
October–December 2000 1092-3063/00/$10.00 © 2000 IEEE 21

CASCH: A Tool
for Computer-Aided
Scheduling

of parallelization—potentially improving
their performance—and, because manu-
ally performing these tasks can be tedious,
they also help experienced programmers.

Even though a large body of literature
exists in the area of scheduling and map-
ping 1–3 (see the “Recent research” side-
bar), people have exploited only a part of it
for practical purposes. While some have
proposed software tools that support auto-
matic scheduling and mapping, those
tools’ main function is to provide a simu-
lation environment.4 They can help us
understand how scheduling and mapping
algorithms operate and behave, but they
are inadequate for practical purposes. On
the other end of the spectrum, there are
numerous parallelizing tools (see the “Par-
allel programming tools” sidebar), but they
are usually not well integrated with sophis-
ticated scheduling algorithms.

We have designed a software tool called
CASCH (Computer-Aided Scheduling) for
parallel processing on distributed-mem-
ory multiprocessors in a complete parallel
programming environment, including par-

allelization, partitioning, scheduling, map-
ping, communication, synchronization,
code generation, and performance evalu-
ation. A compiler automatically converts
sequential applications into parallel codes
to perform program parallelization. The
parallel code that executes on a target
machine is optimized by Casch through
proper scheduling and mapping.

Overview of CASCH

CASCH is unique because it provides
an integrated programming environment
for developing parallel programs. Its auto-
matic parallelization and code generation
helps naïve users, and it provides experi-
enced programmers with various facilities
to fine-tune and optimize a program. It
also includes an extensive library of state-
of-the-art scheduling algorithms described
in recent literature,4 organized into dif-
ferent categories that are suitable for dif-
ferent architectural environments. The
user can select one of these algorithms for
scheduling the task graph the application

The authors explain

the testing results they

achieved in developing

an experimental

software tool called

CASCH. This system

provides a unified

environment for

performing automatic

parallelization and

scheduling of

applications without

relying on simulations.

Automatic Parallelization

P
rogrammers of parallel computers regard automated parallel-

programming environments as highly desirable. Software tools

embedded in a parallel-programming environment can carry out

numerous tasks, such as interprocessor communication and proper

scheduling. They free the average programmer from the major hurdles

Ishfaq Ahmad
Hong Kong University of Science and Technology

Yu-Kwong Kwok
University of Hong Kong

Min-You Wu, and Wei Shu
University of Central Florida

22 IEEE Concurrency

Recent research

The most common models of a parallel program are the
precedence-constrained directed acyclic graph (DAG) and the
task interacting graph (TIG) with no temporal dependencies.
Figure A1 shows a parallel loop nest, and Figure A2 depicts
the DAG representing the loop.

The weight associated with a task represents the amount
of execution time of the corresponding task, and the weight
associated with an edge represents the amount of commu-
nication time. Numerous techniques have been proposed for
generating the task and edge weights offline such as execu-
tion profiling and analytical benchmarking.1 With such a sta-
tic model, we invoke a scheduler offline during compile-time.
We call this form of the multiprocessor-scheduling problem
static scheduling or DAG scheduling.

Figure B provides a taxonomy of static parallel scheduling
algorithms. The taxonomy is partial because it does not
include details of some of the earlier work on scheduling. We
considered only those scheduling algorithms that we can use
in a realistic environment and that are relevant in our con-
text. The taxonomy is hierarchical and develops by expanding
each layer. Thick arrows indicate the relevance to our discus-
sion and a further division of a particular layer; the thin arrows
do not lead to a further division in the taxonomy.

The highest level of the taxonomy is divided into two cat-
egories, depending on whether the tasks are independent.
We limit our discussion to dependent tasks. Earlier algorithms
make simplifying assumptions about the task graph repre-
senting the program and the model of the multiprocessor
system. Some algorithms ignore the precedence constraints
and consider the task graph to be free of temporal depen-
dencies (task interacting graph). The algorithms considering
the more realistic task precedence–constrained graph assume
the graph to be of a special structure such as tree, forks-join,
and so forth. In general, however, parallel programs come
in a variety of structures. We can divide the algorithms
designed to tackle arbitrary graph structures into two cate-
gories. Some algorithms assume the computational costs of
all the tasks to be the same; others assume the computational
costs of tasks to be arbitrary. It is worth mentioning that the
scheduling problem is NP-complete even in two simple cases:

scheduling unit-time tasks to an arbitrary number of proces-
sors and scheduling one or two time unit tasks to two proces-
sors.

We may perform scheduling with communication with or
without duplication of tasks.2 Each class can further subdi-
vide into two categories. Note that only the division of No-
Duplication class is shown. An exact division of Duplication
can also be envisaged but is not shown here due to its simi-
larity with the No-Duplication class.

Some scheduling algorithms assume the availability of an
unlimited number of processors 3–7 with a fully connected
network. These are called the UNC (unbounded number of
clusters) scheduling algorithms. The algorithms assuming a
limited number of processors are called the BNP (bounded
number of processors) scheduling algorithms. In the UNC and
BNP scheduling algorithms, we assume the processors are fully
connected, and we ignore link contention or routing strate-
gies used for communication. If scheduling and mapping are
done in separate steps, the schedules the UNC or BNP algo-
rithms generate can be mapped onto the processors using
the indirect mapping approach. The algorithms that assume
the system to have an arbitrary network topology are called
the APN (arbitrary processor network) scheduling algorithms.8

The basis of a major component of scheduling algo-
rithms (in all three classes) is the classical list–scheduling
approach.9,10 In list scheduling, the scheduler assigns the
tasks priorities and places the tasks in a ready list arranged
in a descending order of priority. The task with a higher pri-
ority is examined for scheduling before a task with a lower
priority. If more than one task has the same priority, ties are
broken using some method. A task selected for scheduling is
allocated to a processor that allows the earliest start time.
After a task is scheduled, more tasks may be added in the
ready list. Again, the tasks in the ready list are examined and
scheduled. This continues until all tasks are scheduled.

The scheduling algorithm library of CASCH includes five
UNC, six BNP, and four APN algorithms. The major character-
istics of these algorithms are briefly described in the main
text. See Ahmad, Kwok and Wu3 for a more detailed descrip-
tion and comparison.

(1) DataData
0,j

:= 0; for all j0; for all j

(2) forfor i = 1 to 3 do in paralleldo in parallel

(3) forfor j = 1 to 3-(i-1) do in paralleldo in parallel

(4) Task
ij
 (INPUT: Data

i-1, j
, Data

i-1, j+1
;

OUTPUT: Data
ij
)

Task11 Task12

Task21

Task31

Task22

Data11

(1) (2)

Data12

Data21
Data22

Data13

Task13

Figure A. (1) A parallel program fragment and (2) a directed acyclic graph representing the program fragment.

October–December 2000 23

generates. The weights on the tasks and
edges of the task graph are inserted using
a database. It contains the timing of var-
ious computation, communication, and
I/O operations for different machines,
obtained through benchmarking.

Figure 1 shows CASCH’s overall
organization; the main components are
its

• compiler, which includes a lexical
analyzer and a parser,

• task graph generator,
• weight estimator,
• scheduling and mapping module,
• communication inserter,
• code generator,
• interactive user interface, and
• program testing and performance

evaluation module.

Using CASCH, the user first writes a
sequential program, which generates a
task graph. To automate program devel-
opment, the sequential program is com-
posed of a set of procedures invoked by
the main program. Using the single
assignment rule, the programmer should
write each procedure as an indivisible
unit of computation to be scheduled by
CASCH. The programmer then deter-
mines the procedures’ grain sizes and can
modify them.

Figure 2 shows an example (an imple-
mentation of a Fast Fourier Transform
algorithm) in which columns across
processors partition the data matrix. In
the serial program, the constant N = PN
× SN determines the problem size.
Specifically, the constants PN and SN
control the granularity of the partition-
ing. The larger the value of SN, the
higher the granularity. In the current
implementation of CASCH, the user
defines these constants at compile-time.
The procedures InterMult and IntraMult
are invoked by the main program sev-
eral times. The user can ignore the con-
trol dependencies so he or she can
assume a procedure executes whenever
all input data of the procedure are avail-
able. The single assignment of parame-
ters in procedure calls defines data
dependencies. The user can invoke com-
munications only at the beginning and

References
1. K. Hwang, Z. Xu, and M. Arakawa, “Benchmark Evaluation of the IBM SP2 for Paral-

lel Signal Processing,” IEEE Trans. Parallel and Distributed Systems, Vol. 7, No. 5, May
1996, pp. 522–536.

2. I. Ahmad and Y.-K. Kwok, “On Exploiting Task Duplication in Parallel Program Sched-
uling,” IEEE Trans. Parallel and Distributed Systems, Vol. 9, No. 9, Sept. 1998, pp.
872–892.

3. I. Ahmad, Y.-K. Kwok, and M.-Y. Wu, “Analysis, Evaluation, and Comparison of Algo-
rithms for Scheduling Task Graphs on Parallel Processors,” Proc. 2nd Int’l Symposium
on Parallel Architecture, Algorithms, and Networks, June 1996, pp. 207–213

4. S.J. Kim and J.C. Browne, “A General Approach to Mapping of Parallel Computation
upon Multiprocessor Architectures,” Proc. Int’l Conf. Parallel Processing, Vol. II, Aug.
1988, pp. 1–8.

5. Y.-K. Kwok and I. Ahmad, “Static Scheduling Algorithms for Allocating Directed Task
Graphs to Multiprocessors ,” ACM Computing Surveys, Vol. 31, No. 4, Dec. 1999, pp.
406–471.

6. V. Sarkar, Partitioning and Scheduling Parallel Programs for Multiprocessors, MIT
Press, Cambridge, Mass., 1989.

7. T. Yang and A. Gerasoulis, “DSC: Scheduling Parallel Tasks on an Unbounded Num-
ber of Processors,” IEEE Trans. Parallel and Distributed Systems, Vol. 5, No. 9, Sept.
1994, pp. 951–967.

8. G.C. Sih and E.A. Lee, “A Compile-Time Scheduling Heuristic for Interconnection-Con-
strained Heterogeneous Processor Architectures,” IEEE Trans. Parallel and Distributed
Systems, Vol. 4, No. 2, Feb. 1993, pp. 75–78.

9. T.L. Adam, K.M. Chandy, and J. Dickson, “A Comparison of List Scheduling for Paral-
lel Processing Systems,” Comm. ACM, Vol. 17, No. 12, Dec. 1974, pp. 685–690.

10. H. El-Rewini and T.G. Lewis, “Scheduling Parallel Programs onto Arbitrary Target
Machines,” J. Parallel and Distributed Computing, Vol. 9, No. 2, June 1990, pp.
138–153.

Static parallel scheduling

Task interaction graph Task precedence graph

DuplicationNo duplication

Limited Number of ProcessorsUnlimited number of processors

Processors arbitrarily connectedProcessors fully connected

Arbitrary computational costs Unit computational costs

Arbitrary graph structure Restricted graph structure

Independent tasks Multiple interacting tasks

No communication With communication

BNP AlgorithmsUNC Algorithms APN Algorithms

Figure B. A partial taxonomy of the multiprocessor-scheduling problem.

24 IEEE Concurrency

the end of procedures. In other words, a
procedure receives messages before it
begins execution and sends messages
after it has finished execution.

In general, the user must implement
the application (for example, an FFT)
only in the form of a sequential program
consisting of a set of procedures. The
sequential program is basically an ordi-
nary C program except that the user must
insert a few annotations in the form of
#define compiler directives that instruct
CASCH to invoke data-array partition-
ing. For instance, in the FFT example, the
user just needs to define values of PN and
SN in the header of the sequential C pro-
gram. In this example, PN = 4 and SN = 2.

LEXICAL ANALYZER AND PARSER
The lexical analyzer and parser ana-

lyze the data dependencies and user
defined partitions. In our implementa-
tion of CASCH, we constructed both
components with the help of lex and yacc.
If CASCH discovers a syntax or seman-
tic error in this stage, it advises the user
to fix the problem before proceeding to
the task-graph-generation phase. For a
static program, the user knows the num-
ber of procedures before program exe-
cution. Many numerical types of appli-
cations belong to this static class of
programs.5 This type of program is sys-
tem independent because the program
does not specify communication primi-

tives. Data dependencies among the pro-
cedural parameters define a macro
dataflow graph (that is, the task graph).6

TASK GRAPH GENERATION
The main program generates a macro

dataflow graph—a directed acyclic graph
(DAG) with start and end points. A
macro dataflow graph consists of a set of
tasks {T1, T2,…, Tn} and a set of edges {e1,
e2,…, em} such that ek = Ti→Tj for 1 ≤ k ≤
m and some i, j, where 1 ≤ i, j ≤ n. Each
node in the graph corresponds to a pro-
cedure or a task, and the procedure exe-
cution time represents the task weight.
Each edge corresponds to a message
transferred from one procedure to

Sequential user program

Weight estimator

Scheduling/mapping module

Clusters of workstations

Mapping algorithms
MD by Wu & Gajski

LC by Kim & Browne
DSC by Yang & Gerasoulis

EZ by Sarkar

DCP by Kwok & Ahmad

MCP by Wu & Gajski

ETF by Hwang et al.
DLS by Sih & Lee

LAST by Baxter & Patel

MH by Lewis & Rewini

DLS by Sih & Lee
BU by Mehdiratta & Ghose

HLFET by Hu
ISH by Krautrachue & Lewis

BSA by Kwok & Ahmad

MD

LC
DSC

EZ
APN
BNP
UNC

DCP

MCP
ETF

DLS
LAST
MH
BU

HLFET
ISH

BSA

Mobility Directed

Linear Clustering
Dominant Sequence Clustering

Edge Zeroing
Arbitrary processor network
Bounded number of processors
Unbounded number of clusters

Dynamic Critical Path

Modified Critical Path
Earliest Time First

Dynamic Level Scheduling
Localized Allocation of Static Tasks
Mapping Heuristic
Bottom-Up

Highest Level First with Estimated Time
Insertion Scheduling

Bubble Scheduling and Allocation

Interactive user interface

Graphical editing tools

Architectures display

Task graphs display

Gantt charts

Communication traffic
UNC algorithms

BNP algorithms
APN algorithms

Lexer and Parser

Task graph generator

Scheduler

Mapper

Communication inserter

Code generator

Parallel program testing

Performance reports

Symbolic Tables

Performance
evaluation module

Application
statistics

Machine
statistics

Intel Paragon

Computation timings

Communication timings

Input/output timings

Figure 1. The various components and functionalities of Casch.

October–December 2000 25

Figure 2. A sequential program for a Fast Fourier Transform.

Program FFT

/* N: number of points for discrete Fourier transform, let N=PNxSN */

/* data[log(PN)+2][PN][SN] */

/* stores single-assigned data points for discrete Fourier */

/* transform organized as a PN x SN grid for parallel computation */

/*-------------------------- main program --------------------------*/

call Initiation; /* serial part; initialize the array `data' */

/* parallel inter-multiplication of data points */

for i = log(PN) downto 1 do

for j = 0 to PN-1 step 1<<i do

for k = 0 to 1<<(i-1)-1 do

call InterMult(data[i+1][j+k], data[i+1][j+k+1<<(i-1)],

data[i][j+k], SN);

call InterMult(data[i+1][j+k+1<<(i-1)], data[i+1][j+k],

data[i][j+k+1<<(i-1)], SN);

/* in each iteration, InterMult can be executed if */

/* arrays data[i+1][j+k] and data[i+1][j+k+1<<(i-1)]*/

/* are available upon completion, data[i][j+k] and */

/* data[i][j+k+1<<(i-1)] will be available */

endfor

endfor

endfor

/* parallel intra-multiplication of data points */

for i = 0 to PN-1 do

call IntraMult(data[1][i], data[0][i], SN);

/* in each iteration, IntraMult can be executed if array */

/* data[1][i] is available; upon completion, data[0][i], */

/* which is the result, will be available */

endfor

call OutputResult; /* serial part; inverse and return results */

EndProgram FFT

/*------------------------- Procedure InterMult ------------------------*/

Procedure InterMult(inArray1, inArray2, outArray, n)

/* Input: inArray1, inArray2 data points for multiplication */

/* n number of data points in sub-array */

/* Output: outArray array of output data */

for i = 0 to n-1 do

outArray[i] = inArray1[i] @ inArray2[i];/* '@' is element-wide */

/* complex FFT operation*/

endfor

EndProcedure InterMult

/*------------------------- Procedure IntraMult ------------------------*/

Procedure IntraMult(inArray, outArray, n)

/* Input: inArray data points for multiplication */

/* n number of data points in sub-array */

/* Output: outArray array of output data */

for i = log(n) downto 1 do
for j = 0 to n-1 step 1<<i do

for k = 0 to 1<<(i-1)-1 do

outArray[j+k] = inArray[j+k] @ inArray[j+k+1<<(i-1)];

outArray[j+k+1<<(i-1)] = inArray[j+k+1<<(i-1)] @ inArray[j+k];

/* where '@' is element-wide complex FFT operation */

endfor

endfor

for j = 0 to n-1 do

inArray[j] = outArray[j];

endfor

endfor

EndProcedure IntraMult

26 IEEE Concurrency

another procedure. The edge’s weight
equals the message’s transmission time.
When the scheduler assigns two tasks to
a single processor, the weight of the edge
connecting them becomes zero.

WEIGHT ESTIMATOR
The task graph generator inserts the

weights on the tasks and edges with the
help of an estimator, which provides the
cost (measured in time) of executing var-
ious instructions and the cost of commu-
nication on a given machine. We ob-
tained these timings through bench-
marking using an approach similar to ana-
lytical benchmarking and profiling.8,9

Communication estimation, obtained

experimentally, is based on the cost for
each communication primitive, such as
send, receive, and broadcast. Our approach
is similar to that used by Xu and Hwang.7
Table 1 shows the communication times
(assuming a stand-alone mode) for vari-
ous target machines.

The current version of the computa-
tion estimator is a symbolic estimator.
The estimation is based on reading
through the code without running it. Its
symbolic output is in the form of a func-
tion of the code’s input parameters. With
a symbolic estimator and a restricted class
of C codes, the code does not need rees-
timation for different problem sizes. The
code might include functions and proce-

dures, and the estimator generates per-
formance for each of them. The code
might also have for loops. A loop’s bound-
aries can be either constants or input
parameters. The cost of each operation
or built-in function is specified in the cost
files. Summing all costs of operations and
functions for a segment of code provides
the total cost of the computation.

TASK SCHEDULING AND MAPPING
A common approach to distribute the

workload among p processors is to par-
tition a problem into p tasks and perform
a one-to-one mapping between the tasks
and the processors. Partitioning can be
done with the block, cyclic, or block-cyclic
pattern.6 These partitioning schemes—
using simple scheduling heuristics such
as the “owner computes” rule—work for
certain problems but could fail for many
others. This is especially the case with
irregular problems, because it is difficult
to balance the load and minimize depen-
dencies simultaneously. We handle an
irregular problem by partitioning it into

Other Parallel Programming Tools

Several research efforts have demonstrated the usefulness
of program development tools for parallel processing on
message-passing multiprocessors. Essentially, these tools fall
into two classes. The first class, which is mainly comprised of
commercial tools, provides software development and
debugging environments. The Atexpert by Cray Research1 is
an example. Some of these tools also provide performance-
tuning tools and other program development facilities. The
second class performs some program transformation through
program restructuring. Parascope2 and TINY3 are restruc-
turing tools that automatically transform sequential pro-
grams to parallel programs. TOP/DOMDEC4 is a tool for pro-
gram partitioning. Some of the recently reported prototype
scheduling tools are described below.

PAWS is a performance evaluation tool that provides an
interactive environment for performance evaluation of var-
ious multiprocessor systems.5 PAWS does not perform sched-
uling and mapping and does not generate any code. It is use-
ful only for simulating the execution of an application on
various machines.

Hypertool takes a user-partitioned sequential program as
input and automatically allocates and schedules the parti-
tions to processors.6 Proper synchronization primitives also
are automatically inserted. Hypertool is a code generation
tool since the user program is compiled into a parallel pro-
gram for the iPSC/2 hypercube computer using parallel code
synthesis and optimization techniques. The tool also gener-
ates performance estimates including execution time, com-
munication and suspension times for each processor, as well
as network delay for each communication channel. Sched-
uling is done using the MD algorithm or the MCP algorithm.

PYRROS is a compile-time scheduling and code generation
tool.7 Its input is a task graph and the associated sequential
C code. The output is a static schedule and a parallel C code
for iPSC/2. PYRROS consists of a task graph language with an
interface to C. This scheduling system uses only the DSC algo-
rithm, an X Windows-based graphic displayer, and a code
generator. The task graph language allows the user to define
partitioned programs and data. The scheduling system’s job
is to cluster the task graph, perform load-balanced mapping,
and do computation/communication ordering. The graphic
displayer displays task graphs and scheduling results in the
form of Gantt charts. The code generator inserts synchro-
nization primitives and performs parallel code optimization
for the target parallel machine.

Parallax incorporates seven classical scheduling heuristics
designed in the 1970s.8 This provides an environment for par-
allel program developers to find out how the schedulers
affect program performance on various parallel architec-
tures. Users must provide the input program as a task graph
and estimate task execution times. Users must also express
the target machine as an interconnection topology graph.
Parallax then generates schedules in the form of Gantt charts,
speedup curves, processor, and communication efficiency
charts using an X Windows interface. In addition, an ani-
mated display of the simulated running program helps devel-
opers to evaluate the differences among the provided sched-
uling heuristics. Parallex, however, is not reported to
generate executable parallel code.

Oregami is designed for use in conjunction with parallel
programming languages that support a communication
model.9 These models can be OCCAM, C*, or traditional pro-

Table 1. Communication timing constants (microseconds) for various
target machines

MACHINE START-UP RATE PER BYTE 1/CLOCK RATE

Intel Paragon 150 0.40 0.02000
IBM SP-2 42 0.14 0.00625

October–December 2000 27

many tasks that CASCH schedules to
balance the load and minimize commu-
nication. In CASCH, a scheduling algo-
rithm schedules the task graph generated
based on this partitioning. Because one
scheduling algorithm might not be suit-
able for a certain problem on a given
architecture,3 CASCH includes various
algorithms that are suitable to various
environments. Having a wide variety of
algorithms in CASCH

• lets the user select a type of algorithm
that is suitable to a particular archi-
tectural configuration;

• allows simultaneous comparisons
among various algorithms, based on
performance objectives such as sched-
ule length, number of processors used,
algorithm’s running time, and so forth;

• lets the user compare the algorithms
using manually generated task graphs
and real data measured at execution
time of a number of applications; and

• lets the user optimize the code for a
given application program by run-

ning various scheduling algorithms
to choose the best schedule.

COMMUNICATION INSERTER
Communication primitives carry out

synchronization among the tasks run-
ning on multiple processors. The basic
communication primitives for exchang-
ing messages between processors are send
and receive. They must be used properly
to ensure a correct sequence of compu-
tation. CASCH can automatically insert
these primitives, reducing the program-
mer’s burden and eliminating insertion
errors. The procedure for inserting com-
munication primitive is as follows.

After scheduling and mapping,
CASCH allocates each task to a processor.
If an edge emerges from one task to
another task that belongs to a different
processor, CASCH inserts the send prim-
itive after the task. Similarly, if an edge
comes from another task in a different
processor, CASCH inserts the receive
primitive before the task.

The insertion method does not ensure
a correct communication sequence be-
cause a deadlock might occur. Thus, we
use a send-first strategy for a reordering
of communication primitives. That is, we
reorder receives according to the order of
sends. Next we describe the communica-
tion primitive insertion algorithm

Assume that after scheduling and map-
ping, each task Ti of the task graph is allo-
cated by the scheduler to processor
M(Ti), where M is a function mapping a
task number to a processor number. For
each edge ek from task Ti to Tj for which
M(Tj) ≠ M(Tj), insert a send primitive after
task Ti in processor M(Ti), denoted by
S(ek, Ti ,M(Tj)); insert a receive primitive
before task Tj in processor M(Tj),
denoted by R(ek, Tj, M(Ti)). Once a mes-
sage is assigned by the scheduler for
transfer to a processor, eliminate other
sends and receives that transfer the same
message to the same processor. Now, for
each processor, we have a sequence,
X(em1, Tm1, Pm1), X(em2, Tm2, Pm2),…,
where X could be either S or R.

gramming languages like C and Fortran extended with com-
munication facilities. It is a set of tools that includes a LaRCS
compiler to compile textual user task descriptions into spe-
cialized task graphs called TCG (Temporal Communication
Graphs). Plus, Oregami includes a mapper tool for mapping
tasks on a variety of target architectures and metric tools for
analyzing and displaying the performance. The suite of tools
is implemented in C for Sun workstations with an X Windows
interface. However, precedence constraints among tasks are
not considered in Oregami. Moreover, no target code is gen-
erated.

PARSA is a software tool developed for automatic sched-
uling and partitioning of sequential user programs.10

PARSA consists of four components: an application specifi-
cation tool, an architecture specification tool, a partition-
ing and scheduling tool, and a performance assessment
tool. PARSA does not generate any target code. The appli-
cation specification tool accepts a sequential program writ-
ten in the SISAL functional language. The tool converts this
code into a DAG, which is represented in textual form by
the IF1 (Intermediate Form 1) acyclic graphical language.
The architecture specification tool allows the user to inter-
actively specify the target system in graphical form. The
mapping and scheduling tool includes the HNF algorithm,
the LC algorithm, and the LCTD algorithm. The performance
assessment tool displays the expected runtime behavior of
the scheduled program.

Casch can be considered a super set of various tools since
it includes the major functionalities of these tools at a more
advanced and comprehensive level, while offering additional
useful features.

References

1. Cray Research Inc., UNICOS Performance Utilities Reference
Manual, edition 6.0, 1991.

2. K. Kennedy, K.S. McKinley, and C. Tseng, “Interactive Parallel
Programming Using the Parascope Editor,” IEEE Trans. Parallel
and Distributed Systems, Vol. 2, No. 3, Mar. 1991, pp. 329–341.

3. M. Wolfe, “The Tiny Loop Restructuring Research Tool,” Proc.
Int’l Conf. Parallel Processing, Vol. II, Aug. 1991, pp. 46–53.

4. C. Farhat and M. Lesoinne, “Automatic Partitioning of Unstruc-
tured Meshes for the Parallel Solution of Problems in Compu-
tational Mechanics,” Int’l J. Numerical Methods in Engineering,
Vol. 36, No. 5, 1993, pp. 745–764.

5. D. Pease et al., “PAWS (Parallel Assessment Window System):
A performance Assessment Tool for Parallel Computing Sys-
tems,” Computer, Vol. 24, No. 1, Jan. 1991, pp. 18–29.

6. M.-Y. Wu and D.D. Gajski, “Hypertool: A Programming Aid for
Message-Passing Systems,” IEEE Trans. Parallel and Distributed
Systems, Vol. 1, No. 3, July 1990, pp. 330–343.

7. T. Yang and A. Gerasoulis, “PYRROS: Static Task Scheduling and
Code Generation for Message-Passing Multiprocessors,” Proc.
6th ACM Int’l Conf. Supercomputing, ACM Press, New York,1992,
pp. 428–433.

8. T.G. Lewis and H. El-Rewini, “Parallax: A Tool for Parallel Pro-
gram Scheduling,” IEEE Parallel and Distributed Technology,
Vol.1, No. 3, May 1993, pp. 62–72.

9. V.M. Lo et al., “OREGAMI: Tools for Mapping Parallel Compu-
tations to Parallel Architectures,” Int’l J. Parallel Programming,
Vol. 20, No. 3, 1991, pp. 237–270.

10. B. Shirazi et al., “PARSA: A Parallel Program Scheduling and
Assessment Environment,” Proc. Int’l Conf. Parallel Processing,
Vol. II, Aug. 1993, pp. 68–72.

28 IEEE Concurrency

For each pair of processors, say P1 and
P2, extract all S(emi,Tmi,P2) from proces-
sor P1 to form a subsequence SP1, and
extract all R(emj,Tmj,P1) from processor
P2 to form a subsequence RP2. Then,
within each segment of the subsequence
SP with the same task number, exchange
the order of sends according to the order
of receives as defined by the subsequence
RP2. If the two resultant subsequences
still don’t match, reorder RP2 according
to the order of SP1.

CODE GENERATION
We use the example in Figure 2 to

illustrate our code-generation method.
Figure 3 shows the generated parallel
code for three processors (assuming N =
8). Note that we show only the main pro-
gram for each processor. The data struc-
ture in Figure 3 is the same as in Figure
2. In Figure 3, processor P0 stores the
initial data and it transmits data to other
processors such that each processor
obtains the portion of data required for

its computation. Consequently, the
memory space is compacted. To reduce
the number of message transfers and,
consequently, the time to initiate mes-
sages, CASCH will pack and send sev-
eral messages together. For example, it
can pack the first four messages into one
message and send them to processor P0.
CASCH also implements such opti-
mizations. Finally, processor P0 receives
the fourth data partition of the result,
processor P1 receives the third data par-
tition, and processor P2 receives the sec-
ond data partition.

GRAPHICAL USER INTERFACE
CASCH’s graphical capabilities offer an
easy-to-use window-based interactive
interface. It presents 12 buttons, each
mapping to a specific facility. We now
discuss the 12 facilities.

• Source: users can create, edit, or
browse through sequential programs.
They can also generate a task graph
from the user program.

• DAGs: displays a task graph (that is, a
DAG) generated from the user pro-
gram (Figures 4 and 7 show the DAGs
for the FFT and Gaussian elimination
programs respectively). Other options
include displaying a randomly gener-
ated DAG or interactively creating a
DAG. Zooming facilities (horizon-
tally, vertically, or both) are included
for proper viewing.

• TIGs: displays TIGs (task interacting
graphs with undirected edges), simi-
lar in functionality to DAGs.

• Processor network: users can display a
processor architecture (including the
processors and the network topology).
The editing facilities, similar to DAGs,
let the user interactively create various
network topologies (see Figure 5).

• Scheduling: includes a submenu from
which the user must first select one
of the three classes of the scheduling
algorithms—BNP (bounded number
of processors), UNC (unbounded
number of clusters), and APN (arbi-
trary processor network). Within
each class, the user needs to select one
of the scheduling algorithms. The

/* For P0 */

/* load array of data points from HOST */

receive(HOST, data[3][0]);

receive(HOST, data[3][1]);

receive(HOST, data[3][2]);

receive(HOST, data[3][3]);

InterMult(data[3][3],data[3][1],data[2][3],2);

send(P1, data[2][3]);

InterMult(data[3][1],data[3][3],data[2][1],2);

InterMult(data[3][2],data[3][0],data[2][2],2);

send(P1, data[2][2]);

InterMult(data[3][0],data[3][2],data[2][0],2);

InterMult(data[2][1],data[2][0],data[1][1],2);

send(P2, data[1][1]);

InterMult(data[2][0],data[2][1],data[1][0],2);

send(P2, data[1][0]);

InterMult(data[2][3],data[2][2],data[1][3],2);

IntraMult(data[1][3],data[0][3],2);

/* unload result array of data points to HOST */

send(HOST, data[0][3]);

/* For P1 */

receive(P0, data[2][2]);

receive(P0, data[2][3]);

InterMult(data[2][2],data[2][3],data[1][2],2);

IntraMult(data[1][2],data[0][2],2);

/* unload result array of data points to HOST */

send(HOST, data[0][2]);

/* For P2 */

receive(P0, data[1][1]);

IntraMult(data[1][1],data[0][1],2);

receive(P0, data[1][0]);

IntraMult(data[1][0],data[0][0],2);

/* unload result array of data points to HOST */

send(HOST, data[0][1]);

send(HOST, data[0][0]);

Figure 3. The parallel code for a Fast Fourier Transform.

October–December 2000 29

scheduling algorithm requires the
user to enter a number of parameters.

• Show schedule: displays the schedule
generated after invoking a schedul-
ing algorithm (see Figure 6). Click-
ing on any task in the Gantt chart
displays its start and finish times.
Also, the display shows the total
schedule length in the right corner,
and a schedule also includes com-
munication messages on the network
(displayed through another window,
which you invoke by clicking on any
two processors). An important fea-
ture of this facility is the trace option,
which shows a step-by-step schedul-
ing of each task. This is very useful
for understanding the operation of a
scheduling algorithm through obser-
vation of the order in which the algo-
rithm schedules tasks. The program
permits multiple charts to be opened
concurrently, allowing for a com-
parison of the schedules various algo-
rithms generated. In most cases, it is
necessary to try different algorithms.
Figure 7 shows a task graph gener-
ated by the program.

• Mapping: includes a number of map-
ping algorithms that can map TIGs
onto the processors. CASCH includes
algorithms based on A*, recursive
clustering, and simulated annealing.10

Some scheduling algorithms (such as
UNC algorithms) might first gener-
ate clusters that need to be mapped
onto the processors using one of these
mapping algorithms.

• Show mapping: shows an assignment
of tasks to the processors that a map-
ping algorithm generated. The dis-
play includes a TIG in which a
processor number is attached to each
task (indicating the processor num-
ber to which this task is allocated).

• Code generation: creates the parallel
code for a given program according
to a schedule or map generated by a
scheduling and mapping algorithm.

• Performance: includes processor uti-
lization, time spent in computation
and communication, and speedup.
The computation and communica-
tion timing results are obtained
by inserting the dclock() procedure

call before and after each intertask
communication.

• Data partitioning: includes tools for
displaying structured and unstruc-

tured meshes as well as partitioning
of data across different processors.

• Program testing and performance eval-
uation: After CASCH generates the

T1
1

T2
5

T3
5

T4
5

T5
5

T6
5

T7
5

T8
5

T9
5

T10
14 T11

14
T12
14

T13
14

T14
1

P0

Figure 4. The directed acyclic graph for the FFT program.

Figure 5. A processor graph.

P1

P5 P6

P3 P2

P4 P7

24 24 24 24

16 16 16
16 16 16 16 16

16
16

1616

16
16

16 16

30 IEEE Concurrency

parallel code, the user can compile the
resulting program to generate native
parallel machine code on the target
machine (for example, the IBM SP2)
for testing. Because CASCH auto-
matically inserts some statements for
collecting runtime statistics, the user
can use CASCH to parse these statis-
tics to generate runtime profiles to
visualize the behaviors of different

parts of the program. By repeating the
whole design process again, the user
can improve his or her program.

Results

CASCH runs on a Sun workstation
that is linked through a network to an
Intel Paragon and an IBM SP2. We
have parallelized several applications on

CASCH by using some of the scheduling
algorithms described earlier. Here we dis-
cuss some preliminary results obtained by
measuring the performance of three
applications: FFT, Laplace equation
solver, and N-Body problem. These
results demonstrate the viability and use-
fulness of CASCH as well as compare var-
ious scheduling algorithms. For refer-
ence, we include the results obtained with
code generated by random scheduling of
tasks. CASCH generates the target code
by first partitioning the data among
processors in a fashion that reduces the
dependencies among the partitions. Based
on this partitioning, an SPMD-based
code is generated by randomly allocating
the tasks to the processors. Hereafter,
randsch denotes the results of these ran-
domly scheduled programs.

The first set of results (see Table 2) is
for the FFT example shown earlier with
four different sizes of input data: 512,
1,024, 2,048, and 4,096 points. Table 2
shows the execution times for various
data sizes using different scheduling
algorithms. Each value is an average of
10 runs on the Intel Paragon and IBM
SP2. The Paragon consists of 140
i860/XP processors with a clock speed
of 50 MHz, while the SP2 consists of 48
160-MHz IBM P2SC processors.

We observe that the execution times
vary considerably with different algo-
rithms. Among the UNC algorithms,
the DCP (Dynamic Critical Path) algo-
rithm yields the best performance due to
its superior scheduling method; it also
yields the best performance overall.
Among the BNP algorithms, MCP
(Modified Critical Path) and DLS
(Dynamic Level Scheduling) are in gen-
eral better, primarily because of their
better task priority assignment methods.
Among the APN algorithms, BSA (Bub-
ble Scheduling and Allocation) and MH
(Mapping Heuristic) perform better, due
to their proper allocation of tasks and
messages. All algorithms perform better
than randsch: Compared to the random
scheduling, the level of performance
improvement is up to 400%.

Our second application is based on a
Gauss-Seidel algorithm to solve Laplace
equations. The four matrix sizes used are

T1
10

Figure 6. Display of the Gantt chart showing the schedules generated by the
MCP and ETF algorithms for the FFT program (schedule length = 83).

32

Figure 7. A Gaussian elimination task graph.

16

32

16 16

32
16

16

32

32

16

16

16 32

16

16

16

1616 1616

32 32

16

16

16

32 16

32

16

32

32

16

16

32

T20
10

T5
36

T4
36

32

16
T3
36

T2
36

T8
32

T9
32

T7
73

T10
32

T11
32

T15
28

T14
16

32

32

16

T13
28

T16
40

T18
23

T17
23

T19
20

October–December 2000 31

8, 16, 32, and 64. The application exe-
cution times using various algorithms
and data size are shown in Table 3.
Again, using the DCP algorithm, more
than 400% improvement over randsch
is obtained. The UNC algorithms in
general yield better schedules.

The third application is the N-Body
problem. The execution times results are
shown in Table 4. Again, the scheduling
algorithms demonstrate a similar trend
in application execution times on both
parallel machines as in the previous two

applications. The running times of the
scheduling algorithms for the three
applications are shown in Table 5. Here,
we can see that some scheduling algo-
rithms take much longer times than the
others due to their higher complexities.
(Details about the complexities of the
algorithms are discussed elsewhere.3)
For example, DCP, EZ (Edge Zeroing),
MD (Mobility Directed), BSA, and DLS
take two to five orders of magnitude
longer to finish the scheduling. Thus,
there is a trade-off between the perfor-

mance and the speed of a scheduling
algorithm. For example, the DCP algo-
rithm can generate better solutions than
the DSC algorithm, but it is slower.

It’s important to note that the perfor-
mance of the scheduling algorithms can
have substantial variations. For instance,
even though the average performance of
the DCP algorithm is better overall, it
does perform worse in some cases. Thus,
the user might have to try different
schedulers to obtain the best results for
the application at hand.

Table 2. Execution times of the FFT application for all the scheduling algorithms on the Intel Paragon and IBM SP2.

512 POINTS 1,024 POINTS 2,048 POINTS 4,096 POINTS

ALGORITHM PARAGON SP2 PARAGON SP2 PARAGON SP2 PARAGON SP2

randsch 2.65 2.06 7.14 5.50 22.11 17.05 62.58 48.50
UNC DCP 0.64 0.50 0.85 0.66 1.27 0.98 1.74 1.34

DSC 0.71 0.55 1.08 0.84 1.61 1.25 2.38 1.85
EZ 0.78 0.60 1.47 1.14 2.25 1.74 3.81 2.95
LC 0.81 0.62 1.46 1.12 2.34 1.80 3.82 2.92
MD 0.73 0.56 1.23 0.95 2.20 1.70 3.68 2.84

BNP ETF 0.76 0.59 1.23 0.94 2.09 1.60 3.44 2.62
HLFET 1.40 1.09 3.00 2.29 6.77 5.17 13.38 10.19
ISH 0.73 0.56 1.01 0.78 1.46 1.13 2.30 1.78
LAST 0.86 0.66 1.95 1.48 4.29 3.33 8.49 6.46
MCP 0.72 0.55 1.10 0.85 1.88 1.45 2.69 2.08
DLS 0.73 0.56 1.27 0.99 1.87 1.45 3.21 2.46

APN BSA 0.74 0.57 0.99 0.75 1.47 1.12 2.01 1.53
BU 0.86 0.66 1.71 1.30 3.36 2.60 6.19 4.80
DLS 0.79 0.61 1.21 0.94 1.94 1.49 3.26 2.53
MH 0.72 0.56 1.13 0.88 1.83 1.40 2.60 1.98

Table 3. Execution times of the Laplace equation solver application for all the scheduling algorithms on the Intel
Paragon and IBM SP2.

MATRIX DIMENSION

8 16 32 64
ALGORITHM PARAGON SP2 PARAGON SP2 PARAGON SP2 PARAGON SP2

randsch 2.89 2.24 24.12 18.80 72.32 56.08 259.00 199.65
UNC DCP 1.06 0.81 6.08 4.68 16.02 12.45 75.01 57.59

DSC 1.34 1.02 6.30 4.79 16.42 12.77 88.12 67.80
EZ 1.44 1.12 6.95 5.31 18.28 14.17 94.03 73.34
LC 1.25 0.97 6.95 5.38 18.81 14.57 100.52 76.89
MD 1.25 0.97 6.52 5.01 17.08 13.31 83.09 63.98

BNP ETF 1.25 0.97 6.73 5.14 17.75 13.56 80.31 61.64
HLFET 1.34 1.03 7.60 5.88 32.71 25.01 195.99 149.61
ISH 1.34 1.03 7.39 5.65 17.08 13.02 70.85 54.06
LAST 1.54 1.18 7.17 5.58 19.87 15.46 106.75 81.51
MCP 1.54 1.18 6.52 5.08 16.95 13.10 80.74 61.42
DLS 1.34 1.03 6.30 4.79 17.22 13.28 94.25 72.53

APN BSA 1.25 0.97 6.95 5.29 18.81 14.57 83.17 64.81
BU 3.26 2.51 7.60 5.82 20.13 15.36 113.95 88.22
DLS 1.92 1.47 8.69 6.78 23.25 17.99 108.75 83.36
MH 1.92 1.48 8.69 6.73 23.25 17.70 110.34 84.55

32 IEEE Concurrency

WE ARE CURRENTLY working on ex-
tending CASCH’s capabilities by

• supporting distributed computing
systems such as a collection of diverse
machines working as a distributed
heterogeneous supercomputer sys-
tem;

• extending the current database of
benchmark timings by including more
detailed and lower-level timings of
various computation, communication,
and I/O operations of various existing
machines;

• including debugging facilities for
error detection, global variable check-
ing, and so forth;

• designing and implementing parti-
tioners for automatic or interactive
program partitioning;

• designing an intelligent tool that will
select an appropriate scheduling algo-
rithm for a given application; and

• enhancing the task graph module so
that huge task graphs (for example,
for Laplace equation of a larger
matrix size) can be handled; in this
regard, we are considering the imple-
mentation of the parameterized task
graph technique proposed by Cos-
nard and Loi.11

ACKNOWLEDGMENTS
We thank the referees for their constructive
and insightful comments that have greatly
improved the presentation of this article. We

presented preliminary versions of portions of
this article at the 1997 International Confer-
ence on Parallel Processing and at the Third
European Conference on Parallel Processing.
The Hong Kong Research Grants Council
supported this research under contract num-
bers HKUST RI 93/94.EG06 , HKUST734/
97E, and HKU7124/99E.

References
1. E.G. Coffman, Computer and Job-Shop

Scheduling Theory, Wiley, New York,
1976.

2. Y.-K. Kwok and I. Ahmad, “Dynamic Crit-
ical-Path Scheduling: An Effective Tech-
nique for Allocating Task Graphs onto
Multiprocessors,” IEEE Trans. Parallel and
Distributed Systems, Vol. 7, No. 5, May
1996, pp. 506–521.

3. Y.-K. Kwok and I. Ahmad, “Benchmarking
and Comparison of the Task Graph Sched-
uling Algorithms,” J. Parallel and Distrib-
uted Computing, Vol. 59, No. 3, Dec. 1999,
pp. 381–422.

4. S.J. Kim and J.C. Browne, “A General
Approach to Mapping of Parallel Compu-
tation upon Multiprocessor Architec-
tures,” Proc. Int’l Conf. Parallel Processing,
Vol. II, Aug. 1988, pp. 1–8.

5. E. Lord, J.S. Kowalik, and S.P. Kumar,
“Solving Linear Algebraic Equations on an
MIMD Computer,” J. ACM, Vol. 30, No. 1,
Jan. 1983, pp. 103–117.

6. V. Sarkar, Partitioning and Scheduling Par-
allel Programs for Multiprocessors, MIT
Press, Cambridge, MA, 1989.

7. Z. Xu and K. Hwang, “Modeling Commu-

nication Overhead: MPI and MPL Perfor-
mance on the IBM SP2,” IEEE Parallel and
Distributed Technology, Vol. 4, No. 1,
Spring 1996, pp. 9–23

8. W.W. Chu, M.-T. Lan, and J. Hellerstein,
“Estimation of Intermodule Communica-
tion (IMC) and Its Applications in Distrib-
uted Processing Systems,” IEEE Trans.
Computers, Vol. C-33, No. 8, Aug. 1984,
pp. 691–699.

9. A. Ghafoor and J. Yang, “A Distributed
Heterogeneous Supercomputing Man-
agement System,”Computer, Vol. 26, No.
6, June 1993, pp. 78–86.

10. T.M. Nabhan and A.Y. Zomaya, “A Paral-
lel Simulated Annealing Algorithm with
Low Communication Overhead,” IEEE
Trans. Parallel and Distributed Systems,
Vol. 6, No. 12, Dec. 1995, pp. 1226–1233.

11. M. Cosnard and M. Loi, “Automatic Task
Graphs Generation Techniques,” Parallel
Processing Letters, Vol. 5, No. 4, Dec. 1995,
pp. 527–538.

Ishfaq Ahmad is an associate professor in the
Department of Computer Science at the
Hong Kong University of Science and Tech-
nology. His research interests are in the areas
of parallel programming tools, scheduling and
mapping algorithms for scalable architectures,
video compression, and interactive multime-
dia systems. He is director of the Multimedia
Technology Research Center at HKUST,
where he and his colleagues are working on a
number of research projects related to infor-
mation technology, in particular in the areas
of video coding and interactive multimedia.
He received a BSc in electrical engineering
from the University of Engineering and

Table 4. Execution times of the N-Body application for all the scheduling algorithms on the Intel Paragon and
IBM SP2.

512 POINTS 1,024 POINTS 2,048 POINTS 4,096 POINTS

ALGORITHM PARAGON SP2 PARAGON SP2 PARAGON SP2 PARAGON SP2

randsch 11.45 8.87 26.20 20.11 78.18 60.74 229.04 177.09
UNC DCP 3.13 2.43 4.29 3.32 6.01 4.68 9.86 7.60

DSC 3.22 2.49 5.40 4.12 7.62 5.93 12.38 9.52
EZ 3.80 2.90 7.26 5.55 10.44 8.08 17.34 13.19
LC 4.52 3.52 7.10 5.44 12.16 9.38 18.60 14.19
MD 3.90 3.02 5.90 4.54 10.65 8.30 20.65 16.02

BNP ETF 3.91 3.05 6.78 5.15 11.54 8.94 15.99 12.35
HLFET 7.23 5.58 15.37 11.75 39.92 30.46 68.04 52.12
ISH 3.48 2.69 5.34 4.06 6.89 5.37 12.48 9.60
LAST 4.88 3.77 11.50 8.94 26.11 20.36 50.22 38.47
MCP 3.50 2.66 5.24 4.08 9.57 7.42 14.01 10.71
DLS 3.79 2.89 6.64 5.11 9.84 7.53 16.44 12.51

APN BSA 3.18 2.47 4.59 3.57 7.72 5.89 10.00 7.71
BU 4.55 3.48 8.29 6.32 17.90 13.73 30.24 23.11
DLS 3.64 2.78 6.14 4.68 9.48 7.36 15.82 12.25
MH 3.75 2.87 5.23 4.08 9.08 6.90 11.79 9.18

October–December 2000 33

Technology, Lahore, Pakistan and an MS in
computer engineering and a PhD in computer
science, both from Syracuse University. He is
a member of the IEEE Computer Society.
Contact him at the Dept. of Computer Sci-
ence, The Hong Kong University of Science
and Technology, Clear Water Bay, Hong
Kong; iahmad@cs.ust.hk; www.cs.ust.hk/
faculty/iahmad.

Yu-Kwong Kwok is an assistant professor in
the Department of Electrical and Electronic
Engineering at the University of Hong Kong.
His research interests include software sup-
port for parallel and distributed computing,
mobile computing, heterogeneous cluster
computing, and distributed multimedia sys-
tems. He received a BSc in computer engi-
neering from the University of Hong Kong
and an MPhil and a PhD in computer science
from the Hong Kong University of Science
and Technology. He is a member of the IEEE
Computer Society and the ACM. Contact
him at the Dept. of Electrical and Electronic
Engineering, The University of Hong Kong,
Pokfulam Road, Hong Kong; ykwok@eee.
hku.hk; www.eee.hku.hk/~ykwok.

Min-You Wu is an associate professor in the
Department of Electrical and Computer
Engineering at the University of Central
Florida. His research interests include paral-
lel and distributed systems, compilers for par-
allel computers, programming tools, VLSI
design, and multimedia systems. He received
an MS from the Graduate School of Acade-
mia Sinica, Beijing, China and a PhD from
Santa Clara University, California. He is a
senior member of the IEEE and a member of
the ACM. Contact him at the Department of
Electrical and Computer Engineering, Uni-
versity of Central Florida, Orlando, FL
32816-2450, USA; wu@ece.engr.ucf.edu;
www-ece.engr.ucf.edu/~wu.

Wei Shu is an associate professor in the
Department of Electrical and Computer
Engineering at the University of Central
Florida. Her current interests include
dynamic scheduling, resource management,
runtime support systems for parallel and dis-
tributed processing, multimedia networking,
and operating system support for large-scale
distributed simulation. She received a BS
from Hefei Polytechnic University, China, an
MS from Santa Clara University, and a PhD
from the University of Illinois at Urbana-
Champaign. She is a member of the ACM and
the IEEE. Contact her at the Department of
Electrical and Computer Engineering, Uni-
versity of Central Florida, Orlando, FL
32816-2450, USA; shu@ece.engr.ucf.edu;
www-ece.engr.ucf.edu/~shu.

Table 5. Scheduling times (seconds) for the applications on a SPARC
Station 2 for all the scheduling algorithms.

(A) FFT APPLICATION.
NUMBER OF POINTS

ALGORITHM 512 1,024 2,048 4,096

UNC DCP 15.80 69.54 304.50 1,306.32
DSC 0.09 0.22 0.53 1.28
EZ 15.37 71.18 336.44 1540.80
LC 0.09 0.23 0.60 1.54
MD 69.78 543.16 4,147.10 32,764.68

BNP ETF 0.16 0.56 1.99 6.90
HLFET 0.15 0.44 1.27 3.78
ISH 0.13 0.45 1.57 5.47
LAST 0.30 1.21 4.83 19.17
MCP 0.14 0.43 1.35 4.24
DLS 0.29 1.03 3.64 12.79

APN BSA 5.38 29.61 159.71 855.99
BU 0.41 1.14 3.06 8.30
DLS 93.35 512.14 2,809.33 15,521.60
MH 4.58 20.62 93.28 417.03

(B) LAPLACE EQUATION SOLVER APPLICATION.
MATRIX DIMENSION

ALGORITHM 8 16 32 64

UNC DCP 7.03 9.60 44.95 198.15
DSC 0.04 0.10 0.29 0.69
EZ 7.15 9.71 35.00 164.50
LC 0.07 0.09 0.16 0.41
MD 7.65 10.01 111.99 864.95

BNP ETF 0.07 0.10 0.30 1.04
HLFET 0.09 0.11 0.29 0.86
ISH 0.08 0.09 0.35 1.19
LAST 0.10 0.15 0.82 3.24
MCP 0.04 0.10 0.19 0.59
DLS 0.07 0.10 0.36 1.29

APN BSA 2.81 4.92 27.99 148.62
BU 0.37 0.50 0.73 1.98
DLS 7.81 10.86 75.90 422.22
MH 2.41 3.25 16.29 74.75

(C) N-BODY APPLICATION.
NUMBER OF POINTS

ALGORITHM 512 1,024 2,048 4,096

UNC DCP 6.65 14.92 289.61 1,472.51
DSC 0.05 0.11 0.23 0.58
EZ 7.77 17.38 350.19 1,856.19
LC 0.06 0.08 0.32 0.79
MD 7.57 42.58 3,133.97 19,292.11

BNP ETF 0.08 0.22 2.28 8.03
HLFET 0.07 0.16 0.75 2.20
ISH 0.07 0.09 0.32 1.19
LAST 0.09 0.26 2.65 9.06
MCP 0.07 0.10 0.45 1.22
DLS 0.08 0.31 3.09 11.90

APN BSA 2.05 14.91 248.36 1,279.62
BU 0.40 0.47 1.11 3.06
DLS 17.79 312.87 8,105.45 36,430.02
MH 1.52 11.48 368.57 1,788.90

