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Abstract. Using finite systems to represent non-finite quantities may lead to serious hazards in 
real life. Some of these are here presented together with a short explanation. Manufacturers of 
64-bit CPUs are developing newer approaches to reduce these negative factors, from increasing 
bit representation to interval arithmetic computation; an overview of two of these approaches – 
from Intel and Sun – are here analysed.  

 
 

1 Introduction 
 
Nowadays, many critical decisions are made by computational methods, depending on the 
accuracy of results. 

Squeezing infinitely many real numbers into a finite number of bits must have its 
risks. And floating-point operations that introduce more rounding error definitely increase 
those risks. 

Throughout this paper, these issues will be exploited, along with descriptive 
examples of numerical errors and its consequences. 

Different methods to reduce the risk of numerical errors are being implemented in 
hardware. Intel is increasing bit representation and trying to minimize rounding error due 
to arithmetic operations. 

An interesting approach is the one of representing real numbers as floating-point 
bounded intervals, guarantying 100% confidence bounds on the set of all possible result 
values. Sun is providing software and hardware to deal with intervals.   

 
 
2 Floating-point Format: Basics 
 
The most widely used representation of numbers in computer systems is the floating-point 
representation using base 2 (examples of other representations are floating slash and signed 
logarithm). 

A normalized floating-point number x is represented as a concatenation of a sign-bit, 
an M-bit exponent field and an N-bit significand field. Mathematically: 

 
x = σ . s . 2e ; 

 
σ = ±1 ; s ∈ [1, 2[  significand; e exponent. 
Higher precision is obtained for large values of N and higher range is obtained for 

large values of M. Usually, a binary floating-point representation uses at least 32 bits: 1 bit 
represents the sign, 8 bits for the exponent and 23 bits for the significand (in some floating-
point formats, the most significant bit of the significand is not represented, its assumed 
value is 1, leaving 24 bits for the significand). 
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Other formats permit the most significant bit to be 0. These floating-point 
representations are called denormalized.    
 
 
3 Numerical Errors 
 
Given any real number, every computer system is condemned to store it in a finite number 
of bits. Naturally, this process often requires an approximate representation. 

Also, given any real numbers represented using N bits, it is always possible to 
operate simple calculations that produce quantities that cannot be exactly represented using 
N bits. Therefore, the result of a floating point calculation must often be rounded in order 
to fit back into its finite representation. 

There are three reasons why a real number x might not be exactly represented as a 
floating-point binary number using a fixed number N of bits: 

 The real number x is out of range, meaning that x is bigger than the biggest (or 
smaller than the smallest) number represented as a floating-point using N bits. 

 The real number x is not out of range but its exact representation uses more than N 
bits. 

 There is no finite exact representation using a floating point binary number, using a 
finite number of bits. 
Such a number x could be an irrational number; for example, π: 

11.0010010000111111… 
Another example is the decimal number 0.1: although it has a finite decimal 
representation, in binary it has an infinite repeating representation: 

0.00011001100110011… 
 

Next, some examples are presented that intend to illustrate the risks inherent to 
computations involving rounding errors. 
 
3.1 Catastrophic Cancellation: 
 
The area of a triangle can be calculated as  

 
))()(( csbsassA −−−= ,                                        (1) 

 
where a, b and c are the lengths of sides of the triangle and s = (a + b + c)/2, s is the semi 
perimeter of the triangle. 

Now, suppose the triangle is very flat, being  a ≈ b + c. Therefore, s ≈ a and the 
calculation of (s – a) may lead to a relevant error, an error that will be amplified when 
multiplying by s(s – b) (s – c).  

If we consider that the input values of s and a may contain rounding errors (they may 
be the results of inaccurate measurements or of floating point operations), the computed 
value of (s – a) may lead to catastrophic cancellation: when subtracting two nearby 
quantities, the most significant digits in the operands match and cancel each other, many of 
the accurate digits disappear, leaving mainly digits “contaminated” by rounding error. So, 
the relative error committed becomes excessively large. 
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A formula containing catastrophic cancellation can sometimes be rearranged to 
eliminate or reduce the problem. In this particular case, we can reduce the consequences of 
cancellation by using the equivalent formula (2) instead of formula (1). 
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The computed area using formula (2) will return more accurate results. 

 
3.2 Finite Precision Can Lead to Disaster 

 
On February 25, 1991, during the Gulf war, an american Patriot missile battery in 

Dharan, Saudi Arabia, failed to intercept an incoming Iraqi Scud missile, due to a software 
problem. The Scud struck an american army barracks and killed 28 soldiers. 

An official report explained the cause of the failure. Time was measured in the 
internal clock of the Patriot missile in tens of seconds. The time in tens of seconds was 
multiplied by 1/10 to produce the time in seconds. This calculation was performed using 
24 bits for the significand of 1/10. Since binary representation of 1/10 has an infinite 
repeating representation, as seen above, the computed binary value of 1/10 which was 

0.00011001100110011001100 
 introduced an error of about 0.000000095 decimal. 

But the Patriot battery had been up around 100 hours and simple calculations shows 
that the resulting time error was of about 0.34 seconds: 

0.000000095 × 10 × 60 × 60 × 100 = 0.34 
A Scud travels at about 1676 meters per second which means that it traveled more 

than half a kilometer during the 0.34 seconds that weren’t computed. 
 

3.3 Finite Range Can Lead to Disaster 
 
On June 4, 1996, thirty seconds after lift off, an Ariane 5 rocket launched by the European 
Space Agency veered off its flight path, broke up and exploded. The failure of the rocket 
was caused by a conversion problem in the software which led to a complete loss of 
guidance and altitude information. A Board of inquiry explained the cause of the failure: 
 

The internal Inertial Reference System software exception was caused during 
execution of a data conversion from 64-bit floating-point to 16-bit signed integer value. 
The floating-point number which was converted had a value greater than what could be 
represented by a 16-bit signed integer. 

 
 

4 Binary Floating-point Arithmetic in IA-64 Architecture 
 
Intel’s IA-64 processor is an extension into a 64-bit architecture. The processor’s floating-
point architecture was designed in order to achieve three main goals: 

o High performance 
o High floating-point accuracy 
o Compliance with IEEE Standards for floating-point data formats and arithmetic 
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In order to achieve high performance, IA-64 floating-point architecture includes 
some special new instructions such as the fused floating-point multiply-add operation along 
with pipelined floating-point units allowing parallelism for operations. Control and data 
speculation and large register files also contribute for improvement of performance. 

High precision is obtained thanks to the definition of several distinct data types and 
new instructions (fused floating-point multiply-add, fused floating-point multiply-subtract, 
fused floating-point negative multiply-add …). 

 In the IA-64, floating-point values in several formats rest in registers and can be 
addressed in any order. Table 1  lists the various formats provided by this processors in 
which are included  the ones recommended by the IEEE Standard: single precision, double 
precision and double-extended precision. M stands for bits in the exponent field and N bits 
in the precision field. 
 
 

Format Format parameters 
Single precision M = 8 N = 24 
Double precision M = 11 N = 53 
Double-extended precision M = 15 N = 64 
Pair of single precision floating-point numbers M = 8 N = 24 
IA-32 register stack single precision M = 15 N = 24 
IA-32 register stack double precision M = 15 N = 53 
IA-32 double-extended precision M = 15 N = 64 
Full register file single precision M = 17 N = 24 
Full register file double precision M = 17 N = 53 
Full register file double-extended precision M = 17 N = 64 

Table1: IA-64 floating-point formats 

 
In memory, floating-point numbers are saved as single precision, double precision or 

double-extended precision. 
An instruction may determine a specified floating-point format. Otherwise, the 64-bit 

floating-point status register (FPSR) contains a status field which determines precision 
control (pc) and widest-range-exponent (wre), along with bits that control flushing to zero, 
traps signaling, rounding mode, etc. 

IA-64 supports four rounding modes (complying with IEEE standard): rounding to 
nearest, rounding to zero, rounding to positive infinity and rounding to negative infinity. It 
is also able of signaling all the “IEEE traps”: invalid operation, divide by zero, overflow, 
underflow and inexact result. 

 
 

4.1 Operations 
 
As referred before, new instructions for operations are included in hardware of IA-64 
processor. In fact, these types of instructions are actually sets of operations. One example 
of such an instruction is the fused floating-point multiply-add operation. 

The fused multiply-add operation, depending on input parameters, is able to 
calculate: 

a × b + c ; 
a × b ; 
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 b + c 
 

The main benefit of this fusion is that, if a and/or b and/or c are “contaminated” with 
rounding errors, the computation of  a × b + c  is done with only one rounding error ε. The 
computed result will be: 

(a × b + c) (1 + ε) 
 

Generally, a computation using pure add and multiply operations, leads to a biggest 
relative error since two errors, ε1 and ε2, are computed: 

(a × b (1 + ε1) + c) (1 + ε2) 
 

Similarly: 
o fused multiply-subtract operation computes  a × b – c 
o fused negative multiply-add operation computes  -a × b + c 
o fused negative multiply-subtract operation computes  -a × b – c 

 
Other operations such as division, square root, remainder and conversions are 

implemented in software. Full register file double-extended precision is required precisely 
in some software operations like division and square root. 
 
 
5 Interval Arithmetic  
 
Interval arithmetic is used to evaluate arithmetic expressions over sets of numbers 
contained in intervals. Any interval arithmetic result is a new interval that is guaranteed to 
contain the set of all possible resulting values. 

Nowadays, computing speed provides many opportunities and risks. Unfortunately, 
the existing floating-point paradigm can neither exploit all the opportunities nor avoid the 
risks. There are two essential reasons for that: 

 Floating-point numbers are disconnected from the mathematical continuum of real 
numbers since most real numbers cannot be represented exactly using computed 
floating-point numbers. 

 Floating-point numbers are disconnected from inaccurate measurements in science 
and engineering. In fact, floating-point numbers in a computer do not contain any 
information about their accuracy. Normally, no error analysis is automatically done 
by computers using floating-point numbers and, because programming error 
analysis is difficult, it is rarely done. 
If computer results are used to make critical decisions, computing values without 
interval bounds is synonymous with risk. 
 

On the contrary, using intervals instead of floating-point numbers: 
 A single pair of interval endpoints represents an infinite number of values, a 

continuum, which gives intervals a logically rigorous connection to mathematics 
that does not exist for computed floating-point numbers. 

 The width of an interval can be used to bind the error of an approximate value. The 
resulting interval errors bounds are mathematically rigorous, they contain the set of 
all possible results. 
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5.1 Solving Problems Using Interval Arithmetic 
 
Computing with intervals leads to a tight logical connection between computing and 
reality. In fact, computing with Interval arithmetic produces numerical proofs, or 100% 
confidence intervals, which permits solving nonlinear problems, including design 
optimization, that were previously thought to be impossible to solve. 

Interval computations have already been successfully applied to in solving many 
problems in science and engineering: 

 Chemical process engineering 
 Computing guaranteed parameter bounds from fallible data 
  Optimal design of quantitative feedback control systems 

 
Many more applications exist, along with published papers and reports and some are 

being quietly used in order to keep competitive advantage. 
One of the interval computing success stories was the solution of the long-standing 

geometric problem of determining the least area surface enclosing two given equal 
volumes. This problem was proposed by the Belgian physicist J. Plateaux more than 
hundred years ago. 

Until 1995, there was no proved solution for this problem, although physical 
experiments suggested that the desired surface should be a “double bubble”, a surface 
formed by two spheres separated by a flat disk (that meet along a circle at an angle of 120 
degrees). However, several other surfaces (“torus bubbles”) have been proposed. 

The solution of the problem was recently proven by Joel Hass from Department of 
Mathematics, University of California at Davis and Roger Schlafly from the Real Software 
Co. They manage to prove that double bubble is the minimizing surface by proving first 
that the solution could only be a double bubble or a torus bubble and then, using interval 
computations, they proved that, for all possible values of parameters, the area of the torus 
bubble exceeds the area of the double bubble. 
 
5.2 Sun’s Support for Interval Arithmetic 
 
UltraSPARC processors from Sun Microsystems, Inc. in its VIS instruction set breaks with 
the traditional view of “one-register-one-variable”. Instead, the VIS instruction set views 
registers as virtually partitioned containing a number of smaller variables.  

VIS instruction set utilizes several different register partitioning formats operating on 
8-, 16- or 32-bit packed integers. These formats, with the processor’s 64-bit registers, 
facilitate two-way parallelism and four-way parallelism, improving performance. 

The VIS 2.0 instruction set in Sun’s UltraSPARC III processor is an improvement of 
VIS 1.0 available in all UltraSPARC processors. 

VIS 1.0 instruction set is comprised of over 80 instructions which facilitate integer 
Single Instruction Multiple Data (SIMD) operations in the floating-point unit. 

One of the categories of instructions more relevant in the context of this paper is the 
one of arithmetical instructions. The VIS instruction set provides the ability to add, 
subtract and multiply up to four different variables in one operation. The operands continue 
to reside in separate registers interacting with each other (identically positioned elements) 
to produce the result. 

VIS 1.0 instruction set also provides conversion instructions that convert data from 
one type to another which improves flexibility on desired precision and level of 
parallelism. It provides 32 to 8, 32 to 16 and 16 to 8 bit conversion operations. 
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Sun Microsystems, Inc. currently offers both language and hardware support for 
computing with intervals. Hardware is provided in UltraSPARC III processor’s VIS 
instruction set with the “Set Interval Arithmetic Mode” (SIAM) Rounding Mode 
instructions. 

SIAM Rounding Mode enables interval specific hardware instructions for the basic 
arithmetic operations in single, double and quadruple (128-bit) precision floating-point. 
Rounding mode bits in the floating-point status register (FPSR) can be annulled without 
overhead to the pipeline flush. These instructions improve the efficiency of Interval 
arithmetic: performance improvement from the SIAM instructions has been measured to be 
approximately 30%. 

Software support for Interval arithmetic is available in the Sun ONE Studio 7, 
Compiler Collection Fortran 95 compiler and in a C++ class library. 

 
 

6 Conclusions 
 

Clearly, it is important that hardware manufacturers care about improving accuracy in 
computational systems. Nowadays, computers are so fast that the work they do is changing 
and must change even more in the proximate future. Increasing “safe” computational 
results should be a concern. 

Interval arithmetic may be very important in the future for science and engineering in 
solving nonlinear problems, such as commercial, industrial, financial and scientific 
problems, although nowadays there is still few hardware and software support for intervals. 
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