
 Session 3: Smart Cards and Novel Processor Approaches

ICCA’03 - 87 -

Multithreaded Architectures

Filipe José Silva de Campos

Departamento de Informática, Universidade do Minho
4710 - 057 Braga, Portugal
Filipe_campos@yahoo.com

Abstract. The increasing gap between CPU and memory speed are driving several optimisa-
tions to be used in the architecture of novel processors, such as the hyper threading technol-
ogy. This communication explores this technology, and also attempts to draw some conclusion
about its real value.

1 Introduction

For the past several years, the key to increase performance used by the developers is higher
clock frequencies. But now, current microprocessor industry struggles with scaling devel-
opment and design costs. Researchers have begun to realize the increases of complexity
and speed of the processor as the effect to increase the cost with no guarantee that such
designs will meet significant additional performance gains. The large gap between the
processor frequency and the memory speed is having effect on the portion of execution
time wasted by the processor on cache misses. Memory latency, the time required to initi-
ate, process, and return the result of a memory request, has always been the bane of high-
performance computer architecture, and it is especially critical in large-scale multiproces-
sors. Many processor cycles may elapse while a request is communicated among physi-
cally remote modules.

Consequently, researchers have created several optimisations to minimize this problem.
The first of these is the use of multithreading to enable the processor to perform useful
instructions during cache misses. This provides a way to create a latency tolerance, in-
creasing the global performance of the processor, without increasing the complexity and
costs of the chip.

This communication makes a study of a multithreaded processor model (hyper thread-
ing processor), describing its architecture, performance, and making some conclusions
about its real value.

2 Multithreaded Architectures

Multithreaded processors aim to reduce the inefficiencies in the processor due to opera-
tional latencies, such as cache misses or instruction with long execution cycles. A conven-
tional single threaded processor will wait during a remote reference, so we may say is
stopped for a period of time. A multithreaded machine, on the other hand, will suspend the
current context and switch to another, so after some fixed number of cycles it will again be
working doing useful work. The objective is to maximize the fraction of time that the
processor is busy, given by the next equation:

Efficiency = __________Working_________
 Working + Switching + Stopped

Session 3: Smart Cards and Novel Processor Approaches

ICCA’03 - 88 -

where Working, Switching, and Stopped represent the amount of time, measured over some
large interval, where the processor is in the corresponding state. The basic idea behind a
multithreaded machine is to interleave the execution of several contexts in order to reduce
the value of Stopped, but without overly increasing the value of Switching. Because the
processor can switch contexts, it is necessary to maintain separate thread states using inde-
pendent program counters and registers for each thread. Since this processor have separate
contexts and instruction sources, a multithreaded architecture is capable of taking advan-
tage of thread-level parallelism (TLP).

A processor that can support several active threads of computation can be classified as a
multithreaded architecture; two models are currently being explored:
Multiprocessor architecture. It consists of multiple processor cores in a single package
or two or more physical processor in a single computer. This improves overall perform-
ance by allowing threads to execute in parallel. Like multithreaded processors, multiproc-
essor architectures rely on thread-level parallelism to improve performance. However, this
architecture does nothing to improve processor resource utilization because a processor’s
resource will go unused when not enough parallelism can be found in the thread being
used.

As show in Figure 1, vertical waste is introduced when the processor issues no instruc-
tion in a cycle, and horizontal waste when not all issues slots can be put in a cycle.

Figure 1: Empty slots can be defined
as vertical waste or horizontal waste.

Simultaneous Multithreading (SMT) improves the performance in two ways. First, this
architecture takes simultaneous advantage of thread and instruction–level parallelism
(ILP). This allows the processor to execute instructions from multiple threads within a sin-
gle clock cycle, eliminating the horizontal waste. Second, if only one thread is active due
to long-latency, that thread may consume all of the available issue slots. As a result, verti-
cal waste is eliminated due to the availability of unblocked instructions in other threads.

In an SMT processor, on each cycle, instructions are selected for execution from all
threads.

 Session 3: Smart Cards and Novel Processor Approaches

ICCA’03 - 89 -

3 Case Study: Hyper Threading

In mid-2002, Intel introduced an updated version of the Xeon line of processors that in-
cludes simultaneous multithreading. They have chosen to brand this technology “Hyper -
Threading”. Like the theoretical SMT processors, multiple architecture states are main-
tained, thus Hyper-Threading allows a single physical processor appear as more than one
“logical” processor. Hyper threading processor is a multithreaded architecture that uses
only one processor and supports two threads (2 contexts). It switches utilization of the chip
resources from the currently executing thread to a second thread, when the currently exe-
cuting one initiates a long latency operation. This reduces the likelihood of long pipeline
stalls by allowing the second thread to execute while the long latency operation of the first
thread completes. For example, one logical processor can execute a floating-point opera-
tion while the other logical processor executes an addition and a load operation.

3.4 Architecture Implementation

To operate two threads with a single processor, the architecture state (AS) of each thread
must be maintained in the hardware. The state of a thread consists of the GPRs, FPRs,
condition register (CR), count register, link register, fixed-point exception register, and
floating-point status and control register. All of the registers specifically listed above are
replicated in order to establish a complete and private state set. None of the replicated fa-
cilities are very large; in fact, both threads share all the largest parts of the design, such as
the caches and ALU. The area added in the chip is less than 5 %, and having very little
impact on cycle time.

Figure 2: Architecture of hyper threading

In the Xeon processor with Hyper-Threading technology, logical processors share and
separate the following functionality. However, to satisfy the need of performance when
only one thread is active, the partitioned resources are capable of being recombined when
multiple threads do not exist.

Session 3: Smart Cards and Novel Processor Approaches

ICCA’03 - 90 -

Shared Separate

Decode logic Interrupt controller

Caches Next instruction pointer

Execution units Instruction TLB’s

Branch predictors Return stack buffer

Control logic Register alias table

Busses

To support hyper threading it is necessary to include some unique registers in the chip.
The designer added control registers, such as the thread state control - to specify the condi-
tion under which a thread switch can occur –a register to specify single/hyper thread
modes of execution and the thread-switch timeout register. This register contains a thresh-
old for the number of cycles that can occur between thread switches. Most of thread
switching is the result of cache misses; if a thread stays a long time without a miss, the
other thread remains stopped for a long time. This register is used to force the switch of a
thread after a specified number of cycles, to prevent one thread from using all the re-
sources.

Pipeline. The processor decodes architectural instructions into micro-operations or “µops.”
Figure 3 shows a simplified version of the pipeline, where the execution engine includes
several mores stages than they are show in the figure.

Figure 3: Pipeline of Xeon processor

In the first stage, instructions are fetched, converting instructions into micro-operations

or called “µops”. Each “µop” is tagged with the thread identifiers and stored in the trace
cache. The trace cache is an associative cache that replaces instructions based on a least-

 Session 3: Smart Cards and Novel Processor Approaches

ICCA’03 - 91 -

recently-used algorithm. If the two logical processes compete for the trace cache in a sin-
gle cycle, access is granted to one on the current cycle then the other process on the fol-
lowing cycle. The processor branch prediction hardware, instruction pointer and decode
stage buffers are duplicated for each logical processor. The instruction translation loo-
kaside buffer (ITLB) sets the next-instruction pointer based on instructions delivered from
the trace cache.

Each logical processor has its own set of two 64-byte streaming buffers to hold instruc-
tions prepared for the decode stage. The decode logic is shared but should not be utilized
very often due to “µop” translation in the fetch stage. Between the decode logic and the
execution engine instructions are queued in two equally sized partitions, ensuring inde-
pendent forward progress during stalls in the fetch and decode stage. Queued instructions
enter the execution engine where physical resources are allocated as needed by each
“µop”. The Xeon processor has 126 re-order buffer entries, 128 integer physical registers,
128 floating-point registers, 48 load buffers and 24 store buffers. The re-order buffer en-
tries, load buffers and store buffers are partitioned such that each logical processor may
only access half the resources. The Register Alias Table (RAT) is used to track mappings
between architectural registers and physical registers. Because each logical processor
needs to maintain its own state, there are two RATs, one for each logical processor.

The instruction scheduler is shared. It chooses instructions regardless of the logical
processor they are associated with. However, the scheduler does make one accommoda-
tion; there is a limit on the number of active entries that a logical processor can have in the
scheduler’s queue. All execution units are shared – this means that they do not require ad-
aptation from the single context Xeon design. Retirement of instructions is done in pro-
gram order. The retirement process alternates between logical processor threads, looking
for operations that are ready to be retired. If there are no operations for one of the two
logical processors, all retirement resources are dedicated to the active context.

Memory and Cache. Access to the memory subsystem requires very little enhancement to
support hyper-threading. The Data Lookahead Translation Buffer (DTLB) has been en-
hanced to include a thread identifier for each entry. Additionally, each logical processor
has its own reservation register to ensure fairness in processing DTLB misses. As was dis-
cussed earlier in this document, because logical processors share memory access resources
(caches), there are an increased potential for cache and resource conflicts.

Bus. Bus resources are shared, but each logical processor in the Hyper-Threaded Intel
Xeon includes its own interrupt controller. Accesses are treated on a first come, first served
basis. To support debugging, the logical processor ID is carried on all bus requests.

4 Benchmarks

The machine used in the test the gains of the hyper threading technology was a Dell Preci-
sion 530 Workstation, with two 2.4GHz Xeon processors. It is possible to enable and dis-
able the hyper threading feature and the use of one or two processor in the BIOS.

The configurations used in the tests are:

• 1 CPU, HT Off: one physical logical processor, the result is one logical processor.

Session 3: Smart Cards and Novel Processor Approaches

ICCA’03 - 92 -

• 1 CPU, HT On: one physical processor and hyper threading, the result is two logi-
cal processors.

• 2 CPU, HT Off: two physical processors, the result is two logical processors.

• 2 CPU, HT On/2L: two physical processor and hyper threading; two logical proces-
sors forcing the machine to use only the first logical processor on each physical
processor.

• 2 CPU, HT On/4L: two physical processors and hyper threading, the result is four
logical processor.

The X-Axis has abbreviations for the SiSoft Sandra benchmarks software, and represents
test arithmetic (ALU1, FPU2, FPU-SSE3) and multimedia (iSSE4, fSSE5).

Figure 4: Benchmarks of the Dell Precision 530 Workstation
using the SiSoft Sandra benchmarks software.

1 Dhrystone ALU MIPS
2 Whetstone FPU MFLOPS
3 Whetstone iSSE2 MFLOP
4 Integer iSSE2 it/s
5 Floating-Point iSSE2 it/s

 Session 3: Smart Cards and Novel Processor Approaches

ICCA’03 - 93 -

5 Benefits vs. Cost

5.1 Benefits

Multithreading has been shown to provide a significant performance improvement.
Threads can make a GUI more responsive. They can also facilitate the overlap of I/O and
computation. If multiple processors are available, threaded applications may see substan-
tial speedup. This is achieved with minimal additional costs in terms of area, cycle time.
The chip area added to support multithreading was less than 5%, required primarily for the
second set of SPRs, control logic to support thread switching, and added bandwidth in the
storage control unit to handle extra outstanding misses. Cycle time was not directly af-
fected by multithreading. The only effect multithreading had on cycle time was additional
capacitive wire loading on some resources to support alternate thread paths (less than 1%
impact). No additional logic gate levels were introduced in critical paths for multithread-
ing.

5.2 Cost

But, to have this gain it is necessary to use multiprocessor software applications, increas-
ing the complexity and cost to developing this type of applications. For example, the shar-
ing of resources, such as global data, can introduce common parallel programming errors
such as storage conflicts and other race conditions.

The main problem with hyper threading is that if one of the two threads on the proces-
sor uses up all the CPU's resources (e.g. the thread is in some sort of waiting cycle), it will
hamper the other thread's execution. This could lead to a reduction in performance over a
standard processor. In a standard processor the operating system would be in charge of
deciding which instructions from which threads to run and when and may be able to do a
better job of it.

6 Conclusions

Two threads are better than one? The answer is yes. The hyper threading processor consid-
ers two separate logical processors on which the software can run. Each logical processor
independently responds to interrupts. The first logical processor can track one software
thread, while the second logical processor tracks another software thread simultaneously.
Because the two threads share the same execution resources, the second thread can use
resources that would be otherwise idle if only one thread was executing. This results in an
increased utilization of the execution resources within each physical processor.

However, for non-computationally intensive applications and non-multiprocessor soft-
ware, such as spreadsheets, word processing, or e-mails, which represent the vast majority
of applications used by the normal user. The use of hyper threading will not make per-
formance gains.

The use of this technology can increase the performance, but not currently. It may be
some case that the performance decreases due to non-optimised software, not designed for
parallel computers.

Session 3: Smart Cards and Novel Processor Approaches

ICCA’03 - 94 -

References

[1] J. M. Borkenhagen, R. J. Eickemeyer, R.N. Kalla, and S.R. Kunkel, “A multithreaded
PowerPc processor for commercial servers”, November 2000.

[2] Rafael H.Saavedra-Barrera, David E. Culler, and Thorsten von Eicken, “Analysis of
Multithreaded Architectures for Parallel Computing”, University of California.

[3] Yen-Kuang Chen, Matthew Holliman, EricDebes, and Sergey Zheltov, “Media Appli-
cations on Hyper-Threading Technology”, Intel Labs.

[4] James E Smith, “Instruction-level Distributed Processing”, University of Wisconsin-
Madison.

[5] Gurindar S. Sobi, and Amir Roth, “Speculative Multithreaded Processors”, University
of Wisconsin-Madison.

