
www.circuitcellar.com CIRCUIT CELLAR® Issue 146 September 2002 1

his article grew
out of an experi-

ment to see how hard
it would be to build an

8051 web server and write a minimal
TCP/IP stack. It seems like everything
is serving web pages these days, so
why not an 8051? It was not easy, but
it was a fun project. After a few
months of studying ARP and TCP, I
had something up and running.

In this article, I’ll explain how I built
an 8051 web server and describe what I
learned along the way. I’ll also discuss
timing and performance. If you want to
follow along, download the source
code from the Circuit Cellar ftp site.

COMPONENTS
I wanted an 8051 with

enough RAM to hold a
full-sized Ethernet frame
of 1.5 KB, and with ana-
log inputs so it could do
something useful. The
Cygnal parts were my
first choice. The
C8051F005 is fast, and it
has a 12-bit A/D convert-
er and 2.4 KB of RAM.
The C8051F005’s 32-KB
flash memory is large
enough for a reasonably

sized program plus a few web pages.
At first I thought its lack of a conven-
tional bus would be a problem, but it
turned out to be no problem at all.

The Cygnal 8051 makes up for being
just 8 bits with its speedy 25-MIPS peak
performance. The Ethernet controller’s
RAM adds additional buffering capabili-
ty for incoming frames, which is key
for allowing the CPU time to process
a frame while more are received.
Browsers running on fast machines can
easily fire out two or three Ethernet
frames within a millisecond!

For the Ethernet controller, I looked
at the Realtek RTL8019AS and the
Cirrus Logic CS8900A. The former is
inexpensive and NE2000-compatible,
but I’ve used many Cirrus parts over
the years, so I went with the CS8900A.

The CS8900A’s 4 KB of RAM is
enough to hold a number of incoming
frames. As with any Ethernet con-
troller, the datasheet for it is long and
there are many registers to set up. So,
I sat down and read through the data-
sheet to figure out how to talk to it.
By looking at a sample driver, which I
downloaded from the Cirrus web site,
I was able to create an interface in C,
compile it to assembly, and then
hand-optimize the assembly code.

So that’s it, almost everything in
two chips. I added an RS-232 port that
runs at 115.2 KB for debugging, even
though I found Cygnal’s full-speed
emulator to be more than adequate.

BENCHMARKING
The first thing I did when I got the

Cygnal evaluation board was run the
trusty sieve benchmark on it. [1] First,

Build Your Own 8051
Web Server

t
Building your own web
server can be a diffi-
cult task, especially if
you proceed without
proper direction and
the right parts for the
job. Fortunately, Jim
has finished an 8051
server and he’s eager
to walk you through
his project. With this
tutorial, you can avoid
common difficulties.

Jim Brady

FEATURE
ARTICLE

Photo 1—The Cygnal C8051F005TB sits atop my breadboard at the upper-
right. The top ribbon cable connects the 8051 CPU to the CS8900A
Ethernet controller while the lower ribbon cable carries analog signals.

Circuit Cellar, the Magazine for Computer Applications. Reprinted
by permission. For subscription information, call (860) 875-2199, or
www.circuitcellar.com. Entire contents copyright ©2001 Circuit
Cellar Inc. All rights reserved.

2 Issue 146 September 2002 CIRCUIT CELLAR® www.circuitcellar.com

of the CS8900A and the corresponding
impedance-matching components for
the 10BaseT interface. I kept wire
lengths to a minimum in the area
between the CS8900A and the RJ45
Ethernet connector.

A thermistor bridge circuit allows
the ratiometric measurement of both
power supply voltage and tempera-
ture. Using a ratio prevents 3.3-V
power supply fluctuations from affect-
ing the temperature measurement.
After linearizing the thermistor char-
acteristic, the firmware displays tem-
perature on the web page.

ETHERNET I/O
Listing 1 shows the assembly code

that reads Ethernet frames from the
CS8900A. Less you think this bit-
banging approach is inefficient, con-
sider that the Cygnal I/O speed is
40 ns while the maximum access time
of the CS8900A is 135 ns. The
CS8900A access time imposes the
limit, not the 8051. I suspect this
method of data transfer is at least as
fast as conventional 8-bit bus I/O.

Figure 1 shows the interface between
the CPU and Ethernet controller. 8051
port lines P1.0 to P1.2 select the CS8900
address. Only three lines are required
because most of the CS8900’s regis-
ters are indirectly addressed. Pulsing
port pins P1.3 and P1.4 generates read
and write strobes. 16-bit data is trans-
ferred in and out of ports 2 and 3.

My first design used the interrupt
output of the CS8900A to interrupt
the 8051 when an Ethernet frame
arrived. The problem with this is that
Cirrus Logic recommends reading
everything out of the chip in the
interrupt service routine. Because the
CS8900A has more RAM than the
8051, I went with polling and only
read the most recent frame. This way
the CS8900A can queue a number of
frames while the 8051 pulls them out

I soldered a 22.1184-MHz crystal onto
the board and wrote a function to
make the CPU use it instead of the
slower on-chip oscillator.

Most of its Cygnal 8051’s instruc-
tions execute in one or two clocks, as
compared to 12 or 24 clocks for stan-
dard 8051s. So, I expected good per-
formance, and indeed the C8051F005
runs the sieve benchmark about 19
times faster than a standard 8051. It
also ran faster than most 16-bit CPUs
I’ve tested, which is impressive because
much of the sieve is 16-bit operations.

To be fair, I should mention that the
Cygnal 8051 has the advantage of run-
ning entirely out of internal memory.
But the results are still representative
of what I could expect of the various
CPUs in this application. To run the
sieve on the C8051F005, I had to scale
it down to fit into RAM, and then
scale the result to allow comparison
to other CPUs. You can see the test
results in Table 1.

BUILDING THE BREADBOARD
Photo 1 shows my breadboard with

the Cygnal eval board mounted atop it.
The board is part of the Cygnal P/N
C8051F005DK package (about $99). It
also includes an RS-232-to-JTAG inter-

face to program the 8051’s flash memo-
ry, IDE, and a full-speed emulator. My
breadboard holds the CS8900A, associ-
ated Ethernet I/O, thermistor circuit,
and RS-232 interface. To hold the
100-lead TQFP CS8900A, I used an
RDI/Wainwright solder mount board.

I connected the evaluation board to
my breadboard with two ribbon
cables, one for analog and the other
for digital. In order to keep the ribbon
cables short to reduce cross talk, I cut
off the prototyping area of the eval
board. In addition, I added a 22.1184-
MHz crystal and cut the trace that
connected the crystal to the I/O con-
nector. I did this to make sure noise
could not get into the oscillator.

The Ethernet transformer and asso-
ciated circuit design in Figure 1 was
taken directly from the CS8900A
datasheet. The eval board operates
from 3.3 V, so I used the 3.3-V version

CPU Crystal (megahertz) Sieve—10 loops (seconds)

Cygnal C8051F005 22.1184 0.43
Intel 80C51 11.0952 8.2
Intel 80C196 (16 bit) 18.4320 1.3
Philips XA-S3 (16 bit) 22.1184 1.0

Table 1—The Cygnal 8051 is much faster than a standard 8051, and even faster than some 16-bit CPUs. The Keil
compiler was used for the 8051s, Tasking was used for others, and a large memory model for all.

Listing 1—This code reads an Ethernet frame from the CS8900A. The Cygnal 8051 is so fast that NOPs
must be inserted to meet the CS8900A worst-case access time.

This fragment reads the incoming frame from the CS8900A.
Call from C as read_frame(UINT xdata * buf, UINT len).
R6 and R7 point to buf, and the length is in R4 and R5.

RSEG ?PR?_READ_FRAME?CS8900
_READ_FRAME:
MOV DPL, R7 //Set up data pointer
MOV DPH, R6
LOOP:
MOV P1, #018H //Take CS8900A CS low, set address
CLR P1.3 //Take CS8900A RD strobe low
NOP //Allow for CS8900A access time
NOP //Each NOP is 45 ns at 22.1184 MHz
NOP
MOV A, P2 //Read low byte into port 2
MOVX @DPTR, A
INC DPTR
MOV A, P3 //Read high byte into port 3
MOVX @DPTR, A
INC DPTR //Advance data pointer
MOV P1, #038H //Take RD strobe, chip select high
DJNZ R5, LOOP //Decrement, loop again if needed
DJNZ R4, LOOP
RET

www.circuitcellar.com CIRCUIT CELLAR® Issue 146 September 2002 3

desirable to hold the entire segment
in RAM to compute its sum. But here
again, if the segment is small, this is
not a problem. You can also handle IP
processing in a small memory space,
as long as you do not try to reassem-
ble fragmented incoming messages.
And you do not need to, because the
other machine’s TCP layer will limit
the size of the message it sends. Only
UDP will send you large, possibly
fragmented messages, and I’m not try-
ing to support that here. To serve a
web page, the only other protocol you
need to worry about is ARP.

A web server must handle ARP
requests because you will receive
them when the other end wants to
find out your hardware address. You
also need to originate your own ARP
requests in order to find out the hard-
ware address of the device you are

and processes them one at a time. I
configured the CS8900A to capture
only the frames directed to my MAC
address, plus broadcast frames. If the
8051 had to deal with every Ethernet
frame on a busy network, it would be
in big trouble.

CAN IT BE DONE?
Can a CPU with only 2 KB of RAM

really handle large Ethernet messages
and the complexities of protocols such
as TCP and ARP? Surprisingly, it turns
out that even a few hundred bytes
would suffice. Small RAM footprints
work with TCP because you can tell
the other end to limit the message size.
TCP can, for example, advertise a maxi-
mum segment size of only 100 bytes.

TCP checksums are computed over
the entire TCP segment and placed
near the beginning of it. This makes it

sending to. Of course, you could sim-
ply reply back to the same hardware
address that sent you the frame, but
this would only work for a server (not
a client) on a local network. In addi-
tion, this would get complicated with
multiple simultaneous connections.

ARP is a simple protocol that can
cause big problems for a small server.
An ARP request must be sent, and a
reply received, while a regular mes-
sage is waiting to be transmitted. One
send buffer no longer suffices. You
need more space (i.e., enough RAM to
hang on to the message-in-waiting),
and you must buffer the outgoing and
incoming ARP messages. It’s a good
thing that ARP messages are only
64 bytes long. Figure 2 shows how
ARP fits into the flow of things, as
well as the flow of an Ethernet frame
through the various protocol layers.

Figure 1—The left side shows part of the Cygnal C8051F005TB target board. On the right is my CS8900A Ethernet interface, temperature-sensing bridge, and RS-232 port.

4 Issue 146 September 2002 CIRCUIT CELLAR® www.circuitcellar.com

The firmware is written so that the
functions in each protocol layer are
concerned only with that layer.

WHAT DO YOU NEED?
My web page includes a JPEG image,

which the browser loads after the
HTML portion. Most of the browsers I
tested establish a single connection to
load both parts of the page. Netscape
4.7, however, opens two separate con-
nections to the server, and the loading
of the HTML page and image overlap
to some extent.

Each connection comes from a dif-
ferent port on the browser’s machine.
To handle this situation, I put all con-
nection-specific information, such as
client IP address, client port number,
sequence number, ack number, and
TCP state into a structure that’s
indexed by the connection number.
Each element of this structure can be
thought of as a connection.

When a TCP segment arrives, I
check to see if it matches an existing
connection and use the state informa-
tion for that connection. That allows
the web server to handle simultane-
ous connections from the same PC or
from multiple PCs.

Beyond ARP, IP, and a TCP state

machine to handle simultaneous con-
nections, what do you need, and what
can you safely leave out? TCP has a
long list of goodies, such as algo-
rithms to estimate the best time-out,
avoid congestion, assemble out-of-
order segments, and so on. I made a
list of about 20 such items. The truth
is that I am serving web pages to vari-
ous browsers and multiple PCs simul-
taneously, but I’ve implemented only
a few of these capabilities. So, I am
content for now, and I have a 20-item
to-do list for a rainy day.

EMBEDDED WEB PAGES
My program uses 22 KB out of the

32-KB on-chip flash memory, leaving
enough room for my 7-KB web page.
Access to on-chip flash memory is
fast. For more storage, the obvious
choice would be an SPI serial EEP-
ROM. 64-KB devices are inexpensive,
and they can be clocked in the 2- to
5-MHz range, depending on the part.
Using the built-in SPI port on the
C8051F005, set to provide a 2-MHz
SPI clock, my 7-KB web page could be
transferred into the 8051 in about
30 ms. This would add about 50% to
the time needed to serve the page.

Web pages for embedded systems

need capabilities that simple static web
pages do not, such as dynamic data and
two-way capability. Dynamic data is
handled by inserting a tag in HTML.
A tag number is included to tell the
server what variable to insert. Two-way
communications is provided using a
form, which is a standard HTML con-
struct that allows the browser to send
selections back to the web server.

One purpose of a small web server
like this is to make a product easy to
use. A little eye candy is nice, and
web pages for embedded systems
would do well to have one or more
images to make them attractive.

Photo 2 shows my web page, as pre-
sented on an MSIE browser. This page
is bidirectional in that it both displays
data and has radio buttons to turn an
LED on the breadboard on and off.
The state of the buttons is sent to the
web server in a post message and can
be easily extracted. The 0.8-KB HTML
portion of the page and 6.2-KB JPEG
graphic combine for a total of 7 KB.
This page is used as the basis for com-
parisons later on in the article.

RUN-TIME PROFILING
Web pages are for human consump-

tion, and 100-ms response times appear

Verify TCP checksum,
parse TCP header

TCP
State

Machine

Parse IP
header

UDP or
ICMP

To appropriate
message handler

Verify IP checksum,
check for TCP and

header options

Fragile

IP

Parse
 Ethernet
header

Verify incoming frame
is per RFC 894

CS8900
Receiver

ARP

Reply

Parse
 HTTP
header

Request

Add entry to table,
allow waiting message

to be sent

Send ARP response to
provide Ethernet

address

Look in ARP table and
send ARP request if not

in table

Add IP header and its
checksum. Get

hardware address

Allocate memory and
copy web page

Get
page

Allocate memory and
copy image

Get
image

Turn on or off LEDPost

Add TCP header and its
checksum

Add Ethernet header to
outgoing frame

CS8900A
Transmitter

ARP request

ARP reply

Parse
 ARP

header

Ethernet network

Figure 2—As a message goes up the left side of the flow chart, two checksums are verified before reaching the TCP state machine. Web page requests generate an HTML
page or image, and then two checksums are added going down the right side. ARP message flow is shown in the central portion of the chart.

www.circuitcellar.com CIRCUIT CELLAR® Issue 146 September 2002 5

snappy. Using the Finisar (formerly
Shomiti; go to www.finisar.com for
more information) Surveyor Lite, I
measured the time required for my
8051 web server to serve the 7-KB
web page to a 500-MHz Pentium
machine running MSIE 5.5. [2] It took
60 ms. In contrast, it takes my 100-
MHz Pentium server running Apache
about 32 ms to serve the same page.
This demonstrates that the response
of the 8051 is respectable. For these
measurements, I had to clear the
browser’s page cache each time to
make sure my browser was actually
transferring the web page rather than
just displaying a cached version.

To figure out how much time my
web server spent doing various tasks, I
added debug code that set a port pin
when the CPU began the task and
cleared the pin when it completed the
task. Because many of the tasks I was
interested in run a number of times
while serving the web page, I had to
add up all the pulse on times. This was
hard to do with a oscilloscope, so I used
an 82C54 timer chip. The 80C51 port
pin output drives the 82C54 gate input.
When in the high state, the 82C54
counts transitions from a 1-MHz oscil-
lator. This provides accumulated pulse-
width times with 1-µs resolution. I set
up another 82C54 counter to count the
number of times an event ran. Run
times are summarized in Table 2.

The total of 47.4 ms falls short of
the 60 ms it takes to transfer the page.
When I added up the intervals between
the 8051 sending an Ethernet frame
and the browser’s 500-MHz Pentium
responding, I came up with 8.5 ms.
This accounts for most of the differ-
ence. It’s mind boggling, but true, that
the 8051 is waiting for a Pentium.

Searching for and
replacing tags is the
most time-consuming
task. My web page
uses tags as place-
holders for dynamic
values, such as tem-
perature. When it
serves the page, it
searches for these
tags and then replaces
them with the appro-
priate value.

It turns out that the strstr() func-
tion is the time hog. After some
investigation, I found this to be true
in general of strstr(). This makes
sense because it has to parse through
a lot of text, comparing each letter of
the text to the corresponding letter of
the search string. It may have many
partial matches before it finally finds
a complete match. One way to speed
up the process would be to tightly
limit the search range of strstr().
Another approach would be to keep
an index of offsets to the tags, but the
index would need to be changed each
time a page was added or modified.

The second most time-consuming
task is copying the web page from
flash memory to RAM, using mem-
cpy(). Why not just skip this step and
copy directly from flash memory to
the CS8900A? Again, the tags are the
problem; they need to be replaced
with actual values, and you can’t
replace them while in flash memory.
Perhaps a faster approach would be to
copy directly from flash memory to
the CS8900A, looking for tags as you
copy. But then you would have a
thorny problem with the TCP check-

sum. It’s computed over the entire
segment, but must be inserted at the
beginning of the segment.

It’s interesting to note that the
checksum is computed a whopping
38 times to transfer a single web page.
This transfer is made up of 19 Ethernet
frames, 11 from my 8051 server and
eight from the browser. It takes three
frames to establish the connection,
two frames to transfer the HTML page,
eight frames to transfer the image, and
six frames that are just acks. For both
incoming as well as outgoing frames,
two checksums are computed: one for
the IP header and the other for the
TCP segment, which makes 38 check-
sums. I was glad I used assembler for
the checksum code!

I can’t help but wonder how much
a 16-bit CPU would speed things up,
just by virtue of its being 16 bits.
The checksum would certainly run
faster because the sum is done over
16-bit chunks. Also, CS8900A I/O is
16 bits. Other tasks, such as mem-
cpy() and strstr(), may need custom
library code, because many 16-bit
compilers default to doing these oper-
ations 1 byte at a time.

MEMORY USAGE
Of the 2.4 KB of RAM on the 8051,

the lower 256 bytes are used for fre-
quently accessed variables. The
2048-byte area of additional on-chip
memory is addressed as XDATA
memory. Incoming and outgoing mes-
sage buffers are dynamically allocated
from this space. Dynamic allocation
is unusual for an 8-bit CPU, but it
makes sense here because sometimes
the incoming frame is large and the
outgoing frame is small (occasionally,
it can also be the other way around).
At other times, the outgoing frame
must be held in memory while an
ARP message is sent and received.
The firmware uses dynamic alloca-
tion using the library functions mal-
loc() and free(), provided with the
Keil C compiler. With this approach,
no more RAM is tied up handing
Ethernet frames than there needs to
be at any given moment.

When it was all said and done, I had
consumed 29 KB of the 32-KB flash
memory. This reminds me of some-

Table 3—Here you can see the footprints of various
parts of the code.

Description Code space

TCP/IP 9.5 KB
Web page including image 7.0 KB
HTTP server 3.8 KB
ARP 2.5 KB
C Library 2.9 KB
UDP 1.4 KB
CS8900A I/O 1.0 KB
RS-232 0.5 KB
Analog 0.3 KB
Priority task switcher 0.3 KB
Total 29.2 KB

Task Times run Accumulated time
(milliseconds)

Search and replace tags 6 23.8
Copy buffers 8 9.1
Write to CS8900A 11 4.6
Parse incoming HTTP headers 2 4.5
Compute checksums 38 4.4
Read from CS8900A 8 0.6
TCP state machine 8 0.4
Total time 47.4

Table 2—As you can see, searching for and replacing tags consumes the
most time. To serve a single web page, 19 frames are sent and received.

6 Issue 146 September 2002 CIRCUIT CELLAR® www.circuitcellar.com

esting to port the code to
a 16-bit DSP chip and
compare performance to
this fast 8051. Most DSPs
have enough RAM. It
would also be nice to
have a modular-size
TCP/IP stack and create
an API like the big boys
have. This will surely
require more than 32 KB,
but lo and behold, 64-KB
flash memory 8051s are
already here. I

REFERENCES
[1] J. Gilbreath and G. Gilbreath,

“Eratosthenes Revisited: Once
More Through the Sieve,”
BYTE, January 1983.

[2] E. A. Hall, Internet Core
Protocols, O’Reilly &
Associates, Inc., Sebastopol,
CA, February 2000.

SOURCES
CS8900A Ethernet controller
Cirrus Logic, Inc.
www.cirrus.com

C8051F005 Mixed signal MCU
Cygnal Integrated Products, Inc.
www.cygnal.com

C compiler
Keil Software, Inc.
www.keil.com

RDI/Wainwright solder mount
board
RDI/Wainwright
www.rdi-wainwright.com

RTL8019AS
Realtek Semiconductor Corp.
www.realtek.com.tw

thing I heard once about projects
expanding to fill available space. The
details are shown in Table 3. The
TCP/IP portion is small as stacks go,
but remember that I have implement-
ed only a subset of TCP/IP here.

FUTURE DIRECTIONS
All things considered, I’m glad that

I picked a part with 2.4 KB of RAM.
A CPU with a few hundred bytes
could do the job, but I wouldn’t go
through the trouble. It would be inter-

Jim Brady is an embedded systems
engineer living in southern Oregon.
He has 20 years of experience design-
ing with microcontrollers and device
networks. You may reach him at
jimbrady@aol.com

SOFTWARE
To download the source code, go to
ftp.circuitcellar.com/pub/Circuit_
Cellar/2002/146/.

Photo 2—Seeing is believing! The web page and image served by the
8051 can be seen in the browser window. The on/off buttons control the
state of an LED on the breadboard.

