
by J. A. Darringer
R. A. Bergamaschi
S. Bhattacharya
D. Brand
A. Herkersdorf
J. K. Morrell
I. I. Nair
P. Sagmeister
Y. Shin

Early analysis
tools for
system-on-a-
chip design

The paper describes the need for early
analysis tools to enable developers of today’s
system-on-a-chip (SoC) designs to take
advantage of pre-designed components, such
as those found in the IBM Blue Logic® Library,
and rapidly explore high-level design alternatives
to meet their system requirements. We report
on a new approach for developing high-level
performance models for these SoC designs
and outline how this performance analysis
capability can be integrated into an overall
environment for efficient SoC design.

1. SoC design
As silicon technology continues to advance, designers are
finding that they can implement most of their product on
a single chip. For example, the current IBM CMOS
technology, Cu-08, provides more than 70 million wirable
gates with eight levels of copper interconnect; this
enables products with a broad and growing diversity of
applications (communication networks, storage networks,
set-top boxes, games, servers, etc.) to be realized as SoC
designs with higher performance and lower cost. While
SoC design offers many advantages, there are still the
familiar challenges of designing a complex system, now on
a chip. The ever-shortening time-to-market compounds
these challenges. Without a major advance in productivity,
designers will be able to consider only a very few high-
level system designs and will have to limit their product

differentiation to the software running on a standard
embedded processor.

To address SoC design productivity, semiconductor
suppliers are advocating intellectual property (IP) reuse
[1, 2]. Designers are provided access to a library of large,
previously designed components, or “cores,” with the goal
of enabling them to rapidly realize their system by
assembling a network of these cores. The IBM Blue
Logic* Library [3] contains more than 300 verified cores
that provide important functions for communication
networks, data compression, encryption, high-speed links,
and bus interfaces, along with a wide variety of embedded
processor cores from the extensive PowerPC* Roadmap
and other processor cores for special applications such as
signal processing. The CoreConnect* Architecture [4]
provides a foundation for interconnecting IBM cores as
well as non-IBM devices. Key elements of the architecture
are a high-speed processor local bus (PLB), an on-chip
peripheral bus (OPB), a PLB–OPB bridge, and a device
control register (DCR) bus.

Even with the benefit of a core library, today’s SoC
designers still have many options available, and making
the right choices can be difficult. Short schedules also rush
these early critical decisions that are so costly to change
later in the design process. Functions must be allocated
to hardware and software components, and the correct
hardware components and the best interconnection
scheme must be selected, while considering functional,
performance, and cost constraints. At the early stage of
design, there are usually many unknowns. The software

�Copyright 2002 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

0018-8646/02/$5.00 © 2002 IBM

IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002 J. A. DARRINGER ET AL.

691

may not be ready, the new custom logic may not be
completely defined, and even the market requirements
may still be in flux. Still, there are usually known
performance and cost targets, set to ensure a competitive
product. The designer must conduct an early analysis to
make sure that these targets can be met, while preserving
the flexibility to complete the design later in the schedule.

Some of the questions that must be answered at an
early stage are the following:

● What functions should be implemented in hardware or
software?

● Which embedded processor should be used? Or can the
chosen processor handle the software functions within
the real-time constraints of the system?

● What is the worst-case interrupt latency?
● What is the internal bus utilization?
● Can the chosen architecture/component be laid out with

the available chip size?
● What is the expected system power consumption? Is this

within the limits for the chosen packaging technology?

Most designers rely on a register-transfer-level (RTL)
system specification and design flow for implementation
and for analysis. But to use this, all registers or memory
elements must be identified along with the precise time
and conditions under which data is transferred among
them. The questions listed above have to be addressed
early in the design cycle, usually prior to the existence
of a complete and detailed description for the system.
Therefore, tools are needed to analyze a higher-level
representation of the design and answer questions about
performance, floorplanning, power consumption, area,
and timing.

Using pre-designed cores permits reuse of detailed
descriptions of the core logic that provide more precise
characterization of the core properties. Once the cores are
interconnected and any new logic specified in an RTL
description, the proposed design can be simulated to
evaluate alternatives. However, for large SoC designs,
the complete RTL description is also quite large, and
simulation runs take considerable time. To evaluate
performance, actual software is usually needed to specify
embedded processor models. Further, simulation addresses
only one aspect of early analysis. Performance is critical,
but the SoC designer must also determine the chip size in
order to establish cost and packaging strategy. Doing this
with some certainty requires a chip floorplan with cores
placed or assigned to specific regions. Major interconnects
have to be routed to avoid later congestion problems and
to ensure that the buses and other logic can operate at the
target clock frequency. In summary, using a complete RTL
description of an SoC for early design analysis is nearly as

difficult as implementing the chip itself, and requires
significant resources.

Power is increasingly important for electronic systems
because of limited battery capacity for portable systems,
environmental issues, and energy delivery cost for
stationary systems. Since early decision has a major impact
on the power consumption of the final product, it is
important to be able to obtain an early estimate of the
SoC power consumption. This presents opportunities for
power optimization at the SoC design level: core selection,
design of application-specific power-management units,
and even software design, including operating system
and applications. Power estimation is a vital element
of early analysis and has to be based on a system-level
representation above the RTL. A method is needed that
allows this early analysis to be based on partial and very
high-level information.

2. Early analysis
To address the challenges described above, we need an
extended design process with the ability to evaluate
options and make critical architectural decisions based
on a system-level representation in advance of an RTL
design. A key prerequisite is a library of abstract models,
one for each core or CoreConnect element, that captures
their respective performance, power, and physical
characteristics. Core placement from a floorplanner and
bus layout from a global router directly influence these
evaluations. In addition, performance data acquired during
system-level design space exploration can help determine
switching factors for power dissipation and signal integrity
analysis. Thus, system-level performance analysis
influences early physical design decisions which, in turn,
cause the downstream tools with derived constraints to
accelerate the chip implementation process and ensure
that the early design assertions and assumptions are met.
This process leads to a set of requirements for addressing
early design evaluation.

System-level representation
Early analysis begins with the designer specifying a
system-level description of the SoC design. This includes
the following steps:

● Identifying the SoC components. The components,
including buses and power-management circuitry, are
selected from a given technology library of cores. An
SoC also may contain a design-specific element that
must be modeled as part of the process. The core library
components include the necessary performance, power,
and physical information.

● Interconnecting the components. Describing the connections
between the chip interface and the constituent cores is a
complex task that requires extensive knowledge of the

J. A. DARRINGER ET AL. IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002

692

CoreConnect bus architecture and each core in order
to understand how each pin should be connected.
Support should be provided for automating this process
as much as possible.

● Describing clock domains. If appropriate, the designer
may wish to identify distinct clock domains, especially if
they have to be considered during floorplanning. For
example, large structured clock buffers (SCBs) can
compete for real estate with the cores. Information
required includes clock frequencies, their source, and
their interfaces with various components.

This information may be captured during a logical editing
session, during floorplanning, or through a set of simple
commands, any of which results in a representation that
can be directly used by the evaluation tools.

Performance analysis
Performance is usually the criterion that determines the
SoC architecture. Even when power dissipation or cost is
the dominant concern, performance analysis is needed to
establish switching factors or to trade off components.
To avoid the delay of developing a custom performance
model, a method of generating one automatically from the
system-level diagram is needed. There is a broad range of
performance questions about the utilization of resources
such as processors, memories, buses, and key cores, as
well as data rates and system throughput. At the same
time, there is a growing diversity of application areas such
as communication and storage networks, video products,
games, and controllers that have to be modeled. Accuracy
and correlation with the final SoC implementation are also
critical concerns. Detailed models may increase accuracy,
but could slow analysis turnaround times and prevent
extensive design space exploration. Whatever the approach
taken, it is essential that a performance analysis capability
be readily available to the SoC design teams for their use
at the critical early stages of design.

Floorplanning
A floorplan is essential for determining chip size, the
number of wiring layers, and congestion, all of which
contribute to the cost of the SoC. Also, the placement
and routing of global interconnections can determine
parameters that affect the performance analysis described
above. This process of floorplanning is aimed at
determining the following:

● Chip die size with pin assignments. A “generic chip
image” can be used that predefines only the minimum
amount of technology information needed for the
floorplanner to predict the minimum die size required
to contain the design. Optimal chip pin assignments
are also considered as part of the floorplanning process,

along with the placement of the related I/O circuitry,
all concurrent with the component placement and
form-factor determinations.

● Placement of the components. The bus-level connections
can be used as constraints by the floorplanner to help
guide the placement in a way that maximizes the
efficiency of the downstream tools. Clock redistribution
and power-management circuitry must also be taken into
account, as well as any electrical constraints associated
with the I/O circuitry.

● Core form factors. Some components may be “hard”
macros that have already been physically implemented
and have fixed dimensions as well as fixed pin positions.
Others may be “soft” macros, which are defined logically
but are to be implemented as part of the SoC design.
Still others are defined through assertions—for example,
the design-specific elements with designer-defined areas,
pin counts, etc. In the latter two cases, the form factors
can be manipulated in concert with the component
placement to achieve the optimal floorplan.

● Component pin assignments. Using the bus-level
connections as a guide, the macro pins should be
optimally positioned around the three-dimensional
outline of each of the “soft” and “asserted” macros
as a way of guiding the global router.

● Global routes. The layout for the buses and other critical
interconnections is done to provide more accurate
wiring information for the performance analysis
evaluation.

● Assignment of the terrains and voltage islands. Some new
technologies allow portions of the chip to have different
circuit densities or different operating voltages. The use
of multiple terrains gives the designer more freedom in
meeting performance, congestion, and power constraints.
These assignments are also used in estimating power
dissipation.

Power estimation
Power consumption is another key consideration in today’s
designs. It determines battery lifetime, package selection,
cooling requirements, and product cost. Therefore, a
power analysis capability is needed to identify power-
critical parts for power optimization. Such analysis must
take into account any built-in power-management schemes
and utilization of different operating voltages that may be
offered by the technology. It has to take advantage of
the information available from performance analysis and
floorplanning to provide increased accuracy. Also, detailed
information about cores, such as the number of latches
and internal power-management schemes, should be used
where appropriate. The number of power states and their
abstraction should be chosen carefully to provide efficient
power modeling and estimation. Absolute accuracy is not
as important as relative accuracy, since the estimation

IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002 J. A. DARRINGER ET AL.

693

must correlate with the final implementation in order to
ensure that early decisions based on power estimation
have a positive impact on the final product.

Predictable path to RTL flow
Time spent on system-level decisions may be wasted
if there is no effective means of ensuring that the
downstream RTL tools can accept and meet the specified
constraints. Therefore, we need to ensure that the
estimates used to close on the design specification are
effectively passed to the downstream tools to minimize
unexpected and expensive surprises. We list here an initial
set of such information that should be passed to the RTL
design:

● Die size and chip pin assignments.
● Component areas and placement.
● Global interconnect planning.
● Clock redistribution planning.
● Performance constraints.
● Power constraints.
● Switching factors (resulting from performance analysis).

Although described individually, the above set of
capabilities should be provided in a single cohesive
environment in order to maximize the efficiency of the
SoC design space exploration as the designer attempts to
identify and evaluate alternative approaches to the system-
level design. Ideally, there should be a consistent user
interface that the designer can use to both control the
operation and view or modify the results, and data should
be passed seamlessly among the constituent capabilities
as the evaluations are performed.

3. Available solutions
System-level tools can be broadly divided into three
distinct categories: design, verification, and performance
analysis tools.

New tools for system-level design, design-space
exploration, and verification have been the focus of
academic research for several years. Most of the
approaches have been directed at hardware–software
co-design and co-verification problems. Examples of such
work include Polis [5], COSMOS [6], COSYMA [7],
MOSES [8], Ptolemy [9], and SHE [10]. This research led
to the development of commercial tools, such as VCC
[11], CoWare [12], and Seamless** [13].

These design tools follow a vertical functional approach,
starting from a functional description of the complete
system, which is then decomposed into hardware and
software parts. Each part is gradually refined into an
implementation that usually involves an SoC containing
one or more embedded processors, memory and other
hardware units, and software that is compiled and

run on the embedded processor(s). The drawback of this
functional approach is the lack of strong links to a core-
based hardware implementation. In most cases, the
hardware and software partitioning is achieved with
functional or physical constraints, e.g., real-time
constraints on the completion of a task, or a limit on total
chip area, which may not lead to an efficient core-based
hardware implementation. Today’s SoC designs are
dominated by the reuse of IP, and it is vital to take
into account the available cores at a very early stage
in order to guarantee a feasible and efficient hardware
implementation.

The verification tools (primarily simulation-based) rely
on a language description (e.g., C, VHDL, SDL) at
various levels of abstraction, and on input stimuli
representative of the application software to be run in the
system. A few approaches have also attempted to apply
formal methods to the system verification problem [14].
The basic limitation of this approach is that unless the
models are written at a very high level, the simulation can
take a long time. This is still useful and necessary for
checking the functional correctness of the system, but
it is usually too slow for an early and fast analysis of
the system performance. To avoid long simulation times,
special performance analysis tools have been developed.
These are typically based on queueing models or Petri
nets [15–17]. Since they do not rely on detailed functional
simulation, they execute much more rapidly, although
some accuracy may be lost.

One of the main problems with these tools at present is
that they usually operate on different types of descriptions
and different levels of abstraction. For example, the
designer may be forced to write VHDL for the system
design part, while writing an equivalent C description for
the simulation part and an even higher-level transaction-
based description for the performance analysis. In addition
to the extra cost of developing all of these models, there
are significant methodology issues involved with
maintaining and verifying that all of these models are
equivalent and correct. The approach described in this
paper avoids many of these problems by relying on a
unique central description of the system, which is then
automatically mapped to different description levels for
use by different design, simulation, and analysis tools.

4. Overview of the early analysis environment
There is a rich set of tools available today to support
chip design at the register-transfer level. After years of
development and refinement, nearly all chip designers
have access to a well-understood and predictable
design process based on the register-transfer level of
representation. Significant development continues to
enhance the RTL tools to handle the challenges of
new technologies and larger designs, but for design

J. A. DARRINGER ET AL. IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002

694

productivity to keep pace with technology, a new
representation and set of tools are needed.

Figure 1 depicts such an early analysis environment,
which serves as a front end for RTL design. At the heart
of the concept is a new system-level representation that is
shared by the early analysis tools.

The system-level representation must be detailed
enough for accurate analysis, yet flexible enough to deal
with early and partial design decisions and constraints.
We use an architectural abstraction of the SoC called the
virtual design. A virtual design is composed of virtual
components, interfaces, and nets and resembles a back-of-
the-envelope block diagram. The Virtual Socket Interface
Alliance uses the term virtual component, but it refers to a
proposed standard for real cores from different suppliers
[18]. We use the same term to represent an abstraction of
a component or core from a library. For example, the
virtual PowerPC component represents all real PowerPC
microprocessor cores. But, while the real PowerPC
contains more than 200 pins, the virtual PowerPC has
only ten virtual interfaces. A virtual interface represents
a grouping of real interface pins that are functionally
related. This central virtual design representation is then
mapped to different models for different types of analysis,
as illustrated in Figure 1.

Surrounding the new representation are the following:

● An SoC editor that serves as the primary user interface.
It is used for capturing the system-level diagram,
indicating the hardware cores used and the primary
interconnections. This editor also accepts configuration
information for personalizing the cores and their
interconnections. As the “cockpit” for directing the
other early analysis tools, it allows the user to select
specific software workloads to be used with the
embedded processors and the specific performance and
power dissipation values to be displayed. It also presents
a view of the chip layout during floorplanning and
allows the user to control various placement and routing
actions.

● A library with information about each core needed
for performance and power estimation as well as
floorplanning.

● A library with information about the standard software
used.

● A mapping facility for connection to analysis tools and
RTL hand-off.

● A performance analysis tool.
● A floorplanner that returns placement and routing

information to the system-level design.
● A power estimator.
● A “hand-off” function that passes the SoC design with

constraints to the existing RTL process.

The tools for performance analysis, floorplanning, and
power estimation are described in later sections.

We have developed mapping algorithms which generate
specific models for different analysis tools. Figure 2 shows
how different models are created from a unique virtual
design. The mapping algorithms have access to the real
core library and its data. Hence, for a given virtual
component (Vi) the algorithms can determine the
corresponding real component (Ci) (indicated by the
designer) and pick up from the core library all relevant
information for that component, such as the component

Figure 1

Early analysis environment.

RTLRTL

editor

Floorplanner

SoC

editor

Power

estimation

Performance

analysis

Libraries

RTL

methodology
Masks

System
level

Hand-off

Map

Map

Map

Figure 2

SoC mapping. The section of the figure on SoC RTL design has

been adapted with permission from [19]; ©2001 IEEE.

GL2

GL1

C2

C1 C4

C3

C7
GL1

GL2

C6

SoC performance model

SoC floorplanSoC RTL design

Instrumentation

Scheduler

Top-level program

Core models

SoC system-level diagram

Map3

Map1

Map2

C6

C7

C2

C3

C4

C1

V1

V2

V3

V5V4

IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002 J. A. DARRINGER ET AL.

695

area, timing, and power consumption. Thus, accurate
information about the cores is extracted from the library
and written into the specific models so that the analysis
tools have access to accurate core information. The mapping
algorithms have been implemented in a tool called Coral
[19]. Additional “glue logic” (GLi) may be needed to
complete the function and is inserted automatically.

5. Performance modeling
Performance analysis has long been a vital tool in the
early stages of design, when there are many options to
explore and making changes is inexpensive. The methods
of performance analysis are well known and are used
extensively in the traditional server and processor areas.
However, performance analysis experts are rare and the
traditional approach requires intensive, time-consuming
communication with system designers, and intricate
descriptions of system workloads. Many performance
models are dedicated to specific questions and have little
potential for reuse. We want to make early performance
analysis more widely available to deal with the growing
demand for diverse SoC designs and the ever-shortening
time-to-market. To accomplish this we propose the new
approach of providing a library of reusable performance
models, one for each core.

The library is created as shown at the bottom of Figure 3
and represents application-independent information
about each core. The library also contains characterizations
of key software components. At the upper left of Figure 3,
a user with a particular application forms a virtual
design by selecting core models from the library and
interconnecting them using the Coral tool [19].

This virtual design representation is then configured,
which consists of selecting the performance model from
the library to be used for each virtual component and
setting certain parameter values for each performance
model. Examples of configuration parameters are the
widths of data transfers, cache-miss rates for a specific
software application and CPU, and rates for the data
generators to drive the performance models. Then the
mapping engine in Coral automatically generates a top-
level program, which contains instances of only those
virtual components that are critical in determining the
performance of the chip and their interconnection. The
top-level program is then compiled and executed to
generate the specified performance data.

The input stimuli can be an actual trace representing a
given workload, or merely a random workload generated
according to given parameters (e.g., packet size, input
rate). In either case, the workload is generated by a
special component model that either reads a file with the
actual trace or generates inputs randomly. This special
component is connected into the design in place of chip
input ports. Finally, the user can simulate the desired
traffic and obtain output in the form of performance
statistics described below.

In developing a library of performance models, a key
question is determining the correct level of abstraction.
It has to be detailed enough to expose key performance
issues, but high-level enough to permit rapid turnaround,
and it has to be usable even when the implementation
details of new components may not be known. We
considered many options and examined two distinctive
approaches in depth. The two approaches led to very
similar core models; their key distinction was in the
interconnection method.

One approach, labeled “concrete,” advocates
performance models that mimic the operation of the
actual hardware. The other approach, called “abstract,”
relaxes this constraint as long as the predicted
performance results are consistent with the eventual
performance. The close relationship of the concrete
approach to the actual hardware appeals to designers, and
makes it more obvious how to model any design changes.
However, the advantage of the abstract approach is speed
of simulation. We tried both approaches in the SoC
domain, and we describe them first in implementation-
independent terms; we then discuss how they are
represented in a particular programming language.

Figure 4 illustrates the style of modeling and the
difference between the two approaches we tried;
Figure 4(a) shows the concrete approach and Figure 4(b)
the abstract one. Both show a bus master making a request
to a bus (PLB). The concrete approach simulates the bus
protocol as closely as possible, and hence the bus master
makes the request by placing appropriate values on the

Figure 3

SoC performance modeling approach.

Software

models

Core

performance

models

App

A

App

B

Proc

Bus

Mem

MPEG

...

Model

assembler

SoC

performance

model

Drivers

Reports

Performance

model editor Libraries

System-level

representation

J. A. DARRINGER ET AL. IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002

696

four signals at the top of Figure 4(a). It then waits for an
“address ack” (acknowledgment) indicating readiness of
the slave serving the given address. That is followed by
the actual transfer of data along the read or write bus.
In contrast, the abstract model accomplishes the whole
communication with just one event described by the
token structure in Figure 4(b). The value of each field
in Figure 4(c) indicates approximate correspondence
to the signals in Figure 4(a). The token identifies the
destination slave core and the size of the data. In the
case of a write operation, it also identifies the points
at which data transfer will start and end. Having formed
the token, the bus master model informs the simulation
scheduler of the time at which it should schedule the
PLB model to receive the token.

Figure 4 also illustrates the issue of granularity of
atomic operations. For any performance model there is a
notion of an atomic operation, a potentially complex state
change that occurs in one simulation time step (e.g.,
raising a request line or sending data over a bus). A
large granularity is good for simulation performance, but
granularity is limited by the degree of understanding of
the system behavior, since the performance of each atomic
action has to be characterized in advance. The atomic
operations chosen in the concrete approach include raising
or lowering of multiple control signals or the transfer of
any amount of data. The abstract approach also treats
arbitrary data transfer as an atomic action, but in addition
transfers all control signals in a single atomic step,
providing a significant performance advantage.

Each core is represented by a collection of communicating
finite state machines (FSMs). Each FSM consists of states
and transitions between states. The states represent
waiting for some input, and the transitions consist of
several atomic actions representing computation and
communication. An important characteristic of the FSMs
in performance modeling is the additional requirement
of collecting performance statistics. There are two basic
categories of such statistics:

● System-specific statistics that relate to overall system
behavior:
• Latency: the length of time it takes the whole system

to process one item (e.g., for a network processor to
route a packet, for a microprocessor to execute an
instruction, or for a database to handle a transaction).

• Receive/transmit rates: these indicate whether the
system is balanced.

• System throughput (e.g., packets/s).
● Component-specific statistics that indicate component

performance:
• Utilization: the percentage of time a particular

resource (e.g., a bus) is busy.

• Queue size (i.e., how full each queue becomes during
a simulation run).

• Memory fill level.
• Number of arbitration cycles.

Special consideration must be paid to latency, because
it requires a convention for identifying transactions and
passing their identification in all communications. Both
the concrete and abstract approaches associate a
transaction ID with every state, computation, and
communication. The concrete approach has a central
facility for calculating all statistics, while in the abstract
one it is a function of each core model. This choice is not
related to the level of abstraction, but to the importance
of efficiency, which is more emphasized by the abstract
model. The process of configuration, described below, also
relies on this propagation of transaction identifiers.

We can now consider how the models are represented
in a programming language. The concrete approach used

Figure 4

Communication strategies: (a) Concrete communication via multiple

signals; (b) abstract communication via single token; (c) token

structure.

Bus

master

Bus

master
PLB

address bus

size

read/write

request id

read bus

address ack

write bus

read ack

write ack

PLB
Schedule (token)

Token field Value

Requester Bus master

Resource PLB

Destination address buffer

Packet ID request id

Start time addr ack time

Stop time r/w ack time

Size size

Read/write read/write

(a)

(b)

(c)

IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002 J. A. DARRINGER ET AL.

697

SystemC, which supports signaling, associating delay with
statements, and scheduling of parallel tasks. The abstract
approach was implemented in C�� with its own scheduler.
In the implementation of the abstract approach, each
core is a C�� class and each FSM is a method of
the class. In addition, the core model has ports through
which it can communicate with other ports. The basic
method of communication and scheduling is a “token”
(see Figure 4). Scheduling is performed explicitly; that is,
all cores connected to the specified port are scheduled for
execution at the time given by the token. In the concrete
approach, each core is represented by a SystemC class
and each FSM is a thread in the class. Communication
is via SystemC signals, and scheduling also relies on
the built-in scheduler. All states represent waiting
for some conditions, which are checked in a busy-
wait loop.

There is one important distinction between performance
analysis in our domain and the more traditional
performance analysis practiced in complex processor
projects. Traditionally, the performance modeler knows
the functionality of the whole system; models of individual
components describe how that component contributes to
that given functionality. In contrast, when building a
performance library there is no fixed functionality of the
whole system; each core model must be application-
independent but configurable for any particular use.

Software plays a very important role in performance
modeling and is handled at the same level of abstraction
as hardware. Its model represents the software demands
on the resources of the SoC, including buses, CPU cycles,
and memory hierarchy. Our library contains models of
standard software modules, such as TCP/IP routing, to be
loaded with selected processor models. Processor models
can load multiple software behaviors to simulate parallel
processing.

Configuring the real hardware involves issues ranging
from setting of priority schemes to loading of the
software. Configuring a performance model is different in
two ways. First, the functionality to be achieved is typically
not fully determined—in particular, the software is not
usually ready. Second, even if the complete functionality is
known, it is usually not needed in a performance model
to answer key questions. For example, in a network
processing application, the manipulation to be performed
on each packet may depend on the properties of the
packet headers. To accurately describe such a scheme
would require lengthy development and produce a
performance model that would run slowly and be difficult
to change. It is often sufficient for a model to characterize
just a few interesting cases. To make the configuration
easier, all of the performance models are parameterized.
These parameters may in general depend on information
associated with the transaction identifier being propagated.

In the network processing example above (in which
transactions are packets), the desired type of processing
is associated with each packet. The software model
then merely represents the amount of delay needed
for the indicated processing.

There is one more issue that often concerns users—
namely, how trustworthy the model is. This issue is
pertinent because mistakes in the model tend to result
in incorrect performance statistics, which are very hard
to detect. There are many sources of mistakes, and we
use the usual debugging tools for tracing the execution.
In addition, there are two considerations specific to
performance models. First, it is advantageous to keep the
size of atomic actions as large as possible, reducing the
opportunities for mistakes. Second, specification of how
transactions are to flow through the system constitutes
redundant information, which we found very useful
in detecting subtle errors such as incorrect bus
priorities or transactions that fail to progress through
the system.

6. Performance modeling examples
To illustrate and evaluate our proposed approach, we
developed an initial implementation and conducted several
experiments. The initial focus was on communication
network applications, a very important and competitive
market with a strong need to be able to rapidly evaluate
novel design ideas.

Communication networks
The nodes in today’s communication networks are
typically built with custom application-specific integrated
circuits (ASICs) to achieve the packet-forwarding
performance rates demanded by their attached links.
While these ASICs do provide fast processing and
economical use of silicon area, they normally require 12
to 18 months to develop and are rarely robust enough for
rapid adaptation to changes in protocols or standards.
A new type of device promises to solve this problem:
Instead of designing specific custom logic chips for each
switch, router, or communication device, equipment
manufacturers can implement the performance-critical
packet-forwarding functions in software that executes on a
special-purpose network processor. Thus, manufacturers
are able to add, expand, or modify packet-processing
functions by modifying the network processor software,
instead of making time-consuming and expensive hardware
changes.

Figure 5 shows a block diagram of a simple network
processor. Its purpose is to read Internet packets, reroute
them, and send them out again. A packet arrives through
one of the Ethernet media access controller (EMAC)
interface cores and proceeds to the multi-channel memory

J. A. DARRINGER ET AL. IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002

698

access layer (McMAL) core, which is a special-purpose
direct memory access (DMA) controller. The McMAL
stores the packets in preallocated memory buffers and
informs the processor. It communicates with the processor
via buffer descriptors—structures containing a buffer
address as well as various status fields. The processor
calculates a new destination address for each packet,
prepares the new packet in memory, and lets McMAL and
one of the EMACs send it out again. The SoC shown in
Figure 5 includes the following cores:

● OPB arbiter – The controller for the lower-performance
on-chip peripheral bus (OPB) used to connect to off-
chip devices. Connected to the OPB are
• Four EMACs, which receive and transmit packets to

and from the network via the media-independent
interface (MII) core. The four EMACs also share
a private OPB for transferring packets to the McMAL
core, which prepares the packets for the storage in
memory.

• Two HDLCs, or high-level data link controller cores, for
lower-speed network communication over the standard
HDLC protocol.

• I2C, the inter-IC bus used for communication with other
chips.

• UART, the universal asynchronous receiver/transmitter,

for transmitting and receiving data asynchronously via a
serial port.

• GPIO, a general-purpose input/output core for
multiplexing data on and off the chip.

• EBC, an external bus controller for another form of off-
chip communication.

• PLB–OPB bridge, a controller for exchanging data
between the two buses.

• HS-DMA, a high-speed direct memory access controller
for inter-bus memory transfers.

● PLB arbiter – The logic for controlling the processor
local bus (PLB), a high-performance bus for connecting
with the processor. Connected to the PLB are
• PPC440, an embedded PowerPC processor with an

instruction and data cache.
• McMAL, PLB–OPB bridge, and HS-DMA controller

listed above.
• SDRAM–DDR controller core, for accessing external

synchronous dynamic random-access memory at a double
data rate.

• SDRAM controller core, for accessing on-chip
synchronous dynamic random-access memory.

• PCI bridge, for interfacing with a peripheral component
interconnect bus.

Also on this SoC are an interrupt controller that works with
the processor and a clock and test management core.

Figure 5

Example of a communications processor SoC.

Interrupt

controller

Clock and test

management

PLB–OPB

bridge

HS–DMA

controller

McMAL

I2C

GPIO

16550

UART

EMAC

MII

OPB arbiter PLB arbiter

Scan

SDRAM–DDR

controller

PCI

bridge
External bus

SDRAM

Private

OPB

HDLC

32 channels

HDLC

�8

Network

High speed

EBC

Low speed

Low speed

Control

Control

Chip I/O

External bus

SDRAM

controller

On-chip

SDRAM

PPC440

CPU

32KB

I-cache

32KB

D-cache

IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002 J. A. DARRINGER ET AL.

699

Figure 6 shows the structure of a corresponding
performance model. It was obtained by selecting from the
library only those cores that are relevant to the timing-
critical path, and connecting them using CORAL. The
cores labeled “Packet generator” represent the outside
environment in place of chip input and output ports. Their
purpose is to provide packet input traffic as well as to
consume packet outputs. They may receive the traffic from
a file containing an actual trace, or they may generate it
from given statistical parameters. In addition, like other
cores, they collect performance statistics such as throughput.

Figure 7 is an example of typical statistics a designer
wishes to derive from a performance model of a network
processor. It shows two curves. The rising curve represents
PLB utilization, specifically the percentage of time the
PLB is in the process of reading data from memory.
The falling curve shows corresponding throughput. A
throughput of 100% means that all arriving packets are

processed at their arrival rate. Both curves are a function
of the total miss rate of the data cache and instruction
cache in the processor. The cache-miss rate has a
twofold impact on performance—a higher rate increases
competition for PLB and memory, as well as slowing down
the processing of each packet. Normally the cache-miss
rate is unknown because it depends on the software, which
has not yet been implemented. Therefore, designers are
interested in such curves, which show how the system will
behave for various cache-miss rates.

To illustrate the use of SoC performance analysis
in assessing design changes, a small but important
modification was made to the example SoC in Figure 5.
A 2KB cache was added to the McMAL core to save a
list of free-buffer descriptors. This change was intended
to improve performance by avoiding the memory and
PLB use needed to access a similar list maintained in
off-chip memory by the original design; how much of
an advantage does this modification provide?

Figure 8

SoC performance with and without accelerator.

64 120 236 576 1216 1500

Packet length (bytes)

0

500

1000

1500

2000

A
v
e
ra

g
e
 r

a
te

 (
M

b
p
s)

Transmit rate for reference architecture

Receive rate for reference architecture

Transmit rate for modified architecture

Receive rate for modified architecture

Figure 6

Extracted performance model using Coral. (M: master; S: slave.)

32KB

I-cache

32KB

D-cache

PPC440

CPU

McMAL PLB

arbiter

SDRAM–DDR

controller

128 b 128 b

400 MHz

SDRAM

Private

OPB

EMAC3

EMAC3
Packet

generator

Packet

generator

EMAC3
Packet

generator

EMAC3
Packet

generator

M

S

M M

S

S

S

S

64 MB

Figure 7

Example of communication controller SoC performance.

0 1 2 3 4 5 6 7 8 9 10 11 12

Cache miss ratio (%)

0

20

40

60

80

100

120

P
e
rc

e
n
t

o
f

m
a
x
im

u
m

Throughput

PLB utilization

J. A. DARRINGER ET AL. IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002

700

Figure 8 compares the receive and transmit rates before
and after the modification. To demonstrate the impact
of different packet sizes, we used trace data taken from
actual network traffic flows.1 The figure shows that for
small packets the reference system is near a balanced
state, with almost equal receive and transmit rates.
However, for larger packet sizes performance is limited
by the transmit rate. The reason for this is the location
of the buffer descriptors and the packet data in the
SDRAM, where the transmit rate is affected by the
differences in read and write latency. In the modified
design, however, the buffer descriptors can be examined
on the receive path directly by the McMAL, without
memory access. Since this operation is not affected
by the SDRAM latency, the receive rate increases.
Almost no effect can be seen for the transmit path,
because releasing buffer descriptors is a nonblocking
operation.

Storage networks
As communication networks continue to grow, so also do
the demands for storage networks. Traditionally, these
networks are built with special-purpose links such as Fibre
Channel [20] for performance. More recently storage
networks have been built based on the Internet protocol.
To deal with the demands of such storage networks,

designers use custom SoCs tailored to the longer packet
lengths and latency demands.

Figure 9 shows the block diagram of an example SoC
intended for interfacing a host computer with a storage
network using an iSCSI protocol defined by the Internet
Engineering Task Force [21]. This approach presents
the familiar Small Computer Systems Interface (ANSI
standard X3.131–1986) to the host applications and
the storage devices, but employs a TCP/IP network in
between. The adapter in Figure 9 handles the protocol
conversions. It uses many cores in common with the
previous example (Figure 5) and adds a custom “hardware
assist” core designed for increased performance. The
questions associated with such a design are “How many
storage devices can be active at once?” and “What happens
to CPU utilization and transmit and receive rates as the
number of active storage devices or connections grows?”

A performance model for this example design was
generated using the core models from the previously
described performance library; only a few blocks have to
be added for this design (e.g., the PCI-bridge core). The
hardware assist unit, in the simplest case, performed the
required error-detection operation on each packet of data
instead of burdening the processor. In addition to the
normal TCP/IP functions, the embedded processor may
handle setting up and tearing down connections. Typical
software was measured to determine representative path

1 NLANR (National Laboratory for Applied Network Research), traces from
Florida Universities (GigaPOP) and Ohio State University, June 2000.

Figure 9

Example of iSCSI controller SoC.

Interrupt

controller

Clock and test

management

PLB–OPB

bridge

HS–DMA

controller

McMAL

Hardware

assist

I2C

GPIO

16550

UART

EMACMII

OPB arbiter PLB arbiter

Scan

SDRAM–DDR

controller

PCI

bridge

Controller

memory

Host

processor

Host

memory

Private

OPB

HDLC

32 channels

HDLC

�8

Network

High speed

EBC

Low speed

Low speed

Control

Control

Chip I/O

External bus

SDRAM

controller

On-chip

SDRAM

PPC440

CPU

32KB

I-cache

32KB

D-cache

IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002 J. A. DARRINGER ET AL.

701

lengths, which were used with the processor model to
characterize the appropriate delays and cache traffic.

Read and Write scenarios were developed to drive the
model with lengthy sequences of steps. An example of a
Write scenario that was evaluated is as follows: The host
processor generates a stream of SCSI commands and data
and stores them in the host memory. It then notifies the
PPC440 processor, which initiates a transfer of the data
from host memory to pre-allocated buffers in off-chip
controller memory. The PPC440 then performs some
appropriate actions— by reading in the entire packet and
performing the error-detection operation in the absence of
hardware assist, or by reading in just the packet header
when the hardware assist is responsible for the error-
detection operation, it creates a new TCP/IP header and
initiates the transmission of the packet to the iSCSI target
via the McMAL and the EMAC.

Figure 10 shows the performance results for a Write
scenario in which eight 8KB packets are sent out for a
particular connection, and the next set of eight packets for
the same connection are sent only after a considerable
delay corresponding to the time taken for the target to
respond with an acknowledgment. The performance curves
were used to determine the number of connections that
could be sustained before the transmit channel saturates,
and to determine the number of CPU cycles that would be
available to run some other application, given the number
of connections.

Set-top boxes
We also applied our performance modeling approach to
the video products area, specifically in the evaluation of a

new set-top box controller SoC design. A set-top box is a
consumer device that is used to decode and display digital
video and audio signals from a digital cable or satellite
service provider. The proposed design used the
CoreConnect Architecture and many of the cores we had
already modeled. Some new core models were needed
to complete the analysis. The first models were used to
determine the total memory bandwidth needed to support
the required functions. For this task, complex cores such
as video decoders were modeled as memory reference
generators with statistics based on traces from previous
products. Modeling was found to be very helpful in
identifying potential bottlenecks and estimating processing
efficiency, prior to committing to detail design. It provided
a framework for exploring several different implementation
approaches and confirming critical parameters for memory
and bus performance.

7. Evaluation of performance-modeling
approaches
Our experience in developing models, both concrete and
abstract, for SoC designs in networking, storage, and set-
top boxes has taught us much about this new approach to
SoC performance modeling.

First, using virtual designs to generate SoC performance
models from a library of reusable core models has been
shown to provide several advantages over the traditional
approach of having a specialist write a custom model
for each design. The high-level interfaces used and the
parameterized models make it much easier for a designer
to pose a specific performance analysis question. As a
result, performance experts are not needed to answer
questions related to performance. The initial effort of
setting up the core library is shared over the many
design projects that can use it.

Comparison
Although we examined two distinct approaches for
modeling the cores, there were many similarities. Both
abstracted the functionality to extract the performance
impact alone. The information that has to be communicated
between cores is very similar, regardless of the degree of
granularity. Both approaches were able to use Coral to
generate composite SoC models.

The key difference between the two approaches is in
the mechanism for communicating data among cores and
scheduling their execution. The concrete approach uses
signals that are more hardware-like to connect cores and
may ease co-simulation with lower-level RTL models
for more thorough evaluations. It may also simplify the
creation of the models, since there is a clearer correlation
with the real cores. The abstract approach uses a simpler
single uniform “token” for communication, which could
also simplify model development in a different manner.

Figure 10

Example of iSCSI controller SoC performance. (Tx: transmit.)

2 6 10 20 30 50 100

Number of connections

0

20

40

60

80

100

U
ti

li
z
a
ti

o
n

CPU - hardware assist

CPU - no hardware assist

Tx - hardware assist

Tx - no hardware assist

J. A. DARRINGER ET AL. IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002

702

While our approaches to performance analysis are not
related to a particular programming language, the concrete
approach requires support for signal manipulations and
scheduling. For that purpose we chose SystemC [22]
Version 1 (Version 2 was not yet available). SystemC is
in a class of languages with CynApps and C-level that
target modeling of hardware and software systems;
SystemC appears to be an emerging standard. It has
the desirable feature of being able to simulate models
at a very high level of abstraction together with low-level
ones. We found the language suitable for our needs,
although it has considerable overhead and Version 1
lacks adequate support and event-driven simulation.

Reusability is one of the objectives of this performance-
modeling work; both approaches yield reusable models
with other models in the library, written at the same level
of abstraction. It is possible that with the concrete
approach, performance models at different levels of
abstraction could be used together, but so far we have
insufficient experience with such combinations.

When doing performance analysis, the designer is
interested in collecting several types of statistical
information. In order to collect latency information, both
approaches have all the models propagate transaction
identifiers to all of the cores with which they
communicate. The two approaches collect statistical
information quite differently. In the concrete approach,
utilization information is collected centrally, while in the
abstract approach, each model is responsible for collecting
its own relevant utilization and queue statistics. Collecting
statistics centrally places less of a burden on the model
writer, since they are collected automatically with every
state transition, but it is more expensive in terms of run
time. In the abstract approach, the model writer has to
decide when a core is busy or available and has to put in
the appropriate code to collect utilization information.

The speed of performance simulation is an important
factor, since run times for large designs with complex
workloads can take hours. In speed-comparison tests, the
abstract approach proved to be about 100 times faster
than the concrete one. This is due to explicit scheduling,
larger granularity of atomic action, and no overhead for
central collection of statistics. The particular programming
language used was not a significant factor in execution
speed.

Validation
As part of the evaluation of our performance modeling
approaches, we compared our models with the
performance of existing hardware. The hardware was a
network processor similar to the one in Figure 5. It was
running the GNU/Linux** operating system to reroute
Internet packets. Its throughput was measured during
continuous processing of packets of constant length.

Seven measurements were performed for packet lengths
ranging between 64 and 1518 bytes.

Our performance models were composed from the
individual core models plus their parameters, such as bus
widths, memory latencies, etc. Unfortunately, one key
parameter, the number of cycles spent by the processor
in routing one packet, was not available. We therefore
estimated this parameter by matching our models with one
of the seven data points and then comparing the results
on the remaining six.

The differences were less than 10% of the measured
throughput, with the exception of a 14% difference at one
point. The match was best for the very small packets in
which the processor is the bottleneck and for the very
large packets in which the line speed is the bottleneck.
The discrepancy was largest for the intermediate-size
packets. In addition, we observed differences between the
two models of less than 3%, with the exception of a 6%
difference for one point. More measurements and analysis
are needed to understand and potentially correct these
differences. Overall, we found the results of this initial
measurement and comparison to be quite encouraging
for such high-level models.

8. Floorplanning
For the task of floorplanning, we are using existing
floorplanning capabilities that are based on an earlier tool,
the Hierarchical Design Planner (HDP) [23]. In addition
to the support typically required for floorplanning high-
performance ASICS, SoC design as proposed here requires
some specific extensions because (due to the early nature
of the work) details may not be completely available
for the design being evaluated.

The first extension deals with the chip image planned
for the SoC implementation. Typical ASICs use a
predefined image, selected from the technology library,
that prescribes a size, a maximum layer set, placement
patterns, power distribution patterns, and I/O patterns.
For the early work described here, this may not be the
case. In fact, one of the objectives of this early analysis
may be to determine the actual size of the die required to
contain the design. Thus, the floorplanner must work with
a minimal set of image information and provide a method
of estimating the overall chip area and die size.

For early design, when an RTL description may not be
available, a facility is needed to “assert” properties of the
design. Both Coral and the HDP provide command-level
capabilities for asserting such properties. We intend to
converge these two efforts into a single offering, which
will have the Coral capabilities for defining the design
structure encompassing the components and their
interconnects and will also allow designers to assert areas,
min/max form factors, latch counts (for clock planning),
and current (for power distribution analysis), as well as

IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002 J. A. DARRINGER ET AL.

703

assigning terrains and operating voltages, for each of those
components. In addition, because Coral and HDP share a
common run-time environment (including an integrated
data model), the capabilities offered by Coral for
constructing the system-level description of the design
should be reusable during design planning in case
designers want to work more from the physical view.

By the time the floorplanner typically sees an ASIC
design, the original bus-level interconnects have been
broken out into their corresponding scalar equivalents.
This will not be the case for this early SoC evaluation.
The floorplanner must handle the simplified master
interface bus-level connections as well. This will affect
primarily the floorplanning, pin assignment, and global
wiring capabilities to consider the “width” of the
connections while completing their respective tasks, but
may also have an impact on other, lesser functions offered
by the floorplanner. The floorplanner may also have to
provide the option of dissolving the bus-level connections
into their constituent scalar representations while
maintaining the original bus-level correspondence, if the
designer needs to perform a more detailed analysis of the
individual connections (for example, for pin assignment or
wirability evaluations).

In addition to these capabilities, the floorplanner would
also need to offer the more traditional types of ASIC-
oriented functionality, including

● I/O planning – handles the chip pin assignment and I/O
circuitry placement capabilities.

● Area estimation – used to size the chip and components,
especially the “soft” and “asserted” cores, most likely in
a bottom-up manner.

● Floorplanning – used to arrive at an optimal placement
and form factors among the I/Os and components.

● Clock planning – aimed at creating the necessary clock
redistribution network at the chip level along with its
corresponding placement, from the actual or asserted
latch counts.

● Power planning – intended to ensure a viable power
distribution network for the design, including any
necessary insertion/placement of decoupling capacitors,
etc.

● Macro pin assignment – automatic capability for
positioning the soft/asserted macro pins around their
respective three-dimensional outlines after a viable
floorplan has been achieved, in preparation for global
wire planning.

● Global wire planning – used to generate estimates or
actual global routes for the chip–macro or macro–macro
connections, primarily to facilitate performance analysis.

● Manual editing – used to manually modify or view the
state of the floorplan at any point in time.

9. System-level power estimation
There have been many attempts to estimate the energy
used in a particular system design at all levels of
abstraction. At the lowest levels the estimates are quite
accurate, but these methods can be used only when a
design is complete and the application is well documented.
At the gate level of abstraction, each gate is pre-
characterized for power and the total power is then
calculated on the basis of switching activity of nodes
in the design, which is obtained by simulation or in a
probabilistic manner. Power estimation at the register-
transfer level is similar to that used at the gate level; the
primary difference is the complexity of pre-characterizing
each component for power. Several methods have been
tried, including characterization through extensive
simulation and the use of lookup tables or analytical
functions to summarize results [24]. However, these
approaches are not appropriate for core-level abstraction
because of the complexity of modeling and estimation.
Specifically, modeling and estimation of power
consumption with actual input and/or output patterns and
their characteristics are neither feasible nor necessary in
core-level abstraction. A state- or mode-dependent power
model may be appropriate for cores instead of a pattern-
dependent one [25].

Another difficulty associated with system-level power
estimation comes from the fact that an increasing number
of cores are designed with power in mind, and this is
expected to continue into the future. This is made possible
by techniques which include clock gating and exploiting
multiple clock frequencies, supply voltages, and threshold
voltages. Since many of these techniques are dynamic in
nature, power estimation requires knowledge of the run-
time behavior of the system, which is difficult to obtain
because of the many unknown factors, as described in
Section 3. As an example of clock gating, consider the
PLB–OPB bridge core that enables transfers of data
between the PLB and OPB under the direction of PLB
master devices. Power consumption within the core is
reduced by gating the clock to all latches internally. A
sleep request signal is asserted by the core to indicate
when it is permissible to shut off its clocks, and this signal
is dependent on a PLB request status that is provided by the
PLB arbiter core. The sleep request signal is passed to a
power-management unit, which actually decides whether
the bridge core can “go to sleep.” This is an example
of the signal flow that eventually leads to the change of power
state of one core.

To cope with the issues explained above, we now discuss
an example of a first-order system-level power-estimation
method when each core has a capability of clock gating.
First, each core is decomposed into a clock-distribution
portion, including clock splitters and latches, and a

J. A. DARRINGER ET AL. IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002

704

portion of combinational logic. The clock splitters are
100% active as long as the PLL is running continuously.
Combinational logic incurs much lower activity, usually
around 10%. Thus, the remaining unknown is the activity
of latches, which is dependent on the power-management
unit. Once the activity of the power-management unit is
provided, this can be combined with technology-dependent
parameters of each core to determine the average power
consumption of the cores. The total power consumption of
SoC should be estimated on the basis of the sum of the
power consumption of cores, global clock distribution
networks, storage components, pads, and so on.

10. Summary
For designer productivity to keep pace with advancing
silicon technology, the methodology and tools for chip
design must be raised to the system level. Early analysis
tools are particularly critical in enabling SoC designers
to take full advantage of the many architectural options
available. While commercial tool providers are showing
increased interest in SoC design, their tools depend on a
top-down approach that requires the SoC designer to fully
define the function of a product, repeatedly decompose
functions into smaller subfunctions, and then map those
subfunctions to available hardware cores—a last step
that can be very difficult. Instead, SoC designers need
an early analysis environment with a few key early
analysis tools—performance analysis, floorplanning,
and power estimation—all centered on a core-based
design process, in which the SoC designer defines
function by directly selecting and assembling cores.

We have described a new approach to generating SoC
performance-analysis models directly from a system-level
diagram and a library of reusable core models. Selecting
the appropriate level of abstraction is very important; we
have examined two distinct approaches to implementing
core models showing different characteristics. The
feasibility of the approach was demonstrated by applying
it in three different application areas: communications,
storage, and video products. As a result, we have been
able to rapidly develop SoC performance models that
provide important insights into bottlenecks, which were
the basis for devising and validating design modifications.

It is important that performance analysis and the other
early analysis tools be integrated with a predictable RTL
design methodology to ensure an efficient hand-off and
a strong correlation between predicted and final results.
More research is needed here to refine our system-level
representation and the accuracy of the early analysis tools.
The establishment of a system-level design representation
and accurate system-level analysis tools sets the stage for a
new family of system-level optimization tools. Such tools
can examine a proposed interconnect scheme, suggest
alternatives such as split buses of a cross-point solution,

and show the resulting change in performance, power,
or chip area. With further refinement, we believe this
capability could be used by SoC design teams to
dramatically improve their overall productivity and
quality of results.

Acknowledgment
We would like to thank the following individuals for their
help in understanding the challenges of SoC design and
for their continuing support: Sameh Asaad, Ganesh
Balakrishnan, Bart Blaner, Timothy Ebbers, Marc
Faucher, Colleen Fellenz, Jack Kouloheris, Richard
Matick, Kathy McGroddy, Jaime Moreno, Agnes Ngai,
Ann Rincon, Arnold Tran, Ronaldo Wagner, Joe
Williams, and Mark Wisner.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Mentor Graphics
Corporation or Linus Torvalds.

References
1. “CoreWare Design Program and Cores,” LSI Logic

Corporation, http://www.lsilogic.com/products/coreware/.
2. “Design Reuse Cuts Time to Market,” Royal Philips

Electronics, http://www.semiconductors.philips.com/
technology/designreuse/index.html.

3. IBM Blue Logic Technology, http://www-3.ibm.com/chips/
bluelogic/.

4. IBM CoreConnect Bus Architecture White Paper, http://
www-3.ibm.com/chips/products/coreconnect/index.html.

5. F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska,
L. Lavagno, C. Passerone, A. Sangiovanni-Vincentelli, E.
Sentovich, K. Suzuki, and B. Tabbara, Hardware–Software
Co-Design of Embedded Systems: The Polis Approach,
Kluwer Academic Publishers, New York, 1997.

6. T. B. Ismail, M. Abid, and A. A. Jerraya, “COSMOS:
A Codesign Approach for Communication Systems,”
Proceedings of the Third International Workshop on
Hardware/Software Codesign, Grenoble, 1994, pp. 17–24.

7. A. Österling, Th. Benner, R. Ernst, D. Herrmann, Th.
Scholz, and W. Ye, “The COSYMA System,” Hardware/
Software Co-Design: Principles and Practice, Kluwer
Academic Publishers, New York, 1997.

8. Jörn W. Janneck and Martin Naedele, “Modeling
Hierarchical and Recursive Structures Using Parametric
Petri Nets,” Proceedings of the Conference on High
Performance Computing (HPC’99), San Diego, 1999,
pp. 445– 452.

9. Edward A. Lee, “Overview of the Ptolemy Project,”
Technical Memorandum UCB/ERL M01/11, University of
California, Berkeley, March 6, 2001; http://ptolemy.eecs.
berkeley.edu/index.

10. M. C. W. Geilen and J. P. M. Voeten, “Object-Oriented
Modelling and Specification using SHE,” Proceedings of
the First International Symposium on Visual Formal
Methods (VFM’99, satellite to CONCUR’99), D. Bosnacki,
S. Mauw, and T. Willemse, Eds., Eindhoven University
of Technology, The Netherlands, 1999, pp. 16 –24.

11. Methodology Backgrounder, Virtual Component Co-Design
(VCC), White Paper, Cadence Design Systems, 1999.

12. D. Verkest, K. Van Rompaey, I. Bolsens, and H. De Man,
“CoWare: A Design Environment for Heterogeneous

IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002 J. A. DARRINGER ET AL.

705

Hardware/Software Systems,” Design Automation for
Embedded Systems 1, No. 4, 357–386 (October 1996).

13. Seamless HW/SW Co-Verification, Platform-Based SoC
Design & Verification, datasheet, Mentor Graphics;
http://www.mentor.com/platform_ex/platform_ex_ds.html.

14. G. Logothetis and K. Schneider, “A New Approach to the
Specification and Verification of Real-Time Systems,”
Proceedings of the Euromicro Conference on Real-Time
Systems, IEEE Computer Society, Delft, The Netherlands,
June 2001, pp. 171–180.

15. SES/Workbench Version 3.3, Introductory Training Course,
Scientific and Engineering Software, Inc. (now
HyPerformix, Inc.), 2001; http://www.hyperformix.com/.

16. The Artifex Language, ARTIS Software Corporation,
White Paper, 2001; http://www.artis-software.com/.

17. eArchitect Architectural Exploration, product overview;
http://www.innoveda.com.

18. Virtual Socket Interface Alliance, “VSI Alliance
Architecture Document,” Version 1.0, VSI Alliance, 1997;
http://www.vsi.com/the_rest.html.

19. Reinaldo A. Bergamaschi, Subhrajit Bhattacharya,
Ronaldo Wagner, Colleen Fellenz, William R. Lee, Foster
White, Michael Muhlada, and Jean-Marc Daveau,
“Automating the Design of SOCs Using Cores,” IEEE
Design & Test of Computers 18, No. 5, 32– 45 (September/
October 2001).

20. Fibre Channel—Overview of the Technology, Fibre Channel
Industry Association; http://www.fibrechannel.com/
technology/index.master.html.

21. iSCSI for Storage Networking, Storage Networking Industry
Association Storage Forum White Paper; http://
www.snia.org/.

22. Functional specification of SystemC 2.0; http://
www.systemc.org/.

23. J. Y. Sayah, R. Gupta, D. Sherlekar, P. S. Honsinger,
S. W. Bollinger, H.-H. Chen, S. DasGupta, E. P. Hsieh,
E. J. Hughes, A. D. Huber, Z. M. Kurzum, V. B. Rao, T.
Tabtieng, V. Valijan, D. Y. Yang, and J. Apte, “Design
Planning for High-Performance ASICs,” IBM J. Res. &
Dev. 40, No. 3, 431– 452 (1996).

24. F. N. Najm, “A Survey of Power Estimation Techniques
in VLSI Circuits,” IEEE Trans. VLSI 2, No. 4, 446 – 455
(1994).

25. T. D. Givargis, F. Vahid, and J. Henkel, “A Hybrid
Approach for Core-Based System-Level Power Modeling,”
Proceedings of the Asia South Pacific Design Automation
Conference, January 2000, pp. 141–145.

Received November 2, 2001; accepted for publication
March 30, 2002

John A. Darringer IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (jad@us.ibm.com). Dr. Darringer received his
Ph.D. degree from Carnegie Mellon University. He worked
for Philips in The Netherlands and subsequently joined the
IBM Research Division in Yorktown Heights, New York. He
worked in program verification and logic synthesis, and has
held several management positions, including Director of
Large Systems Research, Director of Technical Planning for
the Research Division, and Director of Electronic Design
Automation in the IBM Microelectronics Division. He is
currently managing a system-level design tools project in
the Research Division. Dr. Darringer is an IEEE Fellow
and Chairman of the Board of Directors for the Silicon
Integration Initiative, a consortium focused on reducing
the complexity of future DA systems.

Reinaldo A. Bergamaschi IBM Research Division, Thomas
J. Watson Research Center, P.O. Box 218, Yorktown Heights,
New York 10598 (berga@us.ibm.com). Dr. Bergamaschi
graduated in electronics engineering (with honors) from the
Aeronautics Institute of Technology, Sao Jose dos Campos,
Brazil, in 1982; in 1984 he received the M.E.E. degree
(with distinction) from the Philips International Institute,
Eindhoven, The Netherlands. In 1989 he received the
Ph.D. degree in electronics and computer science from the
University of Southampton, England, joining the IBM Thomas
J. Watson Research Center in Yorktown Heights, New York,
where he is currently involved with system-level design tools.
Dr. Bergamaschi’s main interests are in design methodology
and algorithms for high-level and system-level synthesis, and
embedded systems.

Subhrajit Bhattacharya IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (sbhat@us.ibm.com). Dr. Bhattacharya received
his B.S. degree in computer science and engineering from the
Indian Institute of Technology, Kharagpur, and his Ph.D.
degree from Duke University. He is currently a Research
Staff Member at the IBM Thomas J. Watson Research
Center, Yorktown Heights, New York. His research interests
include system-level design automation, synthesis, and design
for test.

Daniel Brand IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (danbrand@us.ibm.com). Dr. Brand received the
B.Sc., M.S., and Ph.D. degrees in computer science from the
University of Toronto, Ontario, Canada, in 1972, 1973, and
1976, respectively. He has held faculty/research positions at the
IBM Zurich Research Laboratory, the Beijing Institute of
Aeronautics and Astronautics, and the Kyushu Institute of
Technology. He is currently a Research Staff Member at the
IBM Thomas J. Watson Research Center, Yorktown Heights,
New York. His research areas include logic optimization,
performance analysis, and hardware and software reliability.
Dr. Brand is a Fellow of the IEEE.

Andreas Herkersdorf IBM Research Division, Zurich
Research Laboratory, Saumerstrasse 4, 8803 Ruschlikon,
Switzerland (anh@zurich.ibm.com). Dr. Herkersdorf received a
Dipl.-Ing. degree in electrical engineering from the Technical
University of Munich, Germany, in 1987, and a Ph.D., also in

J. A. DARRINGER ET AL. IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002

706

electrical engineering, from the Swiss Federal Institute of
Technology (ETH), Zurich, in 1991. Since 1988 he has been
with the IBM Zurich Research Laboratory, where he currently
manages the Network Processor Hardware group. His areas of
interest are high-speed communication networks and systems,
and VLSI design methodologies.

Joseph K. Morrell IBM Microelectronics Division,
East Fishkill facility, Hopewell Junction, New York 12533
(jkmorrell@us.ibm.com). Mr. Morrell, a Senior Technical
Staff Member in the Microelectronics Division, received a
B.E. degree from the Stevens Institute of Technology in 1971.
Within the Electronic Design Automation organization, he
has spent more than 25 years developing design automation
capabilities ranging from circuit design, layout, and checking
tools to chip floorplanning, synthesis, and detailed physical
design. Mr. Morrell is currently leading the development of
the unified synthesis and physical design system; he is the
chief architect for the Integrated Data Model, a fundamental
component of this work.

Indira I. Nair IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (indira@us.ibm.com). Ms. Nair received her B.Tech.
degree in chemical engineering from the Indian Institute of
Technology, Bombay, and her M.S.E. degree in computer
science from Princeton University. She joined IBM in 1984
and currently works in the System-Level Design group,
primarily on performance analysis for system-on-a-chip
designs.

Patricia Sagmeister IBM Research Division, Zurich
Research Laboratory, Saumerstrasse 4, 8803 Ruschlikon,
Switzerland (psa@zurich.ibm.com). Dr. Sagmeister received a
Dipl.-Inform. degree in computer science from the University
of Passau, Germany, in 1993 and a Ph.D. degree in computer
science from the University of Stuttgart, Germany, in 2000. In
1999 she joined IBM, where she is currently a member of the
Network Processor Hardware group. Her areas of interest are
system-level design, architectural performance evaluation, and
hardware/software co-design.

Youngsoo Shin IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (youngsoo@us.ibm.com). Dr. Shin received B.S., M.S.,
and Ph.D. degrees in electronics engineering from Seoul
National University, Korea, in 1994, 1996, and 2000,
respectively. He subsequently joined the Center for
Collaborative Research at the University of Tokyo, Japan,
working as a research associate. Dr. Shin joined the IBM
Research Division in 2001, working on system-level and
low-power design.

IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002 J. A. DARRINGER ET AL.

707

