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Adaptive Fast Path Architecture (AFPA) is a
software architecture that dramatically
improves the efficiency, and therefore the
capacity, of Web and other network servers.
The architecture includes a RAM-based cache
that serves static content and a reverse proxy
that can distribute requests for dynamic
content to multiple servers. These two
mechanisms are combined using a flexible
layer-7 (content-based) routing facility. The
architecture defines interfaces that allow
these generic mechanisms to be exploited to
accelerate a variety of application protocols,
including HTTP. Efficiency is derived from
maximizing the number of requests that are
handled entirely within the kernel, using
a deferred-interrupt context instead of
threads wherever possible. AFPA has been
implemented on several server platforms
including Microsoft Windows NT® and
Windows® 2000, OS/390®, AIX®, and most
recently Linux. By conservative estimates,
AFPA more than doubles capacity for serving
static content compared to conventional
server architectures, and has allowed IBM to
establish a leadership position in Web server
performance. A prototype implementation
of AFPA on Linux delivers more than 10000
SPECweb96 operations per second on a single
processor.

1. Introduction
The essential concept behind Adaptive Fast Path
Architecture (AFPA) is to increase network server

capacity using two techniques: caching static content in
RAM, and serving that content as efficiently as possible
from the kernel. AFPA takes each of these two
established techniques to new heights. AFPA’s central
component, an in-kernel RAM-based cache, is intended to
store not only the most frequently requested items, but
the entire working set of static content. Serving content
from RAM is not just a technique AFPA uses; it is what
AFPA does. In-kernel implementation eliminates the
overhead of switching from the kernel to a user-level
context. AFPA further reduces overhead by performing
processing in a deferred-interrupt context wherever
possible, thus eliminating even the cost of switching to
a thread. Building on the idea of in-kernel processing,
AFPA features particularly tight integration with kernel
components such as the file system and TCP/IP stack.

AFPA includes two components in addition to the
RAM-based cache. A split-connection reverse proxy
processes requests for dynamic content that cannot be
served from the cache. A layer-7 router determines which
requests can be served from the cache and which must
be handled by the proxy on the basis of a configuration
regarding URL paths and content types. An AFPA-based
Web accelerator implements a simple Web server in the
kernel. This in-kernel Web server delivers static HTTP
responses from the cache, thus providing a fast path that
short-circuits normal request processing at the user level.
In the uncommon case of a request that cannot be served
by the simple in-kernel Web server, AFPA passes the
request to a conventional Web server via the proxy.

This paper discusses AFPA primarily in the context of
Web servers. The architecture is, in fact, general-purpose
and applicable to essentially any network server that uses
a request–response protocol. Other protocols amenable to
acceleration by AFPA include FTP, NFS, and DNS. The
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architecture includes a framework that provides generic
caching, proxy, and application-layer routing mechanisms.
Accelerators for specific types of network servers are
realized by augmenting the generic framework with
protocol-specific support.

AFPA is a reverse-proxy cache. An AFPA instance is,
therefore, associated with one or more Web servers. This
is in contrast to a forward-proxy cache, which is associated
with a set of Web clients. A reverse-proxy cache serves the
relatively small working set of content associated with its
designated servers. A forward-proxy cache, on the other
hand, serves a much larger set of content consisting of
all items requested by its clients. Forward-proxy caches
necessarily store their large working sets on one or more
disks. It is generally feasible for a reverse proxy to store
its smaller working set in RAM, even though not all do.
The effectiveness of AFPA relies on its ability to cache
the entire working set it serves in RAM. Unlike many
reverse-proxy caches, current AFPA implementations do
not cache HTTP responses received from conventional
Web servers. Instead, AFPA caches content retrieved via
a file-system interface. AFPA is, in fact, not “just” a Web
cache, but rather a caching Web server with reverse-proxy
and layer-7 routing capabilities.

The primary design goal for AFPA is performance. The
architecture and implementation display the effects of an
emphasis on efficiency that has been sustained through
several cycles of design, development, and performance
evaluation. The results of our emphasis on efficiency are
summarized in the following six techniques presented in
roughly decreasing order of importance: 1) Serving
content from RAM eliminates disk latency and bandwidth
constraints. 2) In-kernel implementation avoids transitions
between kernel and user mode. 3) Tight integration with
the TCP stack enables efficient event notification and data
transfer. In particular, a zero-copy send interface reduces
data transfer by allowing responses to be sent directly
from the RAM-based cache. 4) Performing processing in a
deferred-interrupt context removes overhead associated
with threads. 5) Pre-allocation and recycling of data
structures and other resources reduce the lengths of
critical code paths. 6) Finally, exploitation of aggregate
APIs that perform multiple operations, such as send and
disconnect, reduces overhead associated with invoking
operating system services.

A comprehensive description of AFPA performance
would require evaluation of each of its three main
components. Such a complete description is beyond the
scope of this paper. The purpose of this paper is to define
AFPA and describe its performance in its primary role,
which is to serve static content from RAM. Our analysis
includes a cursory evaluation of the capacity of AFPA as a
proxy. All other aspects of AFPA performance, including
loading of content from disk, are excluded from this review.

The initial AFPA prototype was developed by the IBM
Research Division on Windows NT** 4.0. The latest
version for Windows runs on both Windows NT 4.0 and
Windows** 2000 and exploits features specific to Windows
2000 when available. In this document, we use the term
“Windows” to refer to both Windows NT 4.0 and
Windows 2000. Specific versions of Windows are indicated
when relevant. The Windows version of the AFPA cache
has been incorporated into two IBM products: IBM HTTP
server (based on the Apache Web server [1]) and Netfinity*
Web Server Accelerator (NWSA). NWSA 2.0, released in
March of 2000, is the most recent product deployment of
AFPA. It includes the proxy and layer-7 routing features
in addition to the cache. A second AFPA prototype has
been developed by our research team on Linux but has
not yet been released. The AFPA cache has also been
implemented on AIX* and OS/390* by the respective
product divisions under the name Fast Response Cache
Accelerator (FRCA). The close integration of AFPA with
the host operating system has not prevented it from being
successfully implemented on several platforms.

The remainder of this paper proceeds as follows. We
describe each of the three main components of AFPA—
cache, proxy, and layer-7 router—in greater detail. We
then discuss the framework by which AFPA provides
general-purpose mechanisms in which accelerators for
any of a number of network servers can be realized. The
following section highlights the flexibility of AFPA by
presenting four common deployment scenarios. Next we
compare and contrast AFPA with relevant related work.
Finally, we present performance results and draw some
conclusions.

2. In-kernel RAM-based cache
Two of the performance techniques mentioned earlier,
integration with the TCP stack and use of deferred
interrupts, merit further discussion in the context of
serving cached content. AFPA essentially extends the
TCP stack. Implementation details vary across operating
systems, but the key architectural characteristic is that
the TCP stack invokes AFPA directly using a callback
interface. When a client request is received, for example,
the TCP driver calls AFPA to parse the request. If the
request is parsed successfully, AFPA attempts to locate
the corresponding cache object. In the typical case for
which a matching object is found, AFPA begins sending
the response immediately.

Because the TCP stack invokes AFPA directly, all of
the above steps—parsing the request, looking up the cache
object, and sending the response— occur in the same
deferred-interrupt context in which TCP input processing
occurs. A deferred interrupt performs tasks deferred by
hardware-interrupt routines for devices such as network
adapters. Blocking is prohibited in a deferred-interrupt

E. C. HU ET AL. IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001

192



context, which means that only virtual memory guaranteed
not to page-fault can be accessed. Therefore, cache
objects can be served from a deferred-interrupt context
only if they are pinned in memory. Because the amount of
storage that can be pinned at one time is limited, AFPA
pins only the most frequently requested cache objects
smaller than a threshold size. Less frequently requested
and larger cache objects remain pageable and are served
by kernel threads.

Typical forward- and reverse-proxy caches retrieve
content to be cached from conventional Web servers
using the standard HTTP protocol. The AFPA cache, in
contrast, is populated with content retrieved via one or
more file systems. We now explain why AFPA uses a
file-system interface instead of HTTP and describe an
important resulting benefit.

Because a forward-proxy cache is not associated with
any particular set of servers, it must interact with servers
using a standard protocol such as HTTP. Caching creates
the need to maintain coherency between cached data and
its source. The HTTP/1.1 protocol includes provisions to
help maintain coherency. HTTP responses can include an
“Expires:” header that indicates how long the response
remains valid. Cached items may be reused until they
expire, thus reducing the number of server requests.
Caches must validate expired entries before serving them,
using a set of conditional headers. These allow a cache to
identify the version of an item either by date and time or
via an entity tag (essentially a serial number). Inclusion of
conditional headers in a GET request causes the server
to return an entity body only if all conditions are met.
This reduces bandwidth utilization by eliminating
retransmission of items that are already cached. These
provisions promote coherency, but do not guarantee strict
coherency. No provision is made for a server to explicitly
invalidate a cache entry if the underlying content is
modified before the entry expires.

The association of a reverse-proxy cache with a set of
servers allows for closer integration than with a forward
proxy. Instead of inventing a new coherency protocol,
AFPA leverages existing protocols by accessing data to be
cached via a file system interface. This allows AFPA to
achieve better coherency than that provided by HTTP.
Strict coherency can be achieved on some platforms via
tight integration with the file system. On Windows, for
example, AFPA exploits a callback mechanism that allows
it to invalidate a cache object immediately when the
associated file changes. This allows content to be “pushed”
to the AFPA cache simply by writing it to a local or
remote file system.

Cache objects
AFPA cache objects combine platform-neutral architectural
elements with platform-specific implementation details.

Certain aspects, such as the naming scheme, are entirely
portable. Other aspects, such as the specific format in
which data is stored, vary considerably across operating
systems. Cache objects exist to facilitate network
transmission of responses to client requests. Network
stacks typically require that transmitted data be described
using a specific structure such as mbufs for BSD UNIX**,
MDLs for Windows, and skbufs for Linux. AFPA cache
objects, therefore, store data in the format required by
the network stack for the given platform.

Responses to requests for static content typically
include potentially dynamic header information in addition
to static data. Responses to HTTP/1.1 requests, for
example, include a “Connection:” header that indicates
whether the connection will be closed after the current
response. AFPA allows header information to be
dynamically generated and combined with static cache
objects. This feature is not required in cases for which a
complete response with all required header information
can be generated prior to receiving a request.

Sending a stream of data on a TCP connection involves
dividing the data into segments and appending TCP, IP,
and layer-2 (e.g., Ethernet) headers to each one. Some
operating systems allow physically discontiguous data to be
“gathered” for transmission in a single network frame.
Others require the contents of a network frame to be
assembled in physically contiguous memory. On platforms
that lack support for scatter/gather I/O, data associated
with a cache object is stored as a series of network frames
with space allocated in each for TCP, IP, and layer-2
headers. The first frame also includes space for HTTP
response headers.

On platforms that support scatter/gather I/O, cached
data is stored as a “unit,” for example, in a single MDL
or mbuf chain. Each such unit may comprise a set of
discontiguous buffers, but is treated as a single entity by
the network stack. Cache objects that exceed a threshold
size are passed to the network stack in chunks, typically
64 KB in size. This eliminates the need for the entire
cache object to reside in pinned memory. It can also
prevent errors, such as time-outs, that may occur if
too much data is passed to the TCP/IP driver at one
time.

We now describe two cache-object implementations.
File-system cache objects, as the name suggests, are
closely integrated with the file system. Pinned-memory
cache objects occupy explicitly allocated nonpageable
RAM. Relevant aspects of each on Linux and Windows
are presented.

File-system cache objects
One characteristic that distinguishes cache-object
implementations is the level of file-system integration. At
one end of the spectrum lies the file-system cache object
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that features close file-system ties. AFPA shares
responsibility for managing storage backing file-system
cache objects with the native file-system cache manager.
With some file-system implementations, real memory is
allocated implicitly by the file system as file data is read.
With memory-mapped files, the virtual memory manager
allocates real memory in response to page faults as the
virtual address range mapping the file is accessed. In
either case, the file-system cache manager works with the
virtual memory manager to maintain some portion of real
storage as a cache of recently accessed file data.

File-system cache objects leverage management of real
memory performed by the file-system cache manager.
Such objects are backed directly by file-system buffers.
AFPA simply pins cache objects or portions thereof as
required to transmit them via the network. This can be
accomplished either by explicitly pinning pages in the file-
system cache, as with a memory-mapped file system, or by
intentionally failing to release file-system buffers after
non-memory-mapped files are read. Objects below a
threshold size are left pinned for some time after they are
requested in order to increase the chances of frequently
requested objects remaining resident in physical memory.

By default, AFPA limits the amount of storage it pins
to 25% of real memory to ensure that sufficient pageable
storage remains available for normal system operation.
This guarantees only that AFPA does not pin more than
25% of real storage. It does not prevent the file-system
cache manager and virtual memory manager from using
more or less than 25% of real storage for the file-system
cache.

Leveraging real-memory management performed by the
file-system cache manager allows AFPA to influence
resource management without assuming complete
responsibility for a task it is ill-equipped to undertake.
This approach provides a good combination of flexibility
and performance. File-system cache objects do, however,
have their drawbacks. Reliance on the file-system cache
entails accepting its predispositions regarding resource
allocation. Operating systems may allocate less memory
to the file-system cache than is appropriate for a
system whose primary purpose is caching. Another issue,
encountered on Windows, is that system page-table entries
may be exhausted by mapping files into the kernel address
space before available real memory is exhausted. Finally,
file-system cache objects require the ability to send
response data directly from the file-system cache. Support
for scatter/gather I/O is typically needed to implement a
zero-copy send interface. AFPA must provide this support
on platforms that lack it, such as Linux. (Support for
scatter/gather I/O was added to Linux as of kernel
version 2.4.)

Pinned-memory cache objects
Pinned-memory cache objects allow greater control of
resource allocation and do not require support for
scatter/gather I/O. AFPA explicitly allocates nonpaged
RAM for pinned-memory cache objects. The primary
questions regarding the implementation of such objects,
therefore, concern allocation and management of pinned
storage. We describe pinned-memory objects first on
Linux, then on Windows.

Linux AFPA allocates a number of 128KB blocks of
pinned memory which are managed by AFPA’s own
memory allocator. The maximum number of blocks is
configurable. Once a block is allocated, it is never
subsequently freed, although portions of it may be freed
and reallocated. When a cache object is created, the
corresponding file is opened and read into Ethernet-
frame-sized buffers. Space is allocated in each buffer for
TCP, IP, and layer-2 (e.g., Ethernet) headers. Additional
space is reserved in the first buffer for HTTP headers.
When a request is received, the HTTP header is filled in,
and each frame associated with the object is queued for
transmission. For large responses, frames are queued in
64KB chunks. If an additional request is received for a
cache object that is in the process of being sent, an
additional copy of the object is made. Old cache objects
are freed when memory is needed for new ones. A
modified LRU algorithm is used, which prefers to eject
objects no smaller than the object being allocated.

On Windows, allocation of pinned memory is handled
by the operating system. When a pinned-memory cache
object is created, sufficient memory is allocated for it.
The corresponding file is then opened and read into the
pinned memory. No explicit limit is imposed on the
amount of pinned memory which AFPA requests. Pinned
memory is simply allocated until further allocations are
refused. The operating system fails calls for relatively
large amounts of pinned memory before the system runs
dangerously low. When a call to allocate pinned memory
does fail, a file-system cache object is used instead.
Currently, a pinned-memory cache object is freed only
when the object is invalidated by changes in the
underlying file.

3. Reverse split-connection proxy
Having described AFPA’s primary component, the cache,
we now turn our focus to the reverse proxy. The purpose
of the proxy is to distribute requests that cannot be served
by the cache to one or more back-end Web servers. This
allows AFPA to harness multiple servers in order to
generate dynamic content. It also enables many features to
be excluded from the in-kernel Web server by allowing
complicated requests to be handled elsewhere.

The first step performed by the proxy when handling a
request is to select a server. This is a two-part process.
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First, the layer-7 router (described below) identifies the
appropriate server group, which is the set of servers
configured to handle a particular set of requests. The
proxy selects a specific server within the group using a
weighted round-robin algorithm. Each server has a
numerical weight that specifies the number of requests
AFPA directs to the given server before sending one or
more requests to the next server in the group. The weight
is not necessarily the percentage of requests handled by
the given server.

After a server is selected, a TCP connection to it must
be obtained. The proxy may already have one or more
connections established with the server. An established
connection is used if one is available; otherwise, a new
connection is established. Once a connection is obtained,
the proxy sends the request received from the client to
the server.

Once the proxy has sent the request, it must convey the
response received from the server to the client. AFPA
implements a split-connection proxy; i.e., it maintains
separate TCP connections with the client and the server.
The proxy receives response data on the server connection
and immediately queues it for transmission on the client
connection. The proxy effectively splices the inbound side
of the connection to the server with the outbound side
of the connection to the client.

Efficiency is a key consideration when splicing
connections. Colocating the proxy in the kernel with the
TCP stack allows for efficient event notification and data
transfer between the two. Typically, the proxy can be
implemented to receive notification of network events,
such as arrival of data or a connection request, via a
function call. This causes the proxy to operate as an
extension of the TCP stack. Notification by function call
can be effected by modifying the stack, commandeering
function pointers, or registering callback routines like
those supported by the Windows Transport Driver
Interface. Ideally, the proxy can send data received from
the server to the client without having to copy it. Some
environments, such as Windows NT 4.0, require a copy.
Other platforms, such as Windows 2000, do not.

The final task to be performed by the proxy is
identifying the end of each response. The keep-alive
feature of HTTP/1.1 allows a client to send multiple
requests and receive the corresponding responses on
a single connection. Each request can be directed, by
the layer-7 router (described below), to a different
“destination” via either the proxy or the cache. In order
to ensure that each request processed by the proxy is met
with a complete response, the proxy must parse responses
to determine where they end. Once the end of a proxied
response is detected, AFPA marks the client connection
as ready to receive a subsequent request. The HTTP/1.1
protocol includes five distinct methods by which a server

can terminate a response. The proxy implements a state
machine that allows it to identify the end of a response
for each method.

Once the end of a response is identified, the proxy
disassociates the client and server connections. If the
response received from the server includes a “Connection:
close” header, or is for a non-keep-alive HTTP/1.0
request, the proxy closes the client connection. The proxy
places the server connection on one of two lists, depending
on whether the server indicates its intention to close the
connection. The proxy places all connections it expects
to be closed by a server on a single “to be closed” list.
Connections are removed from this list either when they
are closed by the server or when they time out, at which
point they are closed by the proxy. If the server indicates
its willingness to keep the connection open, the proxy
places the connection on a list of available connections
established with the given server.

If the proxy is unable to connect to a selected server,
it marks the server as “unavailable” to prevent further
requests from being routed to it. This is done by setting
the server’s weight to zero. A connection attempt may fail
with either of two errors: connection refused, or time-out.
The former indicates that the server hardware is up
and reachable but the HTTP server software is not. A
connection-refused error causes the proxy to mark the
server down immediately. A time-out error provides an
ambiguous indication that the server is unreachable,
overloaded, or not operational. Marking an overloaded server
as down increases the load on the remaining servers,
which may ultimately bring them down as well. The proxy
marks a server down only if three successive connection
attempts time-out. Every ten seconds the proxy attempts
to connect to each unavailable server. The server’s weight
is restored to its original value if the connection succeeds.

The proxy allows AFPA to offload static content from a
group of standard Web servers. Interaction between the
proxy and the servers occurs via ordinary HTTP requests;
therefore, no modification to the software on the back-end
servers is required. The proxy can also be configured to
route dynamic requests to a single conventional Web
server colocated on the same machine. This scenario
raises the possibility of closer integration of the AFPA
cache with a conventional server.

An alternative to the proxy for the colocated scenario
is for the cache to interpose itself into the stream of
requests flowing to the user-level Web server. Static
requests are harvested from the stream in the kernel and
served from the cache. Dynamic requests proceed to the
user-level server. This structure can be implemented in
several ways. One option is to relink the user-level server
with a special socket library. This is viable only when the
server can be relinked. Modifications to a server that
requires relinking may be motivated by the desire to have
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the server control the kernel cache. This approach is used
by the IBM HTTP server on Windows. Approaches that
do not require any modification to the user-level server
are also possible. If the socket library is dynamically
linked, it can simply be replaced. Some environments,
such as Linux, allow functionality to be added to the
socket layer by commandeering pointers in the socket
structure.

To date, the alternate mechanisms for interacting with a
colocated Web server have been used only in conjunction
with a relatively simple configuration method and not with
the layer-7 router. With the simple method, requests that
match both a list of directories and a list of extensions are
served from the cache, and all other requests are deferred
to the colocated Web server. The alternate mechanisms
have been implemented such that once a request is
deferred, all subsequent requests received on the same
client connection are deferred as well, even if they match
both the directory and extension list. This can significantly
limit the effectiveness of AFPA when it serves a mix of
static and dynamic content. The limitation could be
eliminated in a more sophisticated implementation.

4. Layer-7 router
AFPA serves static requests from the cache and routes
requests for dynamic content to one or more back-end
servers via the proxy. The question arises, “How does
AFPA distinguish between static and dynamic requests?”
The answer involves AFPA’s third component, the layer-7
router. The term layer-7 refers to the uppermost or
application layer in the OSI network model. For a Web
server, the application protocol is HTTP. The AFPA
layer-7 router, therefore, routes requests by examining
HTTP headers.

In order to route requests based on HTTP headers,
the router must terminate the client connection. This is
because a client typically does not send an HTTP request
until the connection is established. Before the client
connection can become established, the layer-7 router
must respond to the connection request, which fixes the
server endpoint on the router. Layer-7 routing, therefore,
requires a split-connection proxy. Terminating each

connection at the router and establishing a separate
connection with the server entails significant processing.
Unlike layer-3 and layer-4 routers, which do not terminate
connections, a layer-7 router performs TCP input and
output processing. Layer-7 routers can direct requests
based on HTTP headers but perform more processing per
packet than layer-3 or layer-4 routers, which direct packets
on the basis of destination IP address or TCP connections,
respectively. The tradeoff is clear: greater functionality or
higher capacity. Because of the tradeoff, no single type of
router is inherently better than another. Each serves its
own purpose. The layer-7 routing capability included with
AFPA complements the proxy and cache by allowing
requests to be handled by the most appropriate server.

The layer-7 router is configured with the hierarchical set
of routing information shown in Figure 1. The top three
levels of the hierarchy are related to virtual hosting.

The first two levels specify an IP address and TCP port
number on which AFPA provides service. These levels
allow AFPA to support multiple independent Web sites
on different IP address–port pairs. Strictly speaking, the
first two levels comprise layer-3 and layer-4 information,
respectively. They are included here for completeness. The
third level allows AFPA to distinguish requests based on
the HTTP “Host:” header, if any. This allows multiple
virtual sites to be supported on the same IP address–port
pair. Any number of host names can be specified for a
given site. Typically, the site’s address, specified in dotted
decimal notation (e.g., “198.193.16.99”), is included in any
name list. This accounts for URLs that specify an address
rather than a name. Default values can be used for each
of the top three levels. The default IP address is a wild
card, causing AFPA to serve the site on all local IP
addresses. The default port number is 80, the standard
HTTP port. The host name list is also a wild card by
default, which prevents the router from distinguishing
requests by host name.

The bottom two levels in the hierarchy identify requests
within the context of a virtual site. Level four distinguishes
requests based on URL path. Requests in the “/cgi-bin/”
directory, for example, can be handled differently from
those in “/2000/WORLD/europe/.” The configured URL
path prefix must match the beginning of a requested
URL exactly. This provides a reasonable compromise
between flexibility and performance. By default, behavior
configured for a URL path prefix applies recursively to all
subdirectories, but recursion can be disabled. The bottom
level differentiates according to the requested file’s
extension, which identifies its MIME type. This allows
files for a given path prefix to be processed according
to their type. HTML files, for example, are usually
cached, whereas Active Server Pages (ASPs) must
be executed on a conventional server.

Figure 1

Layer-7 routing hierarchy.

1) IP address

2) TCP port

3) Host name

4) URL path prefix

5) Content group
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The same configuration is typically applied to a list of
file extensions. For example, a set of extensions is typically
cached. To facilitate this, AFPA includes the notion of a
content group, which is simply a list of extensions. Each
content group can then be configured for one or more
URL paths on one or more virtual sites. The configuration
is checked to make certain no extension is included in
multiple content groups that are configured for the same
URL path. This ensures that only a single behavior is
specified for a given extension within the context of a
given URL path. In addition to ordinary extensions such
as “.gif,” “.jpg,” and “.html,” two special-case extensions
can be included in a content group. The “none” extension
specifies requests with no extension, and the “all others”
extension denotes all extensions not explicitly included in
a configurable extension list.

The parameters for all five levels in the configuration
hierarchy define a request set. This identifies requests with
any of several extensions under a given URL path prefix
for a given virtual site. Once a request set is defined, its
behavior can be specified. A request set can be either
cached or distributed. Cached request sets have two
parameters. The first specifies the name of a default file to
be served in response to a request that ends in a slash (/).
AFPA appends the specified file name to the requested
URL. The second specifies the file-system directory
associated with the URL path. If, for example, the
directory “E:\websites\acme\dogalog\” is associated with
the URL path “/catalog/” for some content group that
includes the extension “.gif,” a request for the URL
“http://www.acme.com/catalog/anvils/jumbo.gif” would be
served from the file “E:\websites\acme\dogalog\anvils\

jumbo.gif.” The underlined portion of the URL, which
matches the configured URL path prefix, is replaced with
the specified file system directory (also underlined). The
remainder of the requested URL (after the matching
prefix) is then appended.

Distributed request sets have a different set of two
parameters. The first specifies a server group to which
requests in the set are routed. This is a list of servers
identified by IP address and port number. Each server has
a numerical weight that determines what portion of all
requests is routed to that particular server. The second
parameter indicates whether or not affinity is enabled.
Enabling affinity for a distributed request set causes all
requests received from the same client IP address to be
routed to the same server. This is needed when state
information is created on a Web server as a result of
processing a request and the state is needed to correctly
process subsequent requests. Affinity ensures that each
request is routed to the server that contains the
appropriate state information.

The hierarchical configuration structure is very flexible.
Equally important, judicious use of default values allows

simple configurations to be specified easily. A common
simple configuration consists of a single virtual site with
all default values. Two content groups are configured
under the single root URL path “/.” One content group
contains all extensions to be cached. The other contains
all other extensions and is distributed to a single server
group. The server group consists of a single conventional
Web server colocated on the local machine. This basic
configuration can be expanded with additional virtual sites,
content groups, server groups, and URL paths as needed.

5. AFPA framework
Although our discussion thus far has focused almost
exclusively on Web servers, AFPA is, in fact, a general-
purpose architecture that can be applied to essentially
any network server. The architecture provides a generic
framework that promotes efficient processing of network
requests. A complete server is realized by adding to the
framework support for one or more specific application-
layer protocols, such as HTTP. We refer to the component
that encapsulates application-specific functionality as an
AFPA module. On Windows, the AFPA framework and
modules are packaged as separate device drivers. On
Linux both are implemented in a single kernel module.

AFPA generic functionality includes the in-kernel
RAM-based cache and reverse split-connection proxy.
Other generic services include resource allocation and
deallocation and packet reception and transmission. This
generic functionality is provided to modules through the
use of exported functions. Most AFPA generic data
structures can be extended to include module-specific
data. For example, the HTTP module extends the cache-
object data structure to allow HTTP header information
to be associated with each cache object.

Each AFPA module is required to support certain
interfaces and behaviors. For example, an initialization
interface is invoked when a module is loaded. This
interface must register a set of module entry points that
are subsequently invoked by the framework to perform
application-specific request processing. One such entry
point is responsible for parsing a request; another invokes
a framework function to look up a requested item in the
cache. While the notion of a layer-7 router is generic,
its implementation is heavily dependent on the specific
application. Most layer-7 routing functionality, therefore,
resides in a module and not in the framework.

AFPA supports an extensible API by which user-level
code can interact with the framework and modules
residing in the kernel. Modules can extend the API to
provide application-specific control operations. The HTTP
module supports an operation to pass down a list of
extension/MIME-type pairs which is used when HTTP
responses are generated. The API is typically implemented
using “I/O control” operations supported by most
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operating systems. All I/O control operations are handled
initially by the AFPA framework. Operations not
recognized by the framework are passed to the
appropriate module.

Some of the techniques AFPA uses to achieve efficiency
require close integration with the host operating system.
The implementation of the AFPA framework is, therefore,
highly operating-system-dependent. As with any framework,
a long-term goal in developing AFPA is to minimize the
amount of operating system code needed to implement an
AFPA module. Significant progress has been made to
date. Ultimately, modules should be largely portable
across operating systems.

State machine
One significant characteristic of the framework is the use
of state machines to control request processing. A distinct
state machine is typically associated with each type of
connection. The HTTP module includes two state
machines: one for client connections and another for
proxy connections. The state machine approach allows
multiple network packets to be processed concurrently
on the same connection. Modules are allowed to defer
processing of packets or requests to limit concurrency or
impose order. The HTTP protocol, for example, requires
that multiple requests on the same connection are
processed in the order they are received.

We distinguish among three types of state data: global
data, which is independent of each connection/request,
connection data, which changes on a per-connection basis,
and request data, which changes per request within the
same connection. For the HTTP module, global data
includes server groups and content groups, connection
data includes number of processed requests, and request
data includes the HTTP version.

Each state in a state machine is represented by a
function. These functions execute at one of two processor
priority levels: a more restrictive priority level, which
prevents process or thread scheduling (i.e., in a deferred-
interrupt context), or a less restrictive level, which
prevents nothing (i.e., in a kernel thread). On Windows,
this two-level model maps to DISPATCH versus
PASSIVE. On Linux, it maps to bottom half versus kernel
thread. Functions that run at the more restrictive level
must avoid page faults, because blocking is prohibited
in a deferred-interrupt context.

After a response has been generated, there are two
options available to send the response. The first possibility
is to send the response directly from the deferred
interrupt, the same interrupt as that on which TCP input
processing occurs. The second possibility is to produce a
work item to a FIFO queue, where it is later consumed
by a worker kernel thread. The former approach is more
efficient, but can be used only if the response resides in
pinned memory. AFPA automatically adapts to serve
responses using the most efficient context possible:
deferred-interrupt context for pinned memory or
thread context for pageable memory.

A simplified version of the state diagram used by the
AFPA HTTP module is shown in Figure 2. This state
diagram is used for client connections. Each state is
described as follows:

● Derive request The function representing this initial
state is invoked each time data is received on the client
connection. When enough data has arrived to complete
a valid request, the function finishes parsing the request
and generates a request object. This function runs in the
context of the deferred interrupt in which TCP input
processing is performed.

● Derive cached response In this state, a key from the
request object is used to search for the corresponding
response in the AFPA cache. This function also runs in
the deferred-interrupt context.

● Send response In this state, a cached response is sent
to the client. The function representing this state runs
either in a deferred-interrupt context, when sending a
pinned-memory cache object, or in a thread context,
when sending an unpinned cache object. This function
is provided by the AFPA generic protocol subsystem
and exported to the module for its use.

● Derive miss response This state is entered if a requested
item is not found in the cache. This state performs the
layer-7 routing function to determine whether the
request should be served by loading an item into the
cache or by passing it to a back-end server via the proxy.

● Derive uncached response This state is entered if the
layer-7 router determines that the request should be
served by loading an item into the cache. In this

Figure 2

Simplified HTTP state machine.
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state, the system creates a cache object, opens the
corresponding file, and computes meta-data regarding
the object, such as its MIME type. Depending on the
implementation, the contents of the file may actually be
read at this stage, or the file may simply be memory-
mapped.

● Derive remote response This state is entered if the
layer-7 router determines that the request should be
served by a back-end server. In this state, the system
establishes a connection with a server (or reuses a
previously established connection) and sends the request
received from the client to the server. Response data is
subsequently sent to the client as it is received from the
server. This state is executed at the deferred-interrupt
priority level.

We examine two common scenarios for processing
requests: one for a cached response and another for a
remote response. All client connections begin in the
derive request state. Once enough data arrives to form
a complete request, the derive cached response state is
entered. In this state, an attempt is made to find the
response in the AFPA cache. Processing to this point
occurs in a deferred-interrupt context.

If the appropriate response is found in the cache, it is
immediately sent to the requesting client by entering the
send response state. If the corresponding cache object
is pinned in memory, the response is sent directly from
the deferred-interrupt context. If the cache object is in
pageable memory, a work item is created to send the
response from a worker thread.

If the appropriate response is not found in the cache,
but the data should be loaded into the cache, the derive
uncached response state is entered to load the file into
the cache. This processing must be deferred to a thread
because it cannot be performed in a deferred-interrupt
context. Once a cache object has been created, processing
proceeds in the send response state as described above.

If the layer-7-based routing information indicates that
the requested object should be handled by the proxy, the
derive remote response state is entered. Its underlying
function routes the request to an appropriate back-end
server. Subsequent forwarding of the response is driven
by the state machine for the proxy connection.

6. Deployment scenarios
Combining the cache with the reverse proxy and layer-7
router provides a great deal of flexibility, which allows
AFPA to be deployed in a number of different scenarios.
We briefly describe four scenarios to highlight the most
typical deployments.

The simplest scenario features AFPA and a
conventional user-level Web-server process colocated on
a single machine. In this configuration, AFPA increases

server capacity by increasing the efficiency with which
static requests are processed. AFPA provides a fast path
in the kernel that short-circuits normal processing of static
requests at the user level. Implementing the fast path
entails having AFPA parse each request to determine
whether it can be served from the kernel. Requests that
cannot be served from the kernel proceed to the user-level
server process via the proxy. Adding the fast path in the
kernel, therefore, introduces additional parsing and proxy
processing to the path for requests served at the user
level. This overhead is not significant and is more than
compensated for by the increased efficiency for static
requests.

The above scenario allows AFPA to be deployed as a
single-box solution. High-traffic Web sites typically feature
multiple servers that are in some cases specialized for
particular purposes. A given set of servers, for example,
may serve specific content such as images, advertisements,
audio, or video. Dedicating servers to specific content
types limits the total working set that must be delivered
by any single server and allows the server’s hardware
configuration to be tailored to its content. One common
approach to partitioning content, motivated by resource
requirements, is to separate static and dynamic content.
Serving static content typically requires more bandwidth
and memory than dynamic content, which tends to require
greater CPU capacity.

A second typical deployment scenario, usually
associated with very-high-traffic Web sites, is for AFPA
to be deployed only on servers dedicated to serving static
content. This approach is typically viable only when the
content of a site has already been manually partitioned
among a set of specialized servers. Manually partitioning
the content of a site requires not only distributing specific
content types to the appropriate servers, but also
modifying HTML pages that refer to the content to
identify the server for each item delivered by a specialized
server. Therefore, administrators may be reluctant,
unwilling, or unable to manually partition content for a
site after it is operational. Still, the second scenario is
attractive for sites whose content is already partitioned.

AFPA’s layer-7 routing and proxy features allow it to
be deployed without requiring that content be partitioned.
A third scenario, also associated with high-traffic Web
sites, has AFPA installed on a single front-end server that
offloads requests for static content from a set of back-end
Web servers. This scenario, depicted in Figure 3, is similar
to the single-box solution described above, except that
the single user-level Web server process is replaced with
one or more additional HTTP server boxes. This allows
additional hardware resources to be devoted to the site
as needed, which may be particularly useful for serving
dynamic content. In this third scenario, AFPA’s layer-7
router may be configured to direct requests for particular
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types of dynamic content to specific servers (i.e., content-
based routing) or may simply be configured to distribute all
requests for dynamic content across all back-end servers.

Although AFPA is capable of distributing requests for
dynamic content to back-end servers, serving static content
is what AFPA does best. Acting as a proxy for dynamic
requests decreases AFPA’s capacity to serve static content.
This brings us to the fourth scenario, in which the AFPA
cache is deployed in conjunction with a separate hardware
layer-7 router, as seen in Figure 4. Using a separate
router conveys the same benefit as using AFPA’s layer-7
routing capability by allowing static requests to be served
by the AFPA cache while dynamic requests are served by

one or more general-purpose Web servers. Offloading the
routing function to a separate router allows the entire
AFPA server to be dedicated to serving static content.

The use of a separate router brings forth another
important benefit. AFPA’s capacity improvement depends
on its ability to serve static content from RAM. There are
limits as to the amount of content that can be served
from the RAM of a single server. A separate router can
partition a set of requests that exceed the RAM capacity
of a single AFPA into multiple smaller request sets, each
of which can be served from a single cache. Conceivably,
the front-end layer-7 routing function could be performed
by another AFPA server configured solely as a layer-7
router. In practice, hardware layer-7 routers provide
more capacity than AFPA’s software layer-7 routing
implementation, and scenarios with such large working
sets typically require very high routing capacity.

7. Related work
Much current research is focused on improving the
performance of content retrieval via the Internet.
Common goals are improving performance of origin Web
servers, caching static content throughout the network,
and directing requests to appropriate servers via content-
based routing.

User-mode Web caches employ one of two architectures
as defined by [2]: multiple-process/thread (MP) and single-
process event-driven (SPED). In the MP model, a server
creates a new process or thread (referred to here jointly
as a “task”) for each new request. Since creating a new
task can be time-consuming, most MP caches reduce
overhead by pre-allocating a pool of tasks. However, the
scheduling overhead caused by large numbers of active
tasks can also degrade performance. Apache [1] is the
canonical example of MP architecture.

In the SPED model, a single process concurrently
processes requests on behalf of multiple clients. SPED
caches use asynchronous I/O systems calls, such as
select( ) and I/O completion ports, to prevent blocking.
Web servers such as Zeus [3], Microsoft Internet
Information Services (IIS) [4], and Flash [2] use the
single-process event-driven model.

Flash acts like a single-process event-driven architecture
when request documents are cached, and acts like a
multithread architecture when requests must be satisfied
from disk. This is similar to AFPA, which uses a deferred-
interrupt context when documents are cached and defers
to worker threads when requests must be satisfied from
disk or pageable memory. However, Flash is more full-
featured than AFPA, since it is a user-mode Web server
that can handle both static and dynamic content [2].

Squid is a high-performance proxy-caching server for
Web clients, supporting FTP, gopher, and HTTP data
objects. It handles all requests in a single, nonblocking,

Figure 3
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I/O-driven process. Squid is designed to operate on any
modern UNIX system and is an open-source software
solution [5].

Web servers and caches are traditionally implemented
as user-mode applications. However, in an effort to
improve performance, several commercial Web caches
have been implemented in kernel mode. The movement
of services that are considered integral to a server’s
operation into kernel mode is not a new concept. Most
commercial operating systems include kernel-mode file
servers, for instance.

Static-content delivery is essentially a file-to-network
copy operation and does not require extensive
computation. An in-kernel Web cache can fetch response
data from a file system or kernel-mode cache. If the
kernel-mode accelerator determines that it cannot serve
the request from its cache, it forwards the request to a
full-featured user-mode Web cache or proxied server.

Kernel Web caches can be characterized according to
the degree of their integration with the TCP/IP stack and
their response-processing implementation. The Microsoft
Scalable Web Cache (SWC) [6] is tightly integrated with
the Windows 2000 TCP/IP stack. By contrast, the Linux
kHTTPd [7] uses kernel-mode socket interfaces. Both SWC
and kHTTPd handle response processing using kernel-mode
threads. SWC supports only HTTP 1.0 and therefore lacks
support for keep-alive connections.

TUX [8] is another in-kernel Web cache recently
introduced by RedHat on Linux. Like kHTTPd, TUX uses a
threaded model, but it offers more features and better
performance. First, although TUX uses the file system to
cache objects, it has its own cache-directory management,
so that the URL-to-file-object resolution is not performed
by the file system (which is very similar to the AFPA file-
system object architecture on both Windows and Linux).
Second, it implements zero-copy TCP send from the
file-system memory along with a checksum cache for
network adapters that do not support outbound hardware
checksumming. Finally, TUX efficiently supports server-
side includes for fast dynamic content generation.

The Cheetah HTTP server has been deployed in the
Exokernel system [9]. It accelerates page transmission by
transmitting file data directly from the file cache and uses
precomputed file checksums which are stored with each file.

The locality-aware request distribution (LARD) strategy
[10] is a content-based request distribution policy. It
consists of a front-end router which uses the combination
of the content requested and information about the load
on back-end nodes to choose which back-end HTTP server
will handle a request. AFPA uses a combination of the
content requested and a static weighting on each back-
end node to determine which server should process the
request. LARD goes a step beyond achieving a balanced
load by aiming for locality.

8. Performance
In this section, we present experimental results that
indicate the performance of the Linux and Windows
AFPA implementations along with several other Web
cache architectures. We compare AFPA with widely used
commercial user-mode HTTP servers: Apache 1.3.9 [1],
Zeus 3.3.5 [3], and Internet Information Server 5.0 [4].
We also consider other kernel-mode Web caches: Linux
kHTTPd [7] and Microsoft SWC 2.0 [6].

Event notification and data movement are the two areas
that have the most significant effect on overall Web cache
performance. Event notification uses operating-system-
supplied mechanisms for notifying a Web cache of
incoming network requests and for requesting responses.
For example, select( ) is the event-notification mechanism
commonly used on UNIX Web cache implementations,
and I/O completion ports are commonly used by Windows
2000 Web caches. A poorly conceived event-notification
mechanism causes a reschedule operation for every cache
transaction. The ideal event-notification mechanism incurs
no context switches or blocking.

Data movement addresses operating system support for
the transfer of response data from a Web cache through
the TCP/IP stack to the network hardware, as well as the
transfer of request data in the opposite direction. Ideal
data-movement support provides zero-copy interfaces
for all data transfers. However, since the bulk of data
movement in a Web caching application is from the
cache to the network, the cache/network interface
is most critical.

Web cache performance is also influenced by system call
overhead, albeit to a lesser degree than event notification
and data movement. Using more concise API calls reduces
system-call overhead. Windows 2000 AcceptEx( ), for
example, combines both the accept( ) of an incoming
request and the read( ) of its first data packet into a
single system call.

Workload
We use two different synthetic workloads for our
experiments: SPECweb96 [11] and WebStone 2.5 [12].
SPECweb96 was the first standard HTTP benchmark. The
SPECweb96 working set comprises files that range in size
from 100 bytes to 900 KB, where small files are referenced
more often than large files (50% of the total number of
requests reference files smaller than 10 KB). In addition,
the SPECweb96 working set scales with the expected
server throughput. In all of our experiments, the entire
working set fit into the server’s RAM, thus avoiding
any performance distortion due to disk accesses.

SPECweb96 has been superseded by SPECweb99 as
the industry-accepted Web-serving metric. SPECweb99
incorporates HTTP/1.1 features, such as persistent
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connections, as well as requests for dynamically generated
pages. Still, 70% of SPECweb99 requests are for static
files.

Although SPECweb96 does not take into account some
aspects of current HTTP workloads (e.g., no persistent
connections, no dynamic content), it is well suited for
measuring static-file-serving performance, which is
the main purpose of our performance evaluation.
Furthermore, large HTTP sites often use several servers
that are partitioned into groups serving different types of
content such as static files, user logins, and databases. The
static-content servers are likely to experience workloads
similar to the SPECweb96 workload. Finally, the
SPECweb96 execution guidelines are strict enough
to allow meaningful comparison of independently
reported results. The results presented here do not meet
SPECweb96 execution guidelines. We ran the benchmark
for the highest load rather than running it for ten evenly
spaced loads.

WebStone** [12] is another HTTP server benchmark.
Unlike SPECweb96, it allows a user to change the
workload characteristics, making it easier to identify
performance bottlenecks for given file sizes. For
WebStone, our workload consists of fixed-size files,
ranging from 64 bytes to 1 MB. Several tests were run,
each with a single file size.

Test environment
The experiments were performed on two operating
systems: Windows 2000 Advanced Server (build 2195) and
RedHat Linux 6.1 with a Linux-2.3.51 kernel. AFPA for
Windows 2000 (henceforth referred to as AFPA/W2K),

IIS, and SWC were run on Windows 2000. AFPA/Linux,
kHTTPd, Zeus, and Apache were run on Linux. To quantify
the benefit of serving responses in a deferred-interrupt
context, a version of AFPA (AFPAT/W2K) that does not
include this optimization and instead serves all responses
on threads was implemented.

All experiments used the same server hardware: an IBM
Netfinity 7000 M10. The server was equipped with four
450-MHz Pentium** II Xeon** CPUs, 4 GB of RAM,
two 33-MHz PCI buses (one 32-bit and one 64-bit), and
four Alteon ACEnic Gigabit Ethernet adapters. For most
experiments, only one of the server’s four CPUs was used.
Two Alteon ACEswitch 180 switches connected ten clients
to the server. The clients were IBM Intellistation* Z-Pro
(two 450-MHz Pentium II Xeon CPUs, 256Mb RAM)
running RedHat Linux 6.1.

All experiments were performed with 9000-byte (jumbo)
Ethernet frames. We chose jumbo Ethernet frames rather
than standard 1500-byte Ethernet frames, since this
allowed our SPECweb96 results to be compared with
officially published results [11]. Limited experiments using
standard Ethernet frames did not reveal any significant
difference in the performance trends seen with 9000-byte
frames.

We note the following limitations of our test methodology:
All experiments were performed with the same limited
number of client machines. Our results focus almost
entirely on uniprocessor rather than multiprocessor servers.
Experiments were performed solely with nonpersistent
connections. Our analysis is constrained to static content
only. Finally, results are reported only for the Linux and
Windows 2000 operating systems, both running on Intel
processors.

On the server side, Linux and Windows 2000, as well as
each individual Web cache, were tuned in order to achieve
maximum performance. To this end, we used some of the
tuning parameters provided with submitted SPECweb96
results. For caches that support time-to-live values for
cache objects, we tuned the cache time-out to prevent
cache invalidations.

Cache performance
The results for the SPECweb96 workload are presented in
Figure 5. Results are presented for Apache, Zeus, kHTTPd,
IIS, SWC, AFPAT/W2K (threaded implementation),
AFPA/W2K (deferred-interrupt implementation) and
AFPA/Linux (deferred-interrupt implementation).

The most obvious characteristic of the graph is that the
results fall into two distinct ranges. There is a significant
gap in performance, specifically a factor of 3, between
kernel- and user-mode Web cache implementations. A
second characteristic is that AFPA/Linux performance is
close to the theoretical capacity of the hardware. The
SPECweb result of 10 269 represents more than 1.2Gb/s
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server throughput. Although the primary intent was to
analyze the uniprocessor performance, we did determine
that on Windows 2000 AFPA is 50% faster on one CPU
(9018 SPECweb operations per second) than IIS on four
CPUs (6090 SPECweb operations per second).

We found kHTTPd to be relatively slow on the SPECweb96
workload as compared to other kernel Web caches. This is
because 1) kHTTPd uses the file-system cache as its Web
cache, and since the Linux file system does not provide a
zero-copy interface, kHTTPd relies on a one-copy send; and
2) kHTTPd uses the socket interface instead of interfacing
directly with the TCP/IP stack for networking. Therefore,
kHTTPd’s performance is not significantly different from
that of Linux user-mode Web caches, which are also
forced by Linux to use a one-copy send and a socket
interface. The primary benefit of kHTTPd’s design is
that it avoids process scheduling overhead.

As mentioned before, both IIS and Zeus employ SPED
architectures. Although Linux does not feature zero-copy
send, Zeus was on par with IIS. This somewhat contradicts
previous attempts at comparing user-mode Linux and
Windows Web caches [13]. Without further investigation,
we attribute this to optimizations integrated within the
2.3 Linux kernel [14].

The slowest in all experiments was Apache. This
suggests that the SPED architecture used by Zeus and IIS
outperforms the MP architecture used by Apache. This is
consistent with other published results [2, 13]. Apache
appears to be penalized by a significant process scheduling
overhead. Note, however, that Apache 1.3.9 does not
feature a memory-based static content cache; it uses the
file-system cache. Among other optimizations, adding a
memory-based cache to Apache reportedly increases its
performance by 70% on Linux [15], which would bring
Apache in line with IIS and Zeus.

We also note that AFPA on Linux outperforms
AFPA on Windows 2000 by 14%. Since the AFPA
implementation is the same on both operating systems,
this suggests that the Linux TCP/IP stack implementation
is faster than that of Windows 2000.

To determine the impact of file size on performance, we
next compare the Web caches using a range of file sizes
from 64 bytes to 1 MB. The connection rates and server
bandwidths are reported in Figure 6. For small files,
request latency was the dominant performance factor,
which was, in turn, determined by the performance of
the event-signaling mechanism.

For 64-byte files, AFPA on Linux was 21% faster
(12 522 requests per second) than AFPA on Windows
2000 (10 321 requests per second). Using the Pentium
performance counters, we measured the number of
instructions executed in both cases. Using exactly the
same source code within the deferred-interrupt handler,
AFPA/Linux executed 19% fewer instructions than

AFPA/W2K (26 000 versus 31 000 instructions per request).
Two notable differences between the Linux and Windows
implementations help account for this disparity. On Linux,
the availability of operating system source code allows a
kernel module to be optimally integrated, whereas on
Windows 2000, a kernel module is constrained to use
the TDI interface. We suspect that the additional 3%
difference can be attributed to a larger number of
instruction TLB misses (ten per request for Windows 2000
versus zero for Linux). The Linux kernel, TCP/IP stack,
and kernel modules are stored entirely in nonpageable
4MB pages, so Linux does not experience any instruction
TLB misses. Only the Windows 2000 kernel is mapped
using 4MB pages; the TCP/IP stack is not.

Using the Pentium performance counters, we also
compared the deferred-interrupt version of AFPA with
the threaded version on Windows 2000. For 64-byte
files, the deferred-interrupt version was 12% faster than

Figure 6
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the threaded version (10 321 versus 9209 requests per
second). This closely matches the difference in the number
of instructions executed. This difference corresponds to
the overhead of queuing/dequeuing work items and
scheduling the thread.

For small files, the performance of kHTTPd was closer to
that of user-mode servers than other kernel accelerators,
mirroring the SPECweb96 results. As mentioned earlier,
this is because kHTTPd uses the same interfaces (e.g.,
sockets, file system) as user-mode servers.

For large files, performance is determined primarily
by the speed at which the server can move data to the
network. As file size increases, the operating system
overhead for user-mode servers accounts for less and less
in the overall cost of processing requests. This is because
processing latency is completely amortized for large files.
For example, Apache lags behind the other Web caches

for performance on small files, but is just as good as other
user-mode Linux servers for large files. On Windows 2000,
IIS performs as well as AFPA for files of 128 KB and
larger, while it is 3.27 times slower than AFPA for 64-byte
files.

For user-mode Web servers, IIS was slower than Zeus
for files smaller than 32 KB, but for larger files gained
an advantage from having a zero-copy send interface.
The importance of a zero-copy TCP send was further
emphasized on the throughput graph. There was almost
a threefold performance difference between Web servers
using zero-copy send interfaces and those using one-copy
send interfaces. We analyze this result further in the next
section. We also investigated the upper bound on user-
mode performance.

It is also interesting to compare the SPECweb96 results
with the fixed-file-size results. The average size of a
SPECweb96 request is 14.7 KB. On SPECweb96,
AFPA/Linux was 3.6 times faster than Zeus, but we did
not find such a high ratio on the fixed-file-size workload
graph; the ratio varies from 2.30, for 64-byte files, to 2.95,
for 512KB files. This seems to indicate that it is neither
the connection setup cost nor the bandwidth that limits
Zeus’ performance. This result shows that SPECweb96
cannot be approximated by simply using fixed-file-size
requests. Referencing different URLs has an impact
on performance.

Another interesting result is the nearly flat connection
rate for transfers of less than 8 KB. Even with jumbo
frames enabled, one would expect a more significant
decrease in the connection rate. It appears that the Alteon
firmware is optimized for bulk data transfers rather than
fast connection setup. We ran some tests using a single-
client thread requesting 1KB transfers on Alteon, Intel
gigabit, and Intel 100Mb adapters. This configuration
measures connection latency. We found the Alteon
adapter to be between two and three times slower than
the Intel gigabit and 100Mb adapters, respectively. The
high connection setup cost on the Alteon adapter probably
accounts for the flat connection rate.

In order to evaluate the performance gain of a zero-
copy send interface in the TCP/IP stack, we ran a
modified version of AFPA/Linux that does not use the
AFPA zero-copy cache architecture. In this version,

Figure 7

Zero-copy TCP performance: (a) Connection rates; (b) server band-
widths.
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Table 1 Proxy performance.

No. of
CPUs

Requests
per second

CPU usage
(%)

1 3128 100
2 3896 83
3 4361 70
4 4617 59
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network buffers are allocated through the standard Linux
sock wmalloc( ) primitive; file data is copied from the
AFPA cache into network buffers and checksummed
before being sent. Figure 7 summarizes the performance
of these two implementations plus Zeus on Linux (which
does not use zero-copy sends) and IIS on Windows 2000
(which does use zero-copy sends through the
TransmitFile( ) API).

As expected, the performance advantage of a zero-copy
send interface increased with the file size. It is important
to note, however, that the benefits of a zero-copy interface
can be seen for relatively small files. For 4KB files the
performance difference is 25%; it grows to 111% for
32KB files.

We also ran an experiment on two CPUs with the
Windows 2000 implementation. It shows a 30%
performance improvement for SPECweb96 with two
CPUs. In this situation, the performance is limited by
the memory and I/O bandwidth rather than by the
CPU. A more precise evaluation of scalability would
require different hardware— either faster I/O or slower
processors.

Proxy performance
To evaluate the capacity of the proxy to establish and tear
down connections, we used the test bed described above,
but configured AFPA to distribute all requests to three
back-end servers. The back-end servers were IBM
Intellistation Z-Pros, with two 450-MHz Pentium II
Xeon CPUs, and 256 MB RAM, running Windows NT 4.0
with service pack 6. For this experiment, the clients
requested a small set of 102-byte files. Requests from six
clients were uniformly distributed across the three back-
end servers. The performance results, presented in Table 1,
indicate a relatively high capacity for establishing and
tearing down connections. Capacity is particularly high
given that only a relatively small percentage of requests,
typically 10 –30%, would be handled by the proxy. The
results provide little information about scalability because
the experimental setup was insufficient to drive the
multiple CPUs to 100% utilization.

Conclusions
We have presented an overview of Adaptive Fast Path
Architecture and demonstrated its ability to dramatically
increase Web server capacity. AFPA’s three mechanisms,
the cache, proxy, and layer-7 router, provide a general-
purpose platform for accelerating network servers. We
continue to refine these mechanisms to further increase
performance and to improve AFPA’s applicability to other
protocols. Our next step will be to deliver performance
improvements for dynamic content similar to the gains
we have achieved to date with static content.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Microsoft
Corporation, The Open Group, Mindcraft, Inc., or Intel
Corporation.
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