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Abstract 
 
The Infiniband Architecture is a work-in-progress design specification for a high 
performance network intended to become the next generation interconnect for I/O. This 
paper presents an implementation and analysis of a prototype Infiniband channel adapter 
for the Myrinet System Area Network. We discuss the inherent costs and performance 
potential of the Infiniband Architecture in terms of both the upper level verbs (i.e. API) 
and lower level packet formats. We also discuss the implications of channel adapter 
design requirements for I/O applications. 

 
1. Introduction 
 
In order to enable the widespread deployment of high performance, scalable systems, 
there has been a concerted effort to develop a standardized cluster communication 
architecture for system area networks (SAN). This effort yielded the Virtual Interface 
(VI) Architecture [5] in 1998, and is now focused on the emerging Infiniband [2] 
architecture which also seeks to encompass network based I/O. The Infiniband 
architecture specification defines an interconnect technology to link processing nodes and 
I/O devices over a high-speed switched network fabric. At its core is a set of design 
principles for how to implement operating system independent (i.e. user-level) 
communication in a manner that virtualizes resources among an arbitrary number of 
processes. It outlines both a low-level link format and a high- level software interface, 
called verbs, upon which communication abstractions are implemented. Infiniband 
incorporates much of the VI Architecture, but is larger in scope, and represents the 
intellectual merger of many industry efforts in high performance networked I/O. While it 
does introduce some new concepts and components, its core is strongly based on the VI 
Architecture primitives.  
 
In Infiniband, network elements attach to the fabric through a channel adapter (CA). The 
channel adapter is a “device that terminates an Infiniband link and executes transport-
level functions.” There are two categories of channel adapter types, host and target, that 
are used in processing nodes and I/O devices, respectively. The specification suggests 
that the target channel adapter support a subset of the functionality of its host counterpart. 
However, the exact design is left to the implementer.  
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This paper investigates two related aspects of the Infiniband Architecture. The first is 
what are the inherent performance characteristics of an Infiniband channel adapter; both 
in terms of its upper level application interface and lower level packet definitions. Second 
is, how do these performance traits coupled with distributed I/O architectures affect the 
design traits of channel adapters. In the next section, we briefly discuss the Infiniband 
architecture and the prototype implementation on Myrinet. Sections 3 & 4 presents a 
performance analysis and a retrospective of lesson learned from the prototype. Section 5 
discusses the impact of distributed I/O architectures on channel adapter design.  
 
2. Infiniband Prototype 
 
Infiniband is the logical merger of several industry efforts (i.e., Next Generation I/O and 
Future I/O) in network based I/O architectures. Here, the I/O devices are effectively 
separated from the host CPU(s) by a switched network fabric (Figure 1). Different classes 
of devices connect to the network through one of two types of interfaces called channel 
adapters. The host channel adapter (HCA) is used to connect processing nodes to an 
Infiniband network. A principal characteristic of an HCA is that it exports Infiniband 
‘verbs’: a collection of methods with which applications conduct communication 
transactions. The target channel adapter (TCA) is the network interface for the individual 
I/O devices (e.g. disks and WAN adapters). The TCA is similar to the HCA, but can be 
simplified according to the requirements of the attached device(s). It need not export 
verbs and may include specialized hardware as required by the I/O device.  
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Figure 1: Infiniband architecture overview. 



The fundamental transport abstraction supported by the HCA/TCA is the queue pair 
(QP). Each QP consists of two queues: send and receive. Each queue contains a FIFO list 
of work requests that describe a communication transaction to take place. Work requests 
are the Infiniband equivalent of VI architecture descriptors, but the queuing mechanisms 
are not expose. Data exchange between QPs is sourced/sinked to registered memory 
regions established by the application. Infiniband provides packet and message level flow 
control schemes based on receive credits and NAK's. To provide differentiated service 
and robust network management, data traffic is multiplexed onto multiple independent 
streams called Virtual Lanes (VLs). Infiniband supports 16 VLs -- 15 for data and one for 
management functions. 
 
 The Infiniband prototype in this study was developed on the Myrinet system area 
network with the M3M programmable network interface. The programmable nature of 
this system allowed rapid prototyping on a flexible, instrumentable system. The Myrinet 
network consists of 1.2 Gbs full-duplex links arranged in an arbitrary topology. The 
switches are full-crossbar with some amount of internal buffering. Packets are forwarded 
through the network using source-based oblivious cut-through routing. The network 
interface is a 33/66 MHz, 64-Bit PCI card with a general-purpose processor, 2MB of 
SRAM and PCI-DMA bridge (Figure 2). The processor is a 134 MHz 32-bit LANai-9 
RISC processor with a 4-stage instruction pipeline and no instruction or data caches. The 
absence of caching is offset by an aggressive instruction pre-fetch policy with priority for 
not-taken branches. The local memory is 64-bit, pipelined, zero-bus turnaround SRAM. 
There are 6 DMA engines on the NIC: 2 network (transmit and receive) and 4 host. The 
DMA engines, processor and SRAM are linked with an 64-bit proprietary bus. 
Additionally, there is direct hardware support for a ‘doorbell’ mechanism. Values written 
to a region of mapped PCI space are directly written to a FIFO queue in local memory. 
 

The prototype work started with a set of software and firmware that emulated a VI 
Architecture interface. Features of this VI emulation included: 
 

- 1024 VI’s, VI descriptor processing, Registered Memory, Host DRAM based 
Completion Queues 

- Unreliable, Reliable Delivery and Reliable Reception modes 
- Send-Receive, RDMA Write and RDMA Read messaging primitives 

Figure 2: The Myrinet programmable network interface. 



- Round-robin VI and internal message queue transmit scheduling. Incoming 
packets are always given scheduling priority. 

 
The internal message queue is used to generate acknowledgements and responses to 
RDMA read requests. It is scheduled with the same priority as a VI transmission. 
 
The network interface firmware implements two separate message pipelines: transmit and 
receive. Figure 3 illustrates the operation of the pipelines as they would appear for a 
send/receive descriptor. The pipeline behaves similarly for RDMA read responses and 
acknowledgements, but the descriptor download and data download stages are combined. 
Each pipeline has two staging buffers (Tx-1/2 and Rx-1/2) which permit the simultaneous 
operation of the host and network DMA engines. The scheduling gap in the transmit 
pipeline is variable and depends on the amount of incoming network traffic. Since the 
onboard processor can begin only one pipe at a time, the transmit pipe may stall until the 
network is drained. 

 
 
Implementation of the Infiniband prototype was accomplished in essentially two stages. 
The first stage of the build involved modifying the firmware to support the Infiniband  
packet format. The prototype supports most of the components except global routing, 
data-gram and atomic headers. Other exceptions include: lack of the variant CRC, 
inclusion of the VL identifier in computing the invariant CRC and the addition of 
Myrinet specific routing flits at the head of the packet. Additionally, the firmware only 
supports a single virtual lane per connection. 
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The second stage added Infiniband software verbs to the prototype. The verbs layer 
supports reliable and unreliable QP connections and the message operations allowed on 
each. While the verbs prototype implements memory registration, it does not support 
memory windows or protection domains. Connections between QPs are handled through 
a separate mechanism available in the software driver. Due to the similarity of the 
Infiniband and VI Architecture primitives, no changes were made to the existing NIC 
firmware. The software methods implement Infiniband verbs over the VI- like operations 
supported by the NIC. For example, invoking the post send verb with a work request 
creates a VI send descriptor and an associated doorbell operation. The poll for completion 
verb monitors a VI completion queue for entries. Completed descriptors are translated to 
Infiniband work completions that are handed back to the application. 
 
3. Performance Analysis 
 
The Infiniband prototype was evaluated using round-trip time (RTT) benchmarks. The 
benchmarks measured the RTT for unreliable send-receive, reliable send-receive and 
RDMA read communication modes. Details of these benchmarks are illustrated in  
Figures 4 & 5.  



 
 
 
To understand the performance characteristics of various Infiniband components, the 
benchmark set was run for three different scenarios. The first executed the benchmarks 
on the original VI implementation. The second was executed on the first stage prototype 
with the standard VIPL on top but used the Infiniband packet formats. The intent here 
was to understand any inherent costs resulting from using the specified formats. The  
final scenario involved the final prototype which included the verbs layer. All 
measurements were taken on a pair of Compaq SP700s, each with a 550 MHz Pentium III 
processor and a 33 MHz, 32-Bit PCI bus. The message size was fixed at 4 bytes. The 
results are presented in Figure 6. 
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Figure 5: RTT benchmark for unreliable and reliable send-receive.  The 
dotted line indicate the ACK path for a one-way message. 
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Both the VI native and VI over Infiniband packet formats exhibit 50,52 and 30 µsec RTT 
for the unreliable send-receive, reliable send-receive and RDMA read modes 
respectively. This suggests that the Infiniband formats do not incur excessive penalty 
over a native format.  
 
The full Infiniband prototype, which includes the verbs component, adds 4-5 µsec to the 
send-receive RTT and 2 µsec to the RDMA read case. There are several reasons for this 
increase performance cost. First, Infiniband requires the use of completion queues; there 
is no notion of polling an individual QP as there is in the VI Architecture. This introduces 
a layer of indirection that consumes processor cycles. In the VI Architecture, this 
indirection was explicit in that the application would invoke one method to wait on a 
completion queue (i.e. VipCQDone) and then de-queue the descriptor with another 
method (i.e. VipSendDone or VipRecvDone). In Infiniband, this is handled by a 
single verb. This is not to imply that the completion queue concept is wrong. From a 
software engineering viewpoint, it is a scalable means of monitoring several I/O 
operations at once. Given this, the completion mechanisms must be carefully engineered 
and streamlined to ensure minimal impact on the host CPU.  
 
Another source of performance loss occurs from manipulating Infiniband work requests. 
The work request format used for this implementation was derived directly from the 
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Infiniband packet formats.  ‘IB / IB’ refers to the  final prototype with an Infiniband 
verbs layer. 



specification and has a minimum size of 108 bytes, not including data segments. This 
compares to 64 bytes for a VI descriptor that includes 2 data segments. While an 
application might not have to touch every field of a work request for every network 
transaction, the verbs layer necessarily must process/queue the arguments to the NIC. The 
size of the request might result in multiple cache misses and larger I/O bus transactions to 
transfer data to the NIC. While some optimizations could be made in the prototype 
firmware to make it Infiniband aware, the author conjectures that the work request size 
will always incur a host CPU cost. 
 
 
4. Prototype Retrospectives 
 
This section presents an overall discussion of lessons learned from the prototype. 
Emphasis is placed on design points that might be incorporated in production systems. 
 
Small Messages. One of the many things that Infiniband inherits from its VI predecessor 
is a lack of small message support. Sending an 8-byte value requires building a work 
request more than 13 times the message size. Work Requests can include a 32-bit 
immediate data value, but there are two issues in using it. First, it is not clear that 4-bytes 
is sufficient to do a wide range of meaningful operations. The author suggests that its 
width should be at least the precision of an address value (i.e. 8 bytes). This would permit 
a wide range of operations such as passing address space pointers. The send issue lies in 
the fact that the immediate value is considered a special case, thus requiring extra 
processing by both the software verbs and the NIC. For send-receive message 
transactions, the value could always be considered valid; whatever the sender inserts into 
the data field is reflected in the receivers work completion. However, the ‘always valid’ 
method may pose problems for RDMA writes which only optionally consume a receive 
work request if the immediate is present. There are arguments that suggest the RDMA 
write with an optional immediate is best for signaling remote I/O completions. It is not 
clear, however, that this outweighs potential performance gains and that there doesn’t 
exist alternative means. 
 
Hardware/Software Boundary. As I/O devices become more complex, the addition of a 
general-purpose processor opens a wide space of design options. The question becomes 
where to draw the hardware/software support boundary. The fully programmable nature 
of the Myrinet network allows a great deal of flexibility and agility for development and 
testing. However, involving the processor in all aspects of packet processing limits the 
overall capabilities of the interface. Previous work illustrated the importance of hardware 
doorbell support for VI NICs [1] and the addition of such mechanisms from earlier 
Myrinet products improved performance. For Infiniband, parsing the packet formats and 
interpreting bit- field options could be handled by logic optimized for doing so. Higher- 
level functions such as the QP transmit scheduler, error handling or management 
functions could be implemented in software. This would simplify development and 
permit future changes and/or upgrades. 
 



Channel Adapter Integration. Future implementations of Infiniband channel adapters 
might be connected directly to the system memory bus or even built into a processor. 
Such integration yields new design issues over I/O bus interfaces. At first, performance 
might be expected to improve as the network is moved closer to the data. However, 
adverse effects could occur if care is not taken. From this study, one feature of a memory 
bus-based channel adapter that would be important is cache coherence. Previous efforts 
with coherent network interfaces that enable I/O to be cached illustrate performance gains 
by allowing direct reads and writes of registers to be cached [3]. For an Infiniband 
adapter, allowing completion queue state to be cached could significantly reduce wait 
costs for the processor. An earlier version of the Infiniband prototype used NIC based 
completion queues that were monitored through un-cached PIO reads. Moving the queues 
into the host DRAM allowed the CPU to spin on an empty completion queue in its cache. 
Completion updates would invoke the coherence mechanisms of the memory system to 
notify the processor. The impact of host-based queues was an immediate 5-6 µsec 
improvement in completion queue performance. As processors move into multi gigahertz 
speeds, touching the memory bus becomes a more expensive operation, thus emphasizing 
the importance of caching. 
 
5. TCA Architecture 
 
The Infiniband specification vaguely defines the TCA as an interface for I/O devices that 
need not support a verbs software layer. Present efforts view the TCA as a scaled-down 
version of an HCA: fewer QP resources (tens instead of tens of thousands) and a limited 
verbs implementation. However, the actual design of a TCA will depend heavily on the 
overall distributed I/O architecture. Figure 7 illustrates the components of a basic I/O 
stack. Network based I/O effectively breaks this stack at one (or more) layers. This 
section discusses TCA requirements with respect to where the stack is split. 

Application & File System Boundary. Separating the application node from the file-
systems leads to a TCA that directly exports or helps support a user-mode file 
abstraction. An example is the Direct Access File System (DAFS) protocol. Here, 
applications on the same or different nodes may want to access the same remote storage 
facility. This would require the TCA to support many QPs and or end-to-end contexts 
(EEC) to support several connections. Additionally, it is conceivable that the I/O device 
would be ‘intelligent’, i.e. it would have some form of onboard computing ability. Here, 
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the addition of a verbs layer to the TCA would prevent having to reinvent a new interface 
between the I/O processor and the network.  
 
File System & Block Device Boundary. Another approach to network I/O is to abstract 
the remote device as a logical block server. A file system resident on one or more servers 
connects to block server which may consist of a single disk or a RAID-like subsystem. 
The Network Attached Secure Disk (NASD) effort implements this model of storage. A 
TCA supporting a block server would also have to support several connections to 
multiple hosts and/or applications, thus requiring support for as many QPs or EECs as 
there are hosts in the storage network. The need for a verbs interface on this  form of TCA 
is not clear. A programmable I/O device could make use of a verbs layer, but the device 
may be simple enough to have the TCA implement all necessary functionality. 
 
Block Driver & I/O Bus. Splitting the I/O stack at or below the device driver boundary 
effectively creates a remote bus with a message passing network in between. One 
application of this is a remote PCI bus. PCI operations are bridged by an HCA and a 
remote TCA. The advantage here is that bus-based legacy I/O devices and drivers can 
continue to be used without modification. In this I/O architecture, there would only be 
one or two hosts accessing the remote device, thus only a few QPs need be supported. 
Devices would interact using PCI semantics and would probably not require a verbs 
interface. However, the TCA and HCA would both require some specialized hardware 
support to convert PCI commands to and transmit then over the network. 
 
Across all three general I/O architectures, there are some common requirements for the 
TCA: 
 
RDMA. Previous work suggested the advantages of RDMA read and write in network 
attached storage devices [4]. RDMA enables an I/O device to schedule data transfers, 
providing a level of implicit flow control and minimizing the amount of on-device 
buffering. For remote file system or block devices, RDMA allows an I/O device to make 
use of optimized disk scheduling techniques. In the remote I/O bus case, RDMA 
semantically parallels the DMA operations of the bus. 
 
Address Translation. Another common requirement might be the need for an address 
translation mechanism. On an HCA, a method of translating user-addresses to physical 
addresses is used when processing work requests. A TCA might use a similar mechanism 
to translate file system block requests to logical disk block requests. Alternatively, a 
remote I/O bus scenario might use a translation mechanism between I/O Virtual 
addresses and physical I/O addresses. 
 
Single User Image. Unlike an HCA, a TCA would not need to support multiple, un-
trusted applications running on the I/O device. Thus, strong protection mechanisms and 
multi-user memory registration would not be needed. Note, though, that the TCA would 
still need mechanisms to authenticate remote users and protect against malformed remote 
requests.  
 



As network I/O develops it is conceivable that the TCA is equivalent to an HCA. Instead 
of “computers talking to disks”, the model becomes “computers talking to computers” 
and the message protocols are semantically equivalent to IPC. Such communication is not 
limited to between processing nodes and devices. Intelligent devices would communicate 
with each other for availability or performance reasons. Such a shift would require a 
more generalized channel adapter with verbs support for onboard processors and the 
ability to established several connections (QPs).  
 
6. Conclusion 
 
The network-based I/O concept in Infiniband represents a significant architectural 
revolution for today's systems. This paper has detailed an implementation and analysis of 
an Infiniband prototype for the Myrinet SAN. The results provide proof-of-concept of 
Infiniband semantics and initial performance results. The results are not intended to be 
absolute, but rather insight into inherent performance costs and advantages of the 
Infiniband architecture. Also presented was a comparison of TCA design requirement vs. 
distributed I/O architectures. By approaching the problem from stacked I/O architecture 
model, questions such as number of QPs and need for a verbs interface were discussed.  It 
is, perhaps, in the realm of distributed I/O that much of the Infiniband work remains. 
Although Infiniband provides fundamental communication primitives, these are of little 
use if their integration into a scalable distributed I/O model is not understood.   
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