 
computational jobs (resource consumers) and executing machines (resource owners). 
HTC systems should be able to deal with a complex set of definable requirements and 
preferences on the jobs and on the machines. 

• Fault-tolerance. 
As the pool of resources increases the probability of failure in a particular machine gets 
higher. Even job management servers may fail. Long duration computations may be lost 
owing to these failures. There must be a way to recover from such events and resume 
the execution of jobs (see Checkpoints). 

• Checkpoints and Migration. 
Checkpoints involves saving all the work a job has done up until a given point. If a par-
ticular machine crashes or is rebooted, the work can always be resumed from the last 
checkpoint. Periodical or asynchronous checkpoints may be imposed on computational 
jobs to prevent general hazards. Checkpoints also occur whenever a job is moved from 
one machine to another, which is known as “process migration”. 

• Security. 
When someone submits a set of jobs for remote execution in an HTC environment, they 
will be scattered across machines belonging to several other users. Intrusion may hap-
pen on the network when jobs are transferred or results are returned, or on the remote 
machines themselves. Security measures must be taken to prevent this from happening 
and reinforce system trust. 

• Monitoring. 
Monitoring is an important task. Gathering statistical information about jobs that have 
been run in the past and on the machines will enable a more effective management of 
available computing resources. 
 
 

3 Parallel Computing Architectures and HTC 
 

Parallel computing in general has progressively moved from tightly coupled custom made 
systems, like Supercomputers, to loosely coupled systems built out of commodity compo-
nents, like dedicated Clusters [7]. This move has been dictated by the ratio between total 
computational power and cost. Moore’s Law and technology improvements on local net-
work performance have assured it. Clusters have proved cost-effective in computations 



166 ICCA’02 

where high performance computing on a single job is required. 
In highly parallel large-scale applications composed of coarse-grained computations 

(HTC), scalability is an important issue. These applications enable an almost linear in-
crease of performance as the number of processing nodes increases. When coarse-grained 
computations are the case, network performance is no longer such a big issue like in HPC 
systems. These high throughput applications impose the need for a high increase on the 
number of computing nodes with the smallest cost possible. These requirements have made 
possible the transition from High Performance Computing to Distributed Computing. High 
throughput applications no longer need a dedicated Supercomputer or Cluster within a 
closed environment, to cater for their computing needs. They may rely on already existing 
interconnected machines, within typical LANs, or scattered around the world in a global 
wide scale. 

Distributed Computing is a very big “word” that embraces lots of different technologies. 
HTC oriented systems are one of these technologies and allow the harnessing of unused 
processor cycles across a corporate network. Two other computing technologies that fit 
within the scope of Distributed Computing will now be presented. 

Internet Computing. Internet distributed computing has become popular with the 
SETI@home project. In this project, a web user may voluntarily download a screen-saver 
that, when activated, performs computations on behalf of the SETI program, in a search for 
extraterrestrial intelligence. This has inspired other similar projects to appear, including the 
fore mentioned IHTC systems. These systems allow different applications to be submitted 
by some research or commercial project as a kind of Application@home project, to be 
downloaded for execution by remote “well-intended” users. 

Internet computing relies on the donation of PC time by thousands or even millions of 
individuals, which requires a huge public-relations effort that may involve philanthropic 
issues [6]. Some of these projects have a largely installed base of machines, which some-
times may be leased by other organizations. 

Grid Computing. Grid computing [4] is a metacomputing technology that allows general-
purpose large-scale resource sharing across multiple organizations. A Grid could be a vir-
tual organization composed of the resources shared between those organizations, or the 
result of interconnecting several virtual organizations into a wider Grid system. For that 
purpose this technology relies on a basic set of Protocols, Services and APIs on which 
higher-level metacomputing services can be built (such as parallel programming tools and 
schedulers). It is still a relatively immature technology but with a growing impact on the 
scientific community. The future of massive parallel computing will most surely rely on 
this technology to take advantage of the millions of computing resources scattered world-
wide, and at the same time being able to comply with the intrinsic details of each one of 
those resources (Supercomputers, Clusters, HTC pools, disperse Workstations, etc).  

 
 

4 HTC Systems and Condor 
 

4.1  HTC Systems 
 

It was suggested that HTC systems should be divided into native systems (NHTC) and 
Internet computing oriented ones (IHTC). 

In a NHTC environment like Condor (http://www.cs.wisc.edu/condor), any user is able 
to submit a job that can be put by the system into any other user’s machine. IHTC systems, 
like Entropia (http://www.entropia.com), United Devices (MetaProcessor – http:// 



ICCA’02 167 

www.ud.com), and Parabon (Frontier SDK – http://www.parabon.com) inherit their basics 
from their Internet Computing background. They focus their attention on the applications 
themselves and tend to neglect user needs in favour of corporate needs delegating network 
machines to the role of mere executants (although they all must supply an application sub-
mission component for special users). This communication puts the emphasis on NHTC 
systems rather than IHTC systems, as the best mean of extending the network’s computing 
resources to the users of these machines. 

Other related systems that are able to support HTC are the Globus system [5] 
(http;//www.globus.org), a standard de facto in Grid computing, and Legion 
http://legion.virginia.edu), which is an object based metacomputing system. Legion differs 
from Globus mainly in its architecture and design principles. Globus can be characterized 
as a “sum of services” architecture, while Legion is an integrated architecture.  Globus may 
interact with Condor in many ways, as described in the next section. It is also planned to 
interact with Legion and Entropia. 

 
4.2 The Condor System 

 
The Condor system [1,2] was built from the start as a “native” HTC system. It allows users 
to take advantage of idle machines in the network by providing uniform access to distrib-
uted owned computing resources. In a way, this system can be viewed as a cluster of het-
erogeneous workstations with non-dedicated nodes. 

Heterogeneous machines in the network, on which resources are to be shared, are 
grouped into a management unit called a “Condor Pool”. One machine, the “Central Man-
ager” (CM), keeps track of all the resources and jobs in the pool. 

For every computer in the Condor Pool, certain programs called the “Condor daemons” 
must run all the time. The “schedd daemon” keeps track of all jobs that have been submit-
ted on a given machine and represents a user of the Condor system. The “startd daemon” 
monitors the status of a machine and is responsible for initiating the remote execution of a 
job on that machine. Both the “schedd” and “startd” daemons report to another daemon, in 
the CM, called the “collector”. The collector maintains a global view, and can be queried 
for information about the status of the pool. Another daemon on the CM, the “negotiator”, 
periodically takes information from the collector to find idle machines and to match them 
with pending jobs. Jobs are then transferred directly from the submitting to the executing 
machine. 

Condor allows the submission of many jobs at once in a unit called a “cluster”. Each job 
within a cluster is called a “process”. A “Job ID” is composed of the cluster number and 
the process number. 

Standard Condor jobs allow Checkpoints and the Migration of jobs. Jobs are check-
points into a file on the submitting machine. A “Checkpoint Server” can be installed at a 
Condor pool, which is a single machine where all checkpoints are stored. 

When a “standard” job is submitted into a Condor pool it waits in its job queue until the 
CM matches it with a given remote machine. The Condor daemons on each machine are 
then sent a message by the CM. The “schedd” on the submitting machine starts up another 
daemon called the “shadow” and the “startd” on the executing machine also creates an-
other daemon, “starter”. The “starter” actually starts the job, which involves transferring 
the binary from the submitting machine. It also monitors job execution, supports check-
points, and vacates the job from that machine in the event the machine is reclaimed by its 
owner. In standard Condor jobs, distributed ownership issues are handled by redirecting 
system calls on the User Job in the executing machine back to the original submitting ma-
chine, into the job’s “shadow” daemon (Remote System Calls). 



168 ICCA’02 

 

 
 
Vanilla jobs do not support Checkpoints or Remote System Calls, these features are 

provided in Standard jobs because their binaries have to be previously re-linked with the 
Condor libraries. 

Condor allows complex Matchmaking policies through the ClassAd mechanism. Job re-
quirements and preferences, advertised by users in submitting machines, are matched 
against resource requirements and preferences advertised by owners in executing ma-
chines. These can be described in terms of powerful expressions, resulting in Condor’s 
adaptation to nearly any desired policy. 

Flocking is a feature of Condor that allows different pools to be hooked together. A user 
is then able to “flock” into other remote Condor pools. The list of remote pools is a prop-
erty of the Schedd, not the Central Manager, so different users can “flock” to different 
pools and remote pools can allow specific users. A pool’s local users can have priority over 
remote users “flocking” in. 

In a way, Condor allows the unification of different computing technologies by support-
ing distinct Universes on which different types of jobs may be executed: 

• Standard Universe, where “standard” jobs are run (not supported by Windows yet). 
• Vanilla Universe, where “vanilla” jobs are run. 
• Scheduler Universe. 
These jobs run on the submitting machine and are supplied together with a Direct 

Acyclic Graph (DAG) structure. This structure represents dependencies between regular 
jobs (ex: do not run job B until job A has successfully completed) and serves as a meta-
scheduler managing the submission of these jobs to Condor based on DAG dependencies. 

MPI and PVM Universes. These Universes enable access to traditional High Performance 
Cluster Computing systems, providing Condor has been installed on all the dedicated Clus-
ter nodes and directed to the CM. Parallel message passing jobs built on MPI and PVM 
standards will then be allowed for submission. 

Globus Universe. Installing Condor-G activates this Universe. Condor-G [3] is the bridge 
that connects Condor to Globus, the standard in Grid computing technology. Globus jobs 



ICCA’02 169 

can be submitted to this Universe into Grid machines all over the world and still take part 
on Condor’s queue management features. 

Another important feature supported by this Universe is the ability to send a “GlideIn” 
job into a Grid machine, which will temporarily install the Startd daemon onto that ma-
chine and add it to the Condor pool. Standard, Vanilla, PVM, or MPI Universe jobs will 
then be matched and run on Globus resources. 
 
 

5 Conclusions 
 

5.1  Parallel Computing in Corporate Networks 
 

HTC systems are already available for commercial use and companies with higher compu-
tational needs can largely benefit from them. Several factors could assert this technology as 
a major step towards parallel computing in corporate networks: 

- Cost: companies, especially smaller ones, aren't still very willing to consider a costly 
investment on a dedicated HPC structure like Cluster computing (although much cheaper 
than a Supercomputer). HTC systems make it possible to take advantage of the already 
available computing resources spread across under-utilized machines on the network. 
However some investment may still be put to consideration: HTC software (although free 
use may be considered for some situations like Academic research), probably one or two 
Servers for job management, and the cost associated with supporting the system. 

 -Flexibility: at the same time, users are not still willing to fully share their computing 
resources in a dedicated way. HTC systems allow these users to satisfy their computational 
needs while preserving their ownership rights. Policies are generally supported that allow a 
machine's owner to keep control on the way its computing resources are integrated into the 
system (i.e. which jobs are executed under what circumstances). Other policies can also 
enable the definition of requirements and preferences on the applications themselves. This 
should lead to an effective matchmaking policy between computational jobs and executing 
machines. 

Security considerations also play a very important role on supporting these mechanisms. 
- Expandability: these systems generally allow some form of Internet Computing or the 

ability to hook into other kinds of computing structures like Clusters or Grid environments 
(Condor). On that sense HTC systems can function as a starting point for the unification of 
several parallel computing technologies leaving the user with a wide range of computing 
alternatives for their applications. 

However there are still some drawbacks on the use of this technology: 

• Finer grain limitations 
HTC systems were built taking in consideration the high latency and low bandwidth of 
standard corporate LANs or even WANs. This may imply that only coarse-grained 
computations are fit to take advantage of these systems. However, the constant decreas-
ing of network latency and increasing of available bandwidth could certainly shorten the 
distance from HTC to HPC systems, and enable finer-grained integration on the system 
(the name would probably have to change to HTPC). 

• Resource sharing limitations 
Current HTC systems are built to take advantage of under-utilized computing resources 
on the network. This means taking advantage of available processor cycles and program 
memory on the machines. Other general resources like secondary memory and other I/O 
devices are generally not taken into account. Metacomputing systems are typically more 
suited for that purpose. However, general client-server technology should be able to fill 



170 ICCA’02 

that gap in some way. 

All these considerations validate HTC systems as an important technology in the paral-
lel computing arena. Common scientific and compute intensive applications can gradually 
support HTC environments natively so that idle computing resources in the network can 
share the application's load in a transparent way. Similarly, companies can gradually con-
sider a small investment in an HTC structure to take advantage of those applications, 
which in turn will encourage further developments in HTC technology. In that sense, this 
could just be the self-feeding spiral that would lead the way to a small revolution in paral-
lel computing. 

 
5.2  HTC Systems and Grid Computing 

 
In many ways Grid computing has a lot in common with HTC systems and can largely 
benefit from its technology. They are both suited for large-scale parallel computing across 
geographically distributed computing resources where high network latency, low band-
width and adaptive policies still impose limitations on computation granularity. We could 
say that Grid computing must support HTC. However, keep in mind that Grid computing is 
a much more general-purpose structure with a higher abstraction level on which even HPC 
can be supported as well. 

One of the biggest evidences of the relation between Grid Computing and HTC is the 
way in which Globus (a Grid Computing Infrastructure Toolkit) and Condor (an HTC sys-
tem) can cooperate (section 4.2). Condor allows for jobs to be executed on the Globus 
Universe and even supports a way of migrating its job scheduling mechanism into a 
Globus environment (GlideIn jobs). On the Globus side Condor can provide a uniform 
view of processor resources and implement a given Site's Job Scheduling policy. 

In a more practical sense one could figure out a particular company that could use Con-
dor as a way of managing its internal computing resources in a tightly controlled and uni-
fied manner. This company would then resort to Globus and Grid computing for accessing 
external computing or other general-purpose resources, or for sharing these resources with 
the outside world. 

 
 

References 
 

[1] Litzkow, M.J., Livny, M., Mutka, M.W.: Condor – A Hunter of Idle Workstations, Proceedings 
of the 8th International Conference of Distributed Computing Systems, IEEE (1998) 

[2] Couvares, P., Tannenbaum, T.: Condor Tutorial, First EuroGlobus Workshop, Computer Sci-
ences Department, University of Wisconsin-Madison (2001) 

[3] Frey, J., Tannenbaum, T., Livny, M., Foster, I., Tuecke, S.: Condor-G: A Computation Man-
agement Agent for Multi-Institutional Grids, Proceedings of the 10th IEEE Symposium on High 
Performance Distributed Computing (HPDC10), (2001) 

[4] Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid, Enabling Scalable Virtual Or-
ganizations, International Journal on Supercomputer Applications, (2001) 

[5] Foster, I., Kesselman, K., Globus: A Metacomputing Infrastructure Toolkit, Argonne National 
Laboratory, & Information Sciences Institute, USC (1996) 

[6] The Economist Newspaper Group Ltd.: Computing power on tap, 
“http://www.economist.com/PrinterFriendly.cfm?Story_ID=662301”, (2001) 

[7] Buyya, R.: High Performance Cluster Computing: Architecture and Systems, ISBN 0-13-
013784-7, Prentice-Hall PTR, NJ, USA, (1999). 


