Web Caching: a Memory-based Architecture Internal Conference of Computer Architecture ICCA 2003 Dep. de Informática - Universidade do Minho

Overview of Web Caching Functions of a Web Cache Cache mesh

Summary

- Overview of Web Caching
 - Functions of a Web Cache
 - Web Caching vs. File System Caching
- Web performance
 - DFS (Distributed File System)
 - Hierarchical Caching
 - Distributed Caching
 - Hierarchical vs. Distributed
 - Performance issues
- AFPA (Adaptive Fast Path Architecture)
- Intel Itanium Architecture
- Conclusions

Overview of Web Caching

- Web Caching vs. File System Caching
 - File size
 - Temporal locality
 - Least Recently Used replacement algorithms (LRU)
 - Least Frequently Used replacement algorithms (LFU)

David Sora david@ipb.r

Web Performance

- Distributed File System (DFS)?
 - Copies of files may be cached in one or more servers.
 - Works fine if:
 - Number of Web servers is not too large;
 - Data does not change very frequently;

Web Performance

- Caching Architectures
 - Hierarchical Caching
 - origin server
 - National cache
 - Regional cache
 - Institutional cache
 - Client cache
 - Distributed Caching
 - Institutional cache

Cache Levels

Web Performance

Hierarchical vs. Distributed

David Sora

Web Performance

- Performance issues
 - Data Copies and Reads
 - Event Notification
 - Single process event driven (SPED)
 - Multiple process / thread (MP)
 - Communication Code Path
 - Reducing the code path (between the Web Server and TCP/IP stack) by system calls and redundant socket layer code elimination

Adaptive Fast Path Architecture (AFPA)

- Kernel-mode platform for high-performance network servers
 - Support for a variety of application protocols
 - Direct integration with the TCP/IP protocol stack
 - Kernel-managed, zero copy cache

Web Server Characteristics

SPECweb96 workload

	architecture	cache	Осору	direct TCP
Apache	MP/user	filesystem	no	no
Zeus	SPED/user	filesystem	no	no
IIS	SPED/user	filesytem	yes	no
kHTTPd	SPED/keme1	filesytem	no	no
TUX	SPED/keme1	memory	yes	no
SWC	SPED/keme1	fs or mem	yes	yes
AFPA	Softint/kernel	fs or mem	Yes	yes

David Sora david@ipb.p

Conclusions

- Why Web Caching?
 - "(...) a Web cache could eliminate at least 30% of the Web traffic (...)"
- Improved solutions:
 - Adaptive Fast Path Architecture (IBM)
 - Doubles capacity for serving static content
 - Intel Itanium Architecture (Intel)
 - Enable larger and more powerful cache server software

David Sor

Intel Itanium Architecture (IA 64-bit)

- Predication
- Speculation
- Increased Number of Registers
- Parallelism

David Sora

Conclusions

Future?

Deliver performance improvements for dynamic content.