
Analysis of an Infiniband Channel Adapter

Philip Buonadonna

Compaq Computer Corporation, Cupertino, CA1

Abstract

The Infiniband Architecture is a work-in-progress design specification for a high
performance network intended to become the next generation interconnect for I/O. This
paper presents an implementation and analysis of a prototype Infiniband channel adapter
for the Myrinet System Area Network. We discuss the inherent costs and performance
potential of the Infiniband Architecture in terms of both the upper level verbs (i.e. API)
and lower level packet formats. We also discuss the implications of channel adapter
design requirements for I/O applications.

1. Introduction

In order to enable the widespread deployment of high performance, scalable systems,
there has been a concerted effort to develop a standardized cluster communication
architecture for system area networks (SAN). This effort yielded the Virtual Interface
(VI) Architecture [5] in 1998, and is now focused on the emerging Infiniband [2]
architecture which also seeks to encompass network based I/O. The Infiniband
architecture specification defines an interconnect technology to link processing nodes and
I/O devices over a high-speed switched network fabric. At its core is a set of design
principles for how to implement operating system independent (i.e. user-level)
communication in a manner that virtualizes resources among an arbitrary number of
processes. It outlines both a low-level link format and a high- level software interface,
called verbs, upon which communication abstractions are implemented. Infiniband
incorporates much of the VI Architecture, but is larger in scope, and represents the
intellectual merger of many industry efforts in high performance networked I/O. While it
does introduce some new concepts and components, its core is strongly based on the VI
Architecture primitives.

In Infiniband, network elements attach to the fabric through a channel adapter (CA). The
channel adapter is a “device that terminates an Infiniband link and executes transport-
level functions.” There are two categories of channel adapter types, host and target, that
are used in processing nodes and I/O devices, respectively. The specification suggests
that the target channel adapter support a subset of the functionality of its host counterpart.
However, the exact design is left to the implementer.

1 Research sponsored by Compaq Computer Corp. The information presented here does not necessarily
reflect the position of Compaq Computer Corp. and no official endorsement should be inferred.

This paper investigates two related aspects of the Infiniband Architecture. The first is
what are the inherent performance characteristics of an Infiniband channel adapter; both
in terms of its upper level application interface and lower level packet definitions. Second
is, how do these performance traits coupled with distributed I/O architectures affect the
design traits of channel adapters. In the next section, we briefly discuss the Infiniband
architecture and the prototype implementation on Myrinet. Sections 3 & 4 presents a
performance analysis and a retrospective of lesson learned from the prototype. Section 5
discusses the impact of distributed I/O architectures on channel adapter design.

2. Infiniband Prototype

Infiniband is the logical merger of several industry efforts (i.e., Next Generation I/O and
Future I/O) in network based I/O architectures. Here, the I/O devices are effectively
separated from the host CPU(s) by a switched network fabric (Figure 1). Different classes
of devices connect to the network through one of two types of interfaces called channel
adapters. The host channel adapter (HCA) is used to connect processing nodes to an
Infiniband network. A principal characteristic of an HCA is that it exports Infiniband
‘verbs’: a collection of methods with which applications conduct communication
transactions. The target channel adapter (TCA) is the network interface for the individual
I/O devices (e.g. disks and WAN adapters). The TCA is similar to the HCA, but can be
simplified according to the requirements of the attached device(s). It need not export
verbs and may include specialized hardware as required by the I/O device.

RouterRouter
Network or IB

IB
 L

in
k

IB
 L

in
k

SysSys
MemMem

CPUCPU

CPUCPU

MemMem
CntlrCntlr HCAHCA IB LinkIB Link

SwitchSwitch
IB LinkIB Link

IB
 L

in
k

IB
 L

in
k

TCATCA Target

TCATCA

TargetTarget

H
o

st
 In

te
rc

o
n

n
ec

t
H

os
t

In
te

rc
on

ne
ct

RouterRouter
IB Link

Host Channel Adapters
for computing platforms
Host Channel Adapters

for computing platforms

Target Channel Adapters
for Specialized Subsystems
Target Channel Adapters

for Specialized Subsystems

Subnets consist of
Links & Switches
Subnets consist of
Links & Switches

Routers enable
inter-subnet communications

while providing subnet isolation

Routers enable
inter-subnet communications

while providing subnet isolation

Figure 1: Infiniband architecture overview.

The fundamental transport abstraction supported by the HCA/TCA is the queue pair
(QP). Each QP consists of two queues: send and receive. Each queue contains a FIFO list
of work requests that describe a communication transaction to take place. Work requests
are the Infiniband equivalent of VI architecture descriptors, but the queuing mechanisms
are not expose. Data exchange between QPs is sourced/sinked to registered memory
regions established by the application. Infiniband provides packet and message level flow
control schemes based on receive credits and NAK's. To provide differentiated service
and robust network management, data traffic is multiplexed onto multiple independent
streams called Virtual Lanes (VLs). Infiniband supports 16 VLs -- 15 for data and one for
management functions.

 The Infiniband prototype in this study was developed on the Myrinet system area
network with the M3M programmable network interface. The programmable nature of
this system allowed rapid prototyping on a flexible, instrumentable system. The Myrinet
network consists of 1.2 Gbs full-duplex links arranged in an arbitrary topology. The
switches are full-crossbar with some amount of internal buffering. Packets are forwarded
through the network using source-based oblivious cut-through routing. The network
interface is a 33/66 MHz, 64-Bit PCI card with a general-purpose processor, 2MB of
SRAM and PCI-DMA bridge (Figure 2). The processor is a 134 MHz 32-bit LANai-9
RISC processor with a 4-stage instruction pipeline and no instruction or data caches. The
absence of caching is offset by an aggressive instruction pre-fetch policy with priority for
not-taken branches. The local memory is 64-bit, pipelined, zero-bus turnaround SRAM.
There are 6 DMA engines on the NIC: 2 network (transmit and receive) and 4 host. The
DMA engines, processor and SRAM are linked with an 64-bit proprietary bus.
Additionally, there is direct hardware support for a ‘doorbell’ mechanism. Values written
to a region of mapped PCI space are directly written to a FIFO queue in local memory.

The prototype work started with a set of software and firmware that emulated a VI
Architecture interface. Features of this VI emulation included:

- 1024 VI’s, VI descriptor processing, Registered Memory, Host DRAM based
Completion Queues

- Unreliable, Reliable Delivery and Reliable Reception modes
- Send-Receive, RDMA Write and RDMA Read messaging primitives

Figure 2: The Myrinet programmable network interface.

- Round-robin VI and internal message queue transmit scheduling. Incoming
packets are always given scheduling priority.

The internal message queue is used to generate acknowledgements and responses to
RDMA read requests. It is scheduled with the same priority as a VI transmission.

The network interface firmware implements two separate message pipelines: transmit and
receive. Figure 3 illustrates the operation of the pipelines as they would appear for a
send/receive descriptor. The pipeline behaves similarly for RDMA read responses and
acknowledgements, but the descriptor download and data download stages are combined.
Each pipeline has two staging buffers (Tx-1/2 and Rx-1/2) which permit the simultaneous
operation of the host and network DMA engines. The scheduling gap in the transmit
pipeline is variable and depends on the amount of incoming network traffic. Since the
onboard processor can begin only one pipe at a time, the transmit pipe may stall until the
network is drained.

Implementation of the Infiniband prototype was accomplished in essentially two stages.
The first stage of the build involved modifying the firmware to support the Infiniband
packet format. The prototype supports most of the components except global routing,
data-gram and atomic headers. Other exceptions include: lack of the variant CRC,
inclusion of the VL identifier in computing the invariant CRC and the addition of
Myrinet specific routing flits at the head of the packet. Additionally, the firmware only
supports a single virtual lane per connection.

Tx-1

Tx-1

Tx-1

Tx-2

Tx-2

Tx-1

Rx-1

Rx-1

Rx-2

Rx-2

Rx-1

Rx-1

Rx-2 Rx-1

Rx-1

Rx-2

Rx-2

Rx-1

Rx-1

Rx-2

Receive

Transmit

Dx Fetch

Data Fetch
Dx/CQ
Update

Scheduling
Delay (Variable)

Net Transmit

Data Upload Dx FetchDx/CQ
Update

Net Recv

Scheduling
Delay (Bound)

Figure 3: VI/Infiniband message pipelines implemented by the network interface
firmware. (Dx = Descriptor, CQ = Completion Queue)

The second stage added Infiniband software verbs to the prototype. The verbs layer
supports reliable and unreliable QP connections and the message operations allowed on
each. While the verbs prototype implements memory registration, it does not support
memory windows or protection domains. Connections between QPs are handled through
a separate mechanism available in the software driver. Due to the similarity of the
Infiniband and VI Architecture primitives, no changes were made to the existing NIC
firmware. The software methods implement Infiniband verbs over the VI- like operations
supported by the NIC. For example, invoking the post send verb with a work request
creates a VI send descriptor and an associated doorbell operation. The poll for completion
verb monitors a VI completion queue for entries. Completed descriptors are translated to
Infiniband work completions that are handed back to the application.

3. Performance Analysis

The Infiniband prototype was evaluated using round-trip time (RTT) benchmarks. The
benchmarks measured the RTT for unreliable send-receive, reliable send-receive and
RDMA read communication modes. Details of these benchmarks are illustrated in
Figures 4 & 5.

To understand the performance characteristics of various Infiniband components, the
benchmark set was run for three different scenarios. The first executed the benchmarks
on the original VI implementation. The second was executed on the first stage prototype
with the standard VIPL on top but used the Infiniband packet formats. The intent here
was to understand any inherent costs resulting from using the specified formats. The
final scenario involved the final prototype which included the verbs layer. All
measurements were taken on a pair of Compaq SP700s, each with a 550 MHz Pentium III
processor and a 33 MHz, 32-Bit PCI bus. The message size was fixed at 4 bytes. The
results are presented in Figure 6.

Host A HCA A Network HCA B Host B

Time

Build WR,
Notify NIC Get WR,

Get Data,
Start Net TX

Time of Flight

Time of Flight

Rx Data,
Get WR,
Upload & Notify

Recv Notification,
Build Send WR,
Notify NIC

Get WR,
Get Data,
Start Net TX

Rx Data,
Get WR,
Upload & NotifyRecv Notification

Generate &
Send ACK

Process ACK Time of Flight

Figure 5: RTT benchmark for unreliable and reliable send-receive. The
dotted line indicate the ACK path for a one-way message.

Host A HCA A Network HCA B Host B
Time

Build WR,
Notify NIC Get WR,

Start Net TX Time of Flight

Time of Flight
Rx Req,
Sched. Resp,
Get Data,
Send Resp.

Rx Data,
Get WR,
Upload & NotifyRecv Notification

Figure 4: RTT benchmark using RDMA Read.

Both the VI native and VI over Infiniband packet formats exhibit 50,52 and 30 µsec RTT
for the unreliable send-receive, reliable send-receive and RDMA read modes
respectively. This suggests that the Infiniband formats do not incur excessive penalty
over a native format.

The full Infiniband prototype, which includes the verbs component, adds 4-5 µsec to the
send-receive RTT and 2 µsec to the RDMA read case. There are several reasons for this
increase performance cost. First, Infiniband requires the use of completion queues; there
is no notion of polling an individual QP as there is in the VI Architecture. This introduces
a layer of indirection that consumes processor cycles. In the VI Architecture, this
indirection was explicit in that the application would invoke one method to wait on a
completion queue (i.e. VipCQDone) and then de-queue the descriptor with another
method (i.e. VipSendDone or VipRecvDone). In Infiniband, this is handled by a
single verb. This is not to imply that the completion queue concept is wrong. From a
software engineering viewpoint, it is a scalable means of monitoring several I/O
operations at once. Given this, the completion mechanisms must be carefully engineered
and streamlined to ensure minimal impact on the host CPU.

Another source of performance loss occurs from manipulating Infiniband work requests.
The work request format used for this implementation was derived directly from the

0 10 20 30 40 50 60

VI Native

VI / IB

IB / IB

Time (µsec)

RC RDMA Read
RC Send-Recv
UC Send-Recv

Figure 6: RTT Benchmark results for 4-byte messages. ‘VI Native’ refers to a native
VI implementation on Myrinet. ‘VI / IB’ refers to the VI implementation using
Infiniband packet formats. ‘IB / IB’ refers to the final prototype with an Infiniband
verbs layer.

specification and has a minimum size of 108 bytes, not including data segments. This
compares to 64 bytes for a VI descriptor that includes 2 data segments. While an
application might not have to touch every field of a work request for every network
transaction, the verbs layer necessarily must process/queue the arguments to the NIC. The
size of the request might result in multiple cache misses and larger I/O bus transactions to
transfer data to the NIC. While some optimizations could be made in the prototype
firmware to make it Infiniband aware, the author conjectures that the work request size
will always incur a host CPU cost.

4. Prototype Retrospectives

This section presents an overall discussion of lessons learned from the prototype.
Emphasis is placed on design points that might be incorporated in production systems.

Small Messages. One of the many things that Infiniband inherits from its VI predecessor
is a lack of small message support. Sending an 8-byte value requires building a work
request more than 13 times the message size. Work Requests can include a 32-bit
immediate data value, but there are two issues in using it. First, it is not clear that 4-bytes
is sufficient to do a wide range of meaningful operations. The author suggests that its
width should be at least the precision of an address value (i.e. 8 bytes). This would permit
a wide range of operations such as passing address space pointers. The send issue lies in
the fact that the immediate value is considered a special case, thus requiring extra
processing by both the software verbs and the NIC. For send-receive message
transactions, the value could always be considered valid; whatever the sender inserts into
the data field is reflected in the receivers work completion. However, the ‘always valid’
method may pose problems for RDMA writes which only optionally consume a receive
work request if the immediate is present. There are arguments that suggest the RDMA
write with an optional immediate is best for signaling remote I/O completions. It is not
clear, however, that this outweighs potential performance gains and that there doesn’t
exist alternative means.

Hardware/Software Boundary. As I/O devices become more complex, the addition of a
general-purpose processor opens a wide space of design options. The question becomes
where to draw the hardware/software support boundary. The fully programmable nature
of the Myrinet network allows a great deal of flexibility and agility for development and
testing. However, involving the processor in all aspects of packet processing limits the
overall capabilities of the interface. Previous work illustrated the importance of hardware
doorbell support for VI NICs [1] and the addition of such mechanisms from earlier
Myrinet products improved performance. For Infiniband, parsing the packet formats and
interpreting bit- field options could be handled by logic optimized for doing so. Higher-
level functions such as the QP transmit scheduler, error handling or management
functions could be implemented in software. This would simplify development and
permit future changes and/or upgrades.

Channel Adapter Integration. Future implementations of Infiniband channel adapters
might be connected directly to the system memory bus or even built into a processor.
Such integration yields new design issues over I/O bus interfaces. At first, performance
might be expected to improve as the network is moved closer to the data. However,
adverse effects could occur if care is not taken. From this study, one feature of a memory
bus-based channel adapter that would be important is cache coherence. Previous efforts
with coherent network interfaces that enable I/O to be cached illustrate performance gains
by allowing direct reads and writes of registers to be cached [3]. For an Infiniband
adapter, allowing completion queue state to be cached could significantly reduce wait
costs for the processor. An earlier version of the Infiniband prototype used NIC based
completion queues that were monitored through un-cached PIO reads. Moving the queues
into the host DRAM allowed the CPU to spin on an empty completion queue in its cache.
Completion updates would invoke the coherence mechanisms of the memory system to
notify the processor. The impact of host-based queues was an immediate 5-6 µsec
improvement in completion queue performance. As processors move into multi gigahertz
speeds, touching the memory bus becomes a more expensive operation, thus emphasizing
the importance of caching.

5. TCA Architecture

The Infiniband specification vaguely defines the TCA as an interface for I/O devices that
need not support a verbs software layer. Present efforts view the TCA as a scaled-down
version of an HCA: fewer QP resources (tens instead of tens of thousands) and a limited
verbs implementation. However, the actual design of a TCA will depend heavily on the
overall distributed I/O architecture. Figure 7 illustrates the components of a basic I/O
stack. Network based I/O effectively breaks this stack at one (or more) layers. This
section discusses TCA requirements with respect to where the stack is split.

Application & File System Boundary. Separating the application node from the file-
systems leads to a TCA that directly exports or helps support a user-mode file
abstraction. An example is the Direct Access File System (DAFS) protocol. Here,
applications on the same or different nodes may want to access the same remote storage
facility. This would require the TCA to support many QPs and or end-to-end contexts
(EEC) to support several connections. Additionally, it is conceivable that the I/O device
would be ‘intelligent’, i.e. it would have some form of onboard computing ability. Here,

Application

File System

Block Driver

I/O Bus
Device

RAID

Figure 7: A simplified
I/O Stack

the addition of a verbs layer to the TCA would prevent having to reinvent a new interface
between the I/O processor and the network.

File System & Block Device Boundary. Another approach to network I/O is to abstract
the remote device as a logical block server. A file system resident on one or more servers
connects to block server which may consist of a single disk or a RAID-like subsystem.
The Network Attached Secure Disk (NASD) effort implements this model of storage. A
TCA supporting a block server would also have to support several connections to
multiple hosts and/or applications, thus requiring support for as many QPs or EECs as
there are hosts in the storage network. The need for a verbs interface on this form of TCA
is not clear. A programmable I/O device could make use of a verbs layer, but the device
may be simple enough to have the TCA implement all necessary functionality.

Block Driver & I/O Bus. Splitting the I/O stack at or below the device driver boundary
effectively creates a remote bus with a message passing network in between. One
application of this is a remote PCI bus. PCI operations are bridged by an HCA and a
remote TCA. The advantage here is that bus-based legacy I/O devices and drivers can
continue to be used without modification. In this I/O architecture, there would only be
one or two hosts accessing the remote device, thus only a few QPs need be supported.
Devices would interact using PCI semantics and would probably not require a verbs
interface. However, the TCA and HCA would both require some specialized hardware
support to convert PCI commands to and transmit then over the network.

Across all three general I/O architectures, there are some common requirements for the
TCA:

RDMA. Previous work suggested the advantages of RDMA read and write in network
attached storage devices [4]. RDMA enables an I/O device to schedule data transfers,
providing a level of implicit flow control and minimizing the amount of on-device
buffering. For remote file system or block devices, RDMA allows an I/O device to make
use of optimized disk scheduling techniques. In the remote I/O bus case, RDMA
semantically parallels the DMA operations of the bus.

Address Translation. Another common requirement might be the need for an address
translation mechanism. On an HCA, a method of translating user-addresses to physical
addresses is used when processing work requests. A TCA might use a similar mechanism
to translate file system block requests to logical disk block requests. Alternatively, a
remote I/O bus scenario might use a translation mechanism between I/O Virtual
addresses and physical I/O addresses.

Single User Image. Unlike an HCA, a TCA would not need to support multiple, un-
trusted applications running on the I/O device. Thus, strong protection mechanisms and
multi-user memory registration would not be needed. Note, though, that the TCA would
still need mechanisms to authenticate remote users and protect against malformed remote
requests.

As network I/O develops it is conceivable that the TCA is equivalent to an HCA. Instead
of “computers talking to disks”, the model becomes “computers talking to computers”
and the message protocols are semantically equivalent to IPC. Such communication is not
limited to between processing nodes and devices. Intelligent devices would communicate
with each other for availability or performance reasons. Such a shift would require a
more generalized channel adapter with verbs support for onboard processors and the
ability to established several connections (QPs).

6. Conclusion

The network-based I/O concept in Infiniband represents a significant architectural
revolution for today's systems. This paper has detailed an implementation and analysis of
an Infiniband prototype for the Myrinet SAN. The results provide proof-of-concept of
Infiniband semantics and initial performance results. The results are not intended to be
absolute, but rather insight into inherent performance costs and advantages of the
Infiniband architecture. Also presented was a comparison of TCA design requirement vs.
distributed I/O architectures. By approaching the problem from stacked I/O architecture
model, questions such as number of QPs and need for a verbs interface were discussed. It
is, perhaps, in the realm of distributed I/O that much of the Infiniband work remains.
Although Infiniband provides fundamental communication primitives, these are of little
use if their integration into a scalable distributed I/O model is not understood.

References

[1] Buonadonna, P., Geweke A., and Culler, D.E., “An Implementation and Analysis of

the Virtual Interface Architecture”, SC ’98, November 1998

[2] Infiniband Trade Association, “Infiniband Architecture Specification, Vol 1”,

Infiniband Trade Association, March 2000, http://www.infinibandta.org

[3] Mukherjee, S.S., Falsafi, B., Hill M.D., and Wood, D.A., “Coherent Network

Interfaces for Fine-Grain Communication”, 23rd ISCA, May 1996

[4] Nagle, D.F., Ganger, G.R., Butler, J., Goodson, and G., Sabol, C. “Network Support

for Network-Attached Storage”, Hot Interconnects 1999, August 1999

[5] “Virtual Interface Architecture Specification. Version 1.0”, Dec 16 1997,

http://www.via rch.org

