
 Session 6: Parallel and Distributed Environments

ICCA’03 - 197 -

Web Caching: a Memory-based Architecture

David Manuel Rodrigues Sora

Departamento de Informática – Universidade do Minho

4710 - 057 Braga, Portugal
david@ipb.pt

Abstract. Caching also applies to Internet content by distributing it to multiple servers that are
periodically refreshed. Performance gains can be obtained of two orders of magnitude between
the original process-based Web servers and todays threaded servers. AFPA (Adaptive Fast Path
Architecture - a software architecture) dramatically increase Web and other network servers’
capacity by caching content in RAM, and serving that content as efficiently as possible from
the kernel.

1 Introduction

In order to keep the Web attractive, the experienced latencies must be maintained under a
tolerable limit. One way to reduce the experienced latencies, the server’s load, and the
network congestion is to store multiple copies of the same Web documents in
geographically dispersed web caches.
 Caching [1] is a technique generally aimed at bringing parts of an overall data set
closer to its processing site. It is applied for example in memory hierarchies where
relatively small on-processor caches yield data access times a magnitude lower than
memory-chip access times. The same principle, although on another size and latency scale,
also applies to the file-system, where frequently used documents are kept in main memory
instead of being slowly retrieved from disk. The Internet expands this memory hierarchy
one further step outward from the processor.
 Caching popular objects at locations close to the clients (Web caching) has been
recognised as one of the effective solutions to alleviate Web service bottlenecks, reduce
traffic over the Internet and improve the web scalability.
 This communication is organised as follows: Section 2 gives an overview of Web
Caching and why it is useful. Section 3 describes the main caching architectures, classifies
some performance issues, and to establish a performance baseline, describes the “Adaptive
Fast Path Architecture”, a platform for building Kernel-mode network servers. The Intel
Itanium Architecture appears in this Section as a improved solution aiming for high-
performance with its 64-bit processor’s features. Finally, Section 4 draws conclusions from
the performance analysis and makes recommendations for future work.

2 Overview of Web Caching

Caching on the Web began with the introduction of client-local document stores either
implemented as host-local disk backup store or as in-memory caches. The disadvantage of
employing this approach alone became obvious as soon as too many different documents
appeared on the Web, rendering the formerly known notion of locality set obsolete.

Session 6: Parallel and Distributed Environments

- 198 - ICCA’03

2.1 Functions of a Web Cache

When a Web-user requests specific information, such as a Web site, the cache feature [1] is
used to direct the request to the origin server, then return the data back across the Internet.
Web caching processes the delivered data and stores that content. When another request is
made for that same data, there is no need to send the request all the way through the
network; instead the response is sent from the cache memory. This way, duplicated
requests are responded to more quickly while also preventing the network from being
bogged down by multiple requests for identical information.
 A Web cache also keeps track of whether a Web object is fresh or not. If a Web object
is no longer fresh or past its expiration date, a Web cache would delete it from its storage
or replace it with a newer object from the origin Web server.
 Another important feature for caches is the amount of working cache size or amount
of space available for storing cacheable Web objects. In most caches, a combination of
disk and RAM are used to store Web objects. A cache can serve Web objects stored on its
RAM much faster than if the Web objects are stored in the disk drive.

2.2 Web Caching vs. File System Caching

Most file system buffers store fixed-size blocks of data, while Web servers always read
and cache entire files. The sizes of Web objects range from a few kilobytes (such as
HTML and image files) to extremely large ones such as video files. It is of course possible
to break up a large Web file into small pieces and cache just some of the pieces, but to our
best knowledge, no research so far has indicated that this is practical and beneficial.
Variable-sized Web objects complicate the memory management in Web server caches.
 A file system buffer manager always requires that the requested data block be in the
cache in order to fulfil a request. Thus, a cache miss on a requested file block invariably
results in a cache operation for bringing the requested file block into the cache, and
possibly a series of cache replacement operations if it is full. That is, caching of a
requested block is obligatory. This is not the case for Web object caching. Unlike file
accesses, access patterns observed by Web servers do not usually exhibit high temporal
locality. In general, the same user rarely requests the same Web object twice from a Web
server in a short time interval, since the requested object should already be in the Web
browser cache, the client OS cache, or the proxy cache. Therefore, traditional LRU (Least
Recently Used) replacement algorithms that are so popular in file caches are not suitable
for Web document caching. On the other hand, multiple accesses from different clients in a
short time interval do indicate high popularity of a document. Frequency-based
replacement algorithms, such as Least Frequently Used (LFU) and its variants have been
shown to be more suitable for Web caching [2,3,4,5,6].

2.3 Why Web Caching?

The most obvious beneficiary of Web caching is the user, who avoids some traffic
problems when browsing. The network administrator and the remote Web site also benefit.
 Large caches with lots of clients may field as many as 50% of the hits that would
otherwise travel through a network individually to the origin site. A typical cache could
easily field about 30% of the intended hits, says the NLANR’s 1996 research [7]. Thus,

 Session 6: Parallel and Distributed Environments

ICCA’03 - 199 -

statistically speaking, a Web cache could eliminate at least 30% of the Web traffic that
would normally be going out over a wide area network (WAN).

3 Web Performance

Highly accessed Web sites may need to handle peak request rates of over a million hits per
minute. Web serving lends itself well to concurrency because transactions from different
clients can be handled in parallel. A single Web server can achieve parallelism by
multithreading or multitasking between different requests. Additional parallelism and
higher throughputs can be achieved by using multiple servers and load balancing requests
among the servers.
 The Web servers would typically contain replicated content so that a request could be
directed to any server in the cluster. For storing static files, one way to share them [8]
across multiple servers is to use a distributed file system (DFS). Copies of files may be
cached in one or more servers. This approach works fine if the number of Web servers is
not too large and data does not change very frequently. For large numbers of servers for
which data updates are frequent, distributed file systems can be highly inefficient. Part of
the reason for this is the strong consistency model imposed by distributed file systems.
Shared file systems require all copies of files to be completely consistent. In order to
update a file in one server, all other copies of the file need to be invalidated before the
update can take place. These invalidation messages add overhead and latency. At some
Web sites, the number of objects updated in temporal proximity to each other can be quite
large. During periods of peak updates, the system might fail to perform adequately.

3.1 Caching Architectures

Caches sharing mutual trust may assist each other to increase the hit rate. A caching
architecture should provide the paradigm for proxies to cooperate efficiently with each
other. Two common approaches to implement a large-scale cache cooperation scheme are
hierarchical and distributed caching.

Hierarchical Caching. With hierarchical caching caches are placed at different network
levels. At the bottom level of the hierarchy there are client caches. When a client cache
does not satisfy a request, the request is redirected to the institutional cache. If the
document is not present at the institutional level, the request travels to the regional cache,
which in turn forwards unsatisfied requests to the national cache. If the document is not
present at any cache level, the national cache contacts directly the origin server. When the
document is found, either at a cache or at the origin server, it travels down the hierarchy,
leaving a copy at each of the intermediate caches. Further requests for the same document
travel up the caching hierarchy until the request finds the document. There are several
problems associated with a caching hierarchy: i) every hierarchy introduces additional
delays, ii) higher level caches may become bottlenecks and have long queuing delays, and
iii) several copies of the same document are stored at different cache levels.

Distributed Caching. With distributed caching no intermediate caches are set up and
there are only institutional caches at the edge of the network that cooperate to serve each
other’s misses. In order to decide from which institutional cache to retrieve a miss
document, all institutional caches keep meta-data information about the content of every

Session 6: Parallel and Distributed Environments

- 200 - ICCA’03

other institutional cache. Most of the traffic flows through low network levels, which are
less congested and no additional disk space is required at intermediate network levels. In
addition, distributed caching allows better load sharing and is more fault tolerant.
However, a large-scale deployment of distributed caching may encounter several problems
such as high connection times, higher bandwidth usage or administrative issues.

3.2 Performance Issues

The main performance measure is the expected latency to retrieve a Web document. It is
debatable that which caching architecture can achieve the optimal performance. A recent
research work [9] shows that hierarchical caching has shorter connection times than
distributed caching, and hence, placing additional copies at intermediate levels reduces the
retrieval latency for small documents.

Fig. 1. Expected connection time E[Tc] and expected transmission time E[Tt], for
hierarchical and distributed caching. ∆ = 24 hours. (Courtesy of [9])

 It is also shown that distributed caching has shorter transmission times and higher
bandwidth usage than hierarchical caching. A “well configured” hybrid scheme can
combine the advantages of both hierarchical and distributed caching, reducing both the
connection and the transmission time.

 A great number of incoming requests create large numbers of threads or processes,
which must all contend for the same system resources. The resultant reduced throughput
and slow response times decrease user satisfaction, potentially causing customers to leave.
 Commercial and academic Web servers achieved much of the performance gains
using new or improved event-notification mechanisms and techniques to eliminate reading
and copying data, both of which required new operating system primitives.
 More recently, experimental and production Web servers began integrating HTTP
processing in the TCP/IP stack and providing zero copy access to a kernel-managed cache.
These kernel-mode Web servers improved upon newer user-mode Web servers by a factor
of two to six. [10]

Data Copies and Reads. Data copies can be difficult to avoid in user-mode Web servers
where the data to be sent resides in the file system cache. In cases where data is already
mapped into the user-mode address space, one or more copies will be performed before
delivering the data to the network adapter. Even where data copies are eliminated, the
additional overhead in reading the data to compute a checksum remains. Providing a

 Session 6: Parallel and Distributed Environments

ICCA’03 - 201 -

mechanism to send response data directly from the file system cache to the network
interface solves the data copy problem. The checksum problem is solved either by
precomputing and embedding the checksum in a Web cache object or by relying on
network interface hardware to offload the checksum computation.

Event Notification. Event notification can be defined as the queuing of a client request by
a server for response by a server task. To handle multiple clients, the server supports
concurrency either by assigning a single task, single process event driven (SPED), from a
pool of tasks to each client request, or by using asynchronous system calls to manage many
requests with a few tasks, multiple process/thread (MP).

 In the MP model, a server creates a new task for each new request. Because creating a
new task can be time consuming, most MP servers reduce the overhead by pre-allocating a
pool of tasks. However, pre-allocating a pool of tasks to avoid task creation still incurs
unwanted scheduling overhead. Every request requires a reschedule to the task for that
request. Ideally, the unnecessary scheduling inherent to the MP model is avoided in a
design where a single task services requests on behalf of multiple clients.
 In the SPED model, a few processes handle requests from multiple clients
concurrently. The SPED model relies on asynchronous notification mechanism for
notifying a server task of incoming network requests.

Communication Code Path. A third performance issue is the overall communication code
path through the socket layer, TCP/IP stack, link layer, and network interface. The socket
layer is not necessarily tailored to the needs of Web servers. Reducing the code path
between the Web server and TCP/IP stack allows system calls and redundant socket layer
code elimination.

User-mode. These user-mode Web servers rely heavily on the operating system to provide
the refined primitives to reduce data movement, limit event notification overhead, and
minimise the communication code path. One approach is to optimise existing interfaces
and their implementations.

Kernel-mode. Kernel-mode Web servers have been implemented in the context of both
production and experimental operating systems. Migration of services considered integral
to a server’s operation into the kernel is not a new idea. Delivery of static Web responses
amounts to sending files on a network interface and does not require extensive request
parsing. A kernel-mode Web server can fetch response data from a file system or kernel-
managed Web cache. If the kernel-mode caching Web server determines that it cannot
serve the request from its cache, it forwards it to a full-featured user-mode Web server.
Kernel-mode Web servers can be characterised according to the degree of their integration
with the TCP/IP stack and whether responses are derived in a thread or interrupt context.

3.3 AFPA (Adaptive Fast Path Architecture)

AFPA is a Kernel-mode platform for high-performance network servers. The main features
are the support for a variety of application protocols; direct integration with the TCP/IP
protocol stack (tight integration with the TCP stack enables better event notification and
data transfer); and a Kernel-managed, zero copy cache (a zero-copy send interface reduces
data transfer by allowing responses to be sent directly from RAM-based cache).

Session 6: Parallel and Distributed Environments

- 202 - ICCA’03

 AFPA’s central component, an in-Kernel RAM-based cache, is intended to store not
only the most frequently requested items, but also the entire set of static content. Serving
content from RAM eliminates disk latency and bandwidth constraints.

Memory management. To ensure that sufficient pageable storage remains available for
normal system operation, AFPA limits the amount of storage it pins to 25% of real
memory [10]. But, it does not prevent the file-system cache manager and virtual memory
manager from using more or less than 25% of real storage for the file-system cache.
 Real-memory management performed by the file-system cache manager allows AFPA
to influence resource management without assuming complete responsibility. However,
operating systems may allocate less memory to the file-system cache than is appropriate
for a system whose primary purpose is caching.
 AFPA explicitly allocates nonpaged RAM for pinned-memory cache objects. The
primary questions regarding the implementation of such objects concern allocation and
management of pinned storage. No explicit limit is imposed on the amount of pinned
memory which AFPA requests. Pinned memory is simply allocated until further allocations
are refused. The operating system fails calls for relatively large amounts of pinned memory
before the system runs dangerously low. When a call to allocate pinned memory does fail,
a file-system cache object is used instead.

Table 1: Web Server Characteristics

 Architecture Cache 0 copy Direct TCP
Apache MP/user filesystem no no

Zeus SPED/user filesystem no no
IIS SPED/user filesytem yes no

kHTTPd SPED/kernel filesytem no no
TUX SPED/kernel memory yes no
SWC SPED/kernel fs or mem yes yes
AFPA Softint/kernel fs or mem Yes yes

Table 1 enumerates and describes the Web servers tested on Linux and Windows 2000.
The “architecture” column describes servers as MP, SPED, or softint (software interrupt)
and kernel-mode or user-mode. The “cache” attribute defines whether the file system,
memory, or both back the Web server’s cache. The “0 copy” column indicates whether or
not the Web server performs a copy to send a cache object. The “direct TCP” column
indicates whether or not the Web server is directly integrated with the TCP/IP stack or uses
the socket layer.

Fig. 2. SPECweb96 workload. (Courtesy of [10])

 Session 6: Parallel and Distributed Environments

ICCA’03 - 203 -

 IBM use the first standard HTTP benchmark for their experiments: SPECweb96 [11].
The SPECweb96 working set comprises files that range in size from 100 bytes to 900 KB.
 The results presented in Figure 2 show a significant gap in performance between
kernel and user-mode Web cache implementations. AFPA on Linux achieves the fastest
performance of the tested servers. The result of 10269 represents more than 1.2 GB/s
server throughput. For example, on Windows 2000 AFPA is 50% faster on one CPU (9018
SPECweb operations per second) than IIS on four CPUs (6090 SPECweb operations per
second).

3.4 Intel Itanium Architecture

Web server caching handles simultaneous requests from thousands, even millions of
demanding customer at the same time. Demand for this kind of performance stimulates
new improvements. Intel's new Itanium processors [12] offer another way to meet that
demand. The Itanium processor's 64-bit address space, plus the architecture’s advanced
features, directly attacks the throughput problem in innovative ways.

Table 2: Intel Itanium Processor Benefits for Web Server Caching Technology

Caching Technology Predication Speculation Increased No. of Registers Parallelism
Web Server Caching x x x x

Predication. Web server caches are especially prone to heavy branching, and ordinarily
this means a branch has to be evaluated before the process can continue, which slows
things down.
 Some advanced processors use predictive branching, to guess which branch to take
and while this works, guessing wrong can stall the processor pipeline badly. Intel uses
something called Predication instead, avoiding branching altogether. It processes both
branches at the same time, then discards the wrong branch later.

Speculation. Speculation speeds things up by anticipating what code fragments or data bits
the CPU might need next, and fetching it from main memory in advance. Other advanced
processors have this kind of pre-fetching, but only after the last code branch. The Itanium
architecture is under no such limit. In addition, the new generation of intelligent compilers
for this architecture are actually capable of scheduling in the compiled code what
speculative loads to make in advance, producing more finely tuned speculation results.

Increased Number of Registers. The system stores the intermediate results or code in
CPU registers. If it runs out of registers, the intermediate results have to be stored in main
memory, then reloaded when needed.
 The Itanium architecture offers more registers: 128 integer, 128 floating-point, and 8
branch registers, increasing the overall performance to the end user.

Parallelism. The intelligent compilers being released for this architecture are able to find
and exploit opportunities for parallelism. This means the predication and speculation
capabilities of the architecture can be fully exercised, providing higher degree of efficiency
in operations with this processor family.

Session 6: Parallel and Distributed Environments

- 204 - ICCA’03

4 Conclusions

Web caching is applied in today’s Internet to improve the performance of Web accesses by
avoiding redundant data transfers. Using new or improved event notification mechanisms
and techniques to eliminate reading and copying data, Web servers achieved greater
performance gains. IBM and Intel came out with improved solutions for Web caching. The
basic difference between the two companies is Intel’s focus on products while IBM’s focus
on basic research. The Intel Itanium architecture provides a set of functionality that should
enable larger and more powerful cache server software. An overview of Adaptive Fast Path
Architecture from IBM shows that AFPA more than doubles capacity for serving static
content compared to conventional server architectures.
 However, the gains achieved consider just the static content. It is important to predict
the Network evolution and the future needs. The next step for researchers could be to
deliver performance improvements for dynamic content while new line of processors with
Web Caching features are developed.

References

[1] B. D. Davison.: A Web Caching Primer. IEEE Internet Computing, Vol. 5 (2001) 38-45

[2] Arlitt M, Williamson C.: Trace-Driven Simulation of Document Caching Strategies for

Internet Web Servers. Simulations (1997)

[3] Reddy N.: Effectiveness of Caching Policies for a Web Server. Proceedings of the 4th Int.

Conf. on High Performance Computing, Cambridge, Massachusetts, USA, (1997)

[4] Robinson J, Devarakonda M.: Data Cache Management Using Frequency-Based Replacement.

Proceedings of the 1990 ACM SIGMETRICS Conf. on the Measurement and Modelling of
Computer Systems, Boulder, Colorado, USA, (1990)

[5] Williams S, Abrams M.: Removal Policies in Network Caches for World Wide Web

Documents. Proceedings of ACM SIGCOMM ‘96, Stanford University, CA, USA, (1996)

[6] Rizzo L, Vicisano L.: Replacement Policies for a Proxy Cache. UCL-CS Research Note

RN/98/13, Department of Computer Science, University College London, (1998)

[7] National Laboratory for Applied Network Research. http://www.nlanr.net/, (2001)

[8] T. T. Kwan, R. E. McGrath, D. A. Reed.: NCSA’s World Wide Web Server: Design and

Performance. IEEE Computer, November (1995)

[9] P. Rodriguez, C. Spanner, E. W. Biersack.: Web Caching architectures: hierarchical and

distributed caching. Proceedings of WCW’ 99. (1999)

[10] E. C. Hu, P. A. Joubert, R. B. King, J. D. LaVoie, J. M. Tracey.: Adaptive Fast Path

Architecture. IBM J. RES. & DES. Vol. 45 2 March (2001)

[11] The Standard Performance Evaluation Corporation. SPECweb96 Benchmark,

http://www.mindcraft.com/whitepapers/openbench1.html , (1999)

[12] Intel Corporation.: The Advantages of IA-64 for Cache Server Software. Version 1.0 (2000)

