
INSTRUCTOR’S MANUAL FOR

Volume 2: Presentation Material

Behrooz Parhami
Department of Electrical and Computer Engineering

University of California
Santa Barbara, CA 93106-9560, USA

E-mail: parhami@ece.ucsb.edu

© Oxford University Press, Fall 2001

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 2

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

This instructor ’s manual is for
Computer Arithmetic: Algorithms and Hardware Designs, by Behrooz Parhami

ISBN 0-19-512583-5, QA76.9.C62P37
©2000 Oxford University Press, New York, http://www.oup-usa.org

For information and errata, see http://www.ece.ucsb.edu/Faculty/Parhami/text_comp_arit.htm

All rights reserved for the author. No part of this instructor’s manual may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical,

photocopying, recording, or otherwise, without written permission. Contact the author at:
ECE Dept., Univ. of Cali fornia, Santa Barbara, CA 93106-9560, USA (parhami@ece.ucsb.edu)

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 3

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Preface to the Instructor’s Manual

This instructor’s manual consists of two volumes. Volume 1 presents solutions to selected
problems and includes additional problems (many with solutions) that did not make the cut for
inclusion in the text Computer Arithmetic: Algorithms and Hardware Designs (Oxford
University Press, 2000) or that were designed after the book went to print. Volume 2 contains
enlarged versions of the figures and tables in the text as well as additional material, presented in
a format that is suitable for use as transparency masters.

The fall 2001 edition Volume 1, which consists of the following parts, is available to quali fied
instructors through the publisher:

Volume 1 Part I Selected solutions and additional problems

 Part II Question bank, assignments, and projects

The fall 2001 edition of Volume 2, which consists of the following parts, is available as a large
file in postscript format through the book’s Web page:

Volume 2 Parts I-VII Lecture slides and other presentation material

The book’s Web page, given below, also contains an errata and a host of other material (please
note the upper-case “F” and “P” and the underscore symbol after “ text” and “comp”:

http://www.ece.ucsb.edu/Faculty/Parhami/text_comp_arit.htm

The author would appreciate the reporting of any error in the textbook or in this manual,
suggestions for additional problems, alternate solutions to solved problems, solutions to other
problems, and sharing of teaching experiences. Please e-mail your comments to

 parhami@ece.ucsb.edu

or send them by regular mail to the author’s postal address:

 Department of Electrical and Computer Engineering
 University of Cali fornia
 Santa Barbara, CA 93106-9560, USA

Contributions will be acknowledged to the extent possible.

 Behrooz Parhami
 Santa Barbara, Fall 2001

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 4

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Table of Contents

Part I Number Representation
 1 Numbers and Arithmetic
 2 Representing Signed Numbers
 3 Redundant Number Systems
 4 Residue Number Systems

Part II Addition/Subtraction
 5 Basic Addition and Counting
 6 Carry-Lookahead Adders
 7 Variations in Fast Adders
 8 Multioperand Addition

Part III Multiplication
 9 Basic Multipli cation Schemes
10 High-Radix Multipliers
11 Tree and Array Multipliers
12 Variations in Multipliers

Part IV Division
13 Basic Division Schemes
14 High-Radix Dividers
15 Variations in Dividers
16 Division by Convergence

Part V Real Arithmetic
17 Floating-Point Representations
18 Floating-Point Operations
19 Errors and Error Control
20 Precise and Certifiable Arithmetic

Part VI Function Evaluation
21 Square-Rooting Methods
22 The CORDIC Algorithms
23 Variations in Function Evaluation
24 Arithmetic by Table Lookup

Part VII Implementation Topics
25 High-Throughput Arithmetic
26 Low-Power Arithmetic
27 Fault-Tolerant Arithmetic
28 Past, Present, and Future

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 5

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Part I Number Representation

Part Goals
 Review fixed-point number systems
 (floating-point covered in Part V)
 Learn how to handle signed numbers
 Discuss some unconventional methods

Part Synopsis
 Number representation is is a key element
 affecting hardware cost and speed
 Conventional, redundant, residue systems
 Intermediate vs endpoint representations
 Limits of fast arithmetic

Part Contents
Chapter 1 Numbers and Arithmetic
Chapter 2 Representing Signed Numbers
Chapter 3 Redundant Number Systems
Chapter 4 Residue Number Systems

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 6

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

1 Numbers and Arithmetic

 Go to TOC
Chapter Goals
 Define scope and provide motivation
 Set the framework for the rest of the book
 Review positional fixed-point numbers

Chapter Highlights
 What goes on inside your calculator?
 Ways of encoding numbers in k bits
 Radix and digit set: conventional, exotic
 Conversion from one system to another

Chapter Contents
1.1 What is Computer Arithmetic?
1.2 A Motivating Example
1.3 Numbers and Their Encodings
1.4 Fixed-Radix Positional Number Systems
1.5 Number Radix Conversion
1.6 Classes of Number Representations

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 7

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

1.1 What Is Computer Arithmetic?

Pentium Division Bug (1994-95): Pentium’s radix-4 SRT
algorithm occasionally produced an incorrect quotient
First noted in 1994 by T. Nicely who computed sums of
reciprocals of twin primes:

1/5 + 1/7 + 1/11 + 1/13 + . . . + 1/p + 1/(p + 2) + . . .
Worst-case example of division error in Pentium:

4 195 835

3 145 727

1.333 820 44...
1.333 739 06...

c = =
Correct quotient

circa 1994 Pentium
double FLP value;

 accurate to only 14 bits
(worse than single!)

Humor, circa 1995

Top Ten New Intel Slogans for the Pentium:

9.999 997 325 It’s a FLAW, dammit, not a bug
8.999 916 336 It’s close enough, we say so
7.999 941 461 Nearly 300 correct opcodes
6.999 983 153 You don’t need to know what’s inside
5.999 983 513 Redefining the PC –– and math as well
4.999 999 902 We fixed it, really
3.999 824 591 Division considered harmful
2.999 152 361 Why do you think it’s called “floating” point?
1.999 910 351 We’re looking for a few good flaws
0.999 999 999 The errata inside

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 8

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

 Hardware (our focus in this book) Software –––––––––––––––––––––––––––––––– –––––––––––––––––––––––––––
 Design of efficient digital circuits for Numerical methods for solving
 primitive and other arithmetic operations systems of linear equations,
 such as +, –, ×, ÷, √, log, sin, and cos partial differential equations, etc.

 Issues: Algorithms Issues: Algorithms
 Error analysis Error analysis
 Speed/cost tradeoffs Computational complexity
 Hardware implementation Programming
 Testing, verification Testing, verification

 General-Purpose Special-Purpose –––––––––––––– ––––––––––––––––
 Flexible data paths Tailored to application
 Fast primitive areas such as:
 operations like Digital filtering
 +, –, ×, ÷, √ Image processing
 Benchmarking Radar tracking

 Fig. 1.1 The scope of computer arithmetic.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 9

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

1.2 A Motivating Example

Using a calculator with √, x2, and xy functions, compute:

u = ... 2 = 1.000 677 131 “1024th root of 2”

 10 times
v = 21/1024 = 1.000 677 131

Save u and v; If you can’t, recompute when needed.
 10 times -----------
x = (((u2)2)...)2 = 1.999 999 963

x' = u1024 = 1.999 999 973
 10 times -----------
y = (((v2)2)...)2 = 1.999 999 983

y' = v1024 = 1.999 999 994

Perhaps v and u are not really the same value.

w = v – u = 1 × 10–11 Nonzero due to hidden digits

(u – 1) × 1000 = 0.677 130 680 [Hidden ... (0) 68]
(v – 1) × 1000 = 0.677 130 690 [Hidden ... (0) 69]

A simple analysis:

v1024 = (u + 10–11)1024 ≅ u1024 + 1024 × 10–11u1023

 ≅ u1024 + 2 × 10–8

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 10

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Finite Precision Can Lead to Disaster

Example: Failure of Patriot Missile (1991 Feb. 25)
 Source http://www.math.psu.edu/dna/455.f96/disasters.html

American Patriot Missile battery in Dharan, Saudi Arabia,
 failed to intercept incoming Iraqi Scud missile
The Scud struck an American Army barracks, killing 28

Cause, per GAO/IMTEC-92-26 report: “software problem”
 (inaccurate calculation of the time since boot)

Specifics of the problem: time in tenths of second
 as measured by the system’s internal clock
 was multiplied by 1/10 to get the time in seconds
Internal registers were 24 bits wide
1/10 = 0.0001 1001 1001 1001 1001 100 (chopped to 24 b)
Error ≅ 0.1100 1100 × 2–23 ≅ 9.5 × 10–8
Error in 100-hr operation period
 ≅ 9.5 × 10–8 × 100 × 60 × 60 × 10 = 0.34 s
Distance traveled by Scud = (0.34 s) × (1676 m/s) ≅ 570 m
This put the Scud outside the Patriot’s “range gate”

Ironically, the fact that the bad time calculation
 had been improved in some (but not all) code parts
 contributed to the problem,
 since it meant that inaccuracies did not cancel out

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 11

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Finite Range Can Lead to Disaster

Example: Explosion of Ariane Rocket (1996 June 4)
 Source http://www.math.psu.edu/dna/455.f96/disasters.html

Unmanned Ariane 5 rocket
 launched by the European Space Agency
 veered off its flight path, broke up, and exploded
 only 30 seconds after lift-off (altitude of 3700 m)

The $500 million rocket (with cargo) was on its 1st voyage
 after a decade of development costing $7 billion

Cause: “software error in the inertial reference system”

Specifics of the problem: a 64 bit floating point number
 relating to the horizontal velocity of the rocket
 was being converted to a 16 bit signed integer

An SRI* software exception arose during conversion
 because the 64-bit floating point number
 had a value greater than what could be represented
 by a 16-bit signed integer (max 32 767)

*SRI stands for Système de Référence Inertielle
 or Inertial Reference System

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 12

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

1.3 Numbers and Their Encodings

Numbers versus their representations (numerals)

The number “twenty-seven” can be represented in
different ways using numerals or numeration systems:

||||| ||||| ||||| ||||| ||||| || sticks or unary code

27 radix-10 or decimal code (27)ten
11011 radix-2 or binary code (11011)two
XXVII Roman numerals

Encoding of digit sets as binary strings: BCD example

 Digit BCD representation

0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 13

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Encoding of numbers in 4 bits:

Unsigned integer ± Signed integer

Signed fraction 2's-compl fraction

Floating point Logarithmic

Fixed point, 3+1

±

e s log x

Radix
point

0 2 4 6 8 10 12 14 16 −2 −4 −6 −8 −10 −12 −14 −16

Unsigned integers

Signed-magnitude

3 + 1 fixed-point, xxx.x

Signed fractions, ±.xxx

2’s-compl. fractions, x.xxx

2 + 2 floating-point, s × 2^e
 e in [−2, 1], s in [0, 3]

2 + 2 logarithmic (log = xx.xx)

Fig. 1.2 Some of the possible ways of assigning 16 distinct
codes to represent numbers.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 14

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

1.4 Fixed-Radix Positional Number Systems

 (xk–1xk–2 . . . x1x0 . x–1x–2 . . . x–l)r = ∑
i=–l

k–1
 xi r

i

One can generalize to:
arbitrary radix (not necessarily integer, positive, constant)
arbitrary digit set, usually {–α, –α+1, ... , β–1, β} = [–α, β]

Example 1.1. Balanced ternary number system:
 radix r = 3, digit set = [–1, 1]

Example 1.2. Negative-radix number systems:
 radix –r, r ≥ 2, digit set = [0, r – 1]

 The special case with radix –2 and digit set [0, 1]
 is known as the negabinary number system

Example 1.3. Digit set [–4, 5] for r = 10:
 (3 -1 5)ten represents 295 = 300 – 10 + 5

Example 1.4. Digit set [–7, 7] for r = 10:
 (3 -1 5)ten = (3 0 -5)ten = (1 -7 0 -5)ten

Example 1.7. Quater-imaginary number system:
 radix r = 2j, digit set [0, 3].

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 15

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

1.5 Number Radix Conversion

u = w . v

 = (xk–1xk–2 . . . x1x0 . x–1x–2 . . . x–l)r Old

 = (XK–1XK–2 . . . X1X0 . X–1X–2 . . . Xx–L)R New

Radix conversion: arithmetic in the old radix r

Converting whole part w: (105)ten = (?)five
Repeatedly divide by five Quotient Remainder
 105 0
 21 1
 4 4
 0
Therefore, (105)ten = (410)five

Converting fractional part v: (105.486)ten = (410.?)five
Repeatedly multiply by five Whole Part Fraction
 .486
 2 .430
 2 .150
 0 .750
 3 .750
 3 .750
Therefore, (105.486)ten ≅ (410.22033)five

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 16

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Radix conversion: arithmetic in the new radix R

Converting the whole part w
 ((((2 × 5) + 2) × 5 + 0) × 5 + 3) × 5 + 3
 |-----| : : : :
 10 : : : :
 |-----------| : : :
 12 : : :
 |---------------------| : :
 60 : :
 |-------------------------------| :
 303 :
 |---|
 1518

Fig. 1.A Horner’s rule used to convert (22033)five to decimal.

Converting fractional part v: (410.22033)five = (105.?)ten

 (0.22033)five × 55 = (22033)five = (1518)ten

 1518 / 55 = 1518 / 3125 = 0.48576
Therefore, (410.22033)five = (105.48576)ten

 (((((3 / 5) + 3) / 5 + 0) / 5 + 2) / 5 + 2) / 5
 |-----| : : : :
 0.6 : : : :
 |-----------| : : :
 3.6 : : :
 |---------------------| : :
 0.72 : :
 |-------------------------------| :
 2.144 :
 |---|
 2.4288
|---|
 0.48576

Fig. 1.3 Horner’s rule used to convert (0.22033)five to
decimal.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 17

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

1.6 Classes of Number Representations

Integers (fixed-point), unsigned: Chapter 1

Integers (fixed-point), signed

 signed-magnitude, biased, complement: Chapter 2

 signed-digit: Chapter 3
 (but the key point of Chapter 3 is
 use of redundancy for faster arithmetic,
 not how to represent signed values)

 residue number system: Chapter 4
 (again, the key to Chapter 4 is
 use of parallelism for faster arithmetic,
 not how to represent signed values)

Real numbers, floating-point: Chapter 17
 covered in Part V, just before real-number arithmetic

Real numbers, exact: Chapter 20
 continued-fraction, slash, ... (for error-free arithmetic)

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 235

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Part V Real Arithmetic

Part Goals
 Review floating-point representations
 Learn about floating-point arithmetic
 Discuss error sources and error bounds

Part Synopsis
 Combining wide range and high precision
 Floating-point formats and operations
 The ANSI/IEEE standard
 Errors: causes and consequences
 When can we trust computation results?

Part Contents
Chapter 17 Floating-Point Representations
Chapter 18 Floating-Point Operations
Chapter 19 Errors and Error Control
Chapter 20 Precise and Certifiable Arithmetic

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 236

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

17 Floating-Point Representations

 Go to TOC
Chapter Goals
 Study representation method offering both
 wide range (e.g., astronomical distances)
 and high precision (e.g., atomic distances)

Chapter Highlights
 Floating-point formats and tradeoffs
 Why a floating-point standard?
 Finiteness of precision and range
 The two extreme special cases:
 fixed-point and logarithmic numbers

Chapter Contents
17.1 Floating-Point Numbers
17.2 The ANSI/IEEE Floating-Point Standard
17.3 Basic Floating-Point Algorithms
17.4 Conversions and Exceptions
17.5 Rounding Schemes
17.6 Logarithmic Number Systems

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 237

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

17.1 Floating-Point Numbers

No finite number system can represent all real numbers
Various systems can be used for a subset of real numbers

 Fixed-point ± w . f low precision and/or range
 Rational ± p / q difficult arithmetic
 Floating-point ± s × be most common scheme
 Logarithmic ± logbx limiting case of floating-point

Fixed-point numbers
 x = (0000 0000 . 0000 1001)two Small number

 y = (1001 0000 . 0000 0000)two Large number

Floating-point numbers

 x = ± s × be or ± significand × baseexponent

Two signs are involved in a floating-point number.

 1. The significand or number sign,
 usually represented by a separate sign bit

 2. The exponent sign,
 usually embedded in the biased exponent
 (when the bias is a power of 2,
 the exponent sign is the complement of its MSB)

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 238

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

E x p o n e n t :
Signed integer,
often represented
as unsigned value
by adding a bias

Range with h bits:
[–bias, 2 –1–bias]h

S i g n i f i c a n d :
Represented as a fixed-point number

Usually normalized by shifting,
so that the MSB becomes nonzero.
In radix 2, the fixed leading 1
can be removed to save one bit;
this bit is known as "hidden 1".

Sign

0 : +
1 : –

± e s

Fig. 17.1 Typical floating-point number format.

–∞ +∞ 0 FLP– FLP+

Underflow
 Regions

Overflow
 Region

Overflow
 Region

max min

Denser Sparser
Positive
numbers

Negative
numbers

–max –min

Denser Sparser
.

Fig. 17.2 Subranges and special values in floating-point
number representations.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 239

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

17.2 The ANSI/IEEE Floating-Point Standard

Short (32-bit) format

Long (64-bit) format

Sign Exponent Significand

 8 bits,
 bias = 127,
 –126 to 127

 11 bits,
 bias = 1023,
 –1022 to 1023

52 bits for fractional part
(plus hidden 1 in integer part)

23 bits for fractional part
(plus hidden 1 in integer part)

Fig. 17.3 The ANSI/IEEE standard floating-point number
representation formats.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 240

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Table 17.1 Some features of the ANSI/IEEE standard floating-
point number representation formats

–––
Feature Single/Short Double/Long
–––
Word width (bits) 32 64

Significand bits 23 + 1 hidden 52 + 1 hidden

Significand range [1, 2 – 2–23] [1, 2 – 2–52]

Exponent bits 8 11

Exponent bias 127 1023

Zero (±0) e + bias = 0, f = 0 e + bias = 0, f = 0

Denormal e + bias = 0, f ≠ 0 e + bias = 0, f ≠ 0
 represents ±0.f×2–126 represents ±0.f×2–1022

Infinity (±∞) e + bias = 255, f = 0 e + bias = 2047, f = 0

Not-a-number (NaN) e + bias = 255, f ≠ 0 e + bias = 2047, f ≠ 0

Ordinary number e + bias ∈ [1, 254] e + bias ∈ [1, 2046]
 e ∈ [–126, 127] e ∈ [–1022, 1023]
 represents 1.f × 2e represents 1.f × 2e

min 2–126 ≅ 1.2 × 10–38 2–1022 ≅ 2.2 × 10–308

max ≅ 2128 ≅ 3.4 × 1038 ≅ 21024 ≅ 1.8 × 10308
–––

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 241

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Operations on special operands:
 Ordinary number ÷ (+∞) = ±0
 (+∞) × Ordinary number = ±∞
 NaN + Ordinary number = NaN

0 2
–126Denormals 2

–125

.

min

. . .

Fig. 17.4 Denormals in the IEEE single-precision format.

The IEEE floating-point standard also defines

 The four basic arithmetic op’s (+, –, ×, ÷) and x
 must match the results that would be obtained if
 intermediate computations were infinitely precise

 Extended formats for greater internal precision

 Single-extended: ≥ 11 bits for exponent
 ≥ 32 bits for significand
 bias unspecified, but
 exp range ⊇ [–1022, 1023]

 Double-extended: ≥ 15 bits for exponent
 ≥ 64 bits for significand
 exp range ⊇ [–16 382, 16 383]

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 242

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

17.3 Basic Floating-Point Algorithms

Addition/Subtraction

Assume e1 ≥ e2; need alignment shift (preshift) if e1 > e2:

 (± s1 × be1) + (± s2 × be2) = (± s1 × be1) + (± s2 / be1–e2) × be1
 = (± s1 ± s2 / be1–e1) × be1 = ± s × be

Like signs: 1-digit normalizing right shift may be needed
Different signs: shifting by many positions may be needed
Overflow/underflow during addition or normalization

Multiplication

(± s1 × be1) × (± s2 × be2) = ± (s1 × s2) × be1+e2

Postshifting for normalization, exponent adjustment
Overflow/underflow during multiplication or normalization

Division

(± s1 × be1) / (± s2 × be2) = ± (s1/s2) × be1–e2

Square-rooting

First make the exponent even, if necessary

 √(s × be) = s × be/2

In all algorithms, rounding complications are ignored here

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 243

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

17.4 Conversions and Exceptions

Conversions from fixed- to floating-point

Conversions between floating-point formats

Conversion from high to lower precision: Rounding

ANSI/IEEE standard includes four rounding modes:

 Round to nearest even [default rounding mode]
 Round toward zero (inward)
 Round toward +∞ (upward)
 Round toward –∞ (downward)

Exceptions

 divide by zero
 overflow
 underflow
 inexact result: rounded value not same as original
 invalid operation: examples include
 addition (+∞) + (–∞)
 multiplication 0 × ∞
 division 0 / 0 or ∞ / ∞
 square-root operand < 0

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 244

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

17.5 Round ing Schemes

 Round

xk–1xk–2 . . . x1x0 . x–1x–2 . . . x–l ⇒ yk–1yk–2 . . . y1y0 .

Special case: truncation or chopping

 Chop

xk–1xk–2 . . . x1x0 . x–1x–2 . . . x–l ⇒ xk–1xk–2 . . . x1x0 .

chop(x)

–4

–3

–2

–1

x
–4 –3 –2 –1 4 3 2 1

4

3

2

1

chop(x)

–4

–3

–2

–1

x
–4 –3 –2 –1 4 3 2 1

4

3

2

1

Fig. 17.5 Truncation o r chopp ing o f a signed-magnitude

number (same as round toward 0).

Fig. 17.6 Truncation o r chopp ing o f a 2’s-complement
number (same as downward-directed round ing).

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 245

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

rtn(x)

–4

–3

–2

–1

x
–4 –3 –2 –1 4 3 2 1

4

3

2

1

Fig. 17.7 Rounding of a signed-magnitude value to the
nearest number.

Ordinary rounding has a slight upward bias

Assume that (xk–1xk–2

. . . x1x0 . x–1x–2)two is to be rounded

 to an integer (yk–1yk–2
. . . y1y0 .)two

The four possible cases, and their representation errors:

 x–1x–2 = 00 round down error = 0
 x–1x–2 = 01 round down error = –0.25
 x–1x–2 = 10 round up error = 0.5
 x–1x–2 = 11 round up error = 0.25

Assume 4 cases are equiprobable ⇒ mean error = 0.125

For certain calculations, the probability of getting a
midpoint value can be much higher than 2–l

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 246

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

rtne(x)

–4

–3

–2

–1

x
–4 –3 –2 –1 4 3 2 1

4

3

2

1

R*(x)

–4

–3

–2

–1

x
–4 –3 –2 –1 4 3 2 1

4

3

2

1

Fig. 17.8 Rounding to the nearest even number.

Fig. 17.9 R* rounding or rounding to the nearest odd number.

jam(x)

–4

–3

–2

–1

x
–4 –3 –2 –1 4 3 2 1

4

3

2

1

Fig. 17.10 Jamming or von Neumann rounding.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 247

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

ROM rounding

 32×4-ROM-Round

xk–1 . . . x4x3x2x1x0 . x–1 . . . x–l ⇒ xk–1 . . . x4y3y2y1y0 .
 |–––––––––––| |––––––|
 ROM Address ROM Data

The rounding result is the same as that of the round to
nearest scheme in 15 of the 16 possible cases, but a
larger error is introduced when x3 = x2 = x1 = x0 = 1

ROM(x)

–4

–3

–2

–1

x
–4 –3 –2 –1 4 3 2 1

4

3

2

1

Fig. 17.11 ROM rounding with an 8 ×× 2 table.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 248

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

We may need result errors to be in a known direction

Example: in computing upper bounds,
 larger results are acceptable,
 but results that are smaller than correct values
 could invalidate the upper bound

This leads to the definition of directed rounding modes
 upward-directed rounding (round toward +∞) and
 downward-directed rounding (round toward –∞)
 (required features of the IEEE floating-point standard)

up(x)

–4

–3

–2

–1

x
–4 –3 –2 –1 4 3 2 1

4

3

2

1

chop(x) = down(x)

–4

–3

–2

–1

x
–4 –3 –2 –1 4 3 2 1

4

3

2

1

Fig. 17.12 Upward-directed round ing o r round ing toward +∞∞

(see Fig. 17.6 for downward-directed round ing, or
round ing toward –∞∞).

Fig. 17.6 Truncation o r chopp ing o f a 2’s-complement
number (same as downward-directed round ing).

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 249

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

17.6 Logarithmic Number Systems

sign-and-logarithm number system:
 limiting case of floating-point representation

 x = ±be × 1 e = logb |x|

b usually called the logarithm base, not exponent base

Sign

Implied radix point

e±

Fixed-point exponent

Fig. 17.13 Logarithmic number representation with sign and
fixed-point exponent.

The log is often represented as a 2’s-complement number

 (Sx, Lx) = (sign(x), log2|x|)

Simple multiply and divide; harder add and subtract

Example: 12-bit, base-2, logarithmic number system

 1 1 0 1 1 0 0 0 1 0 1 1
 ∆
 Sign Radix point

The above represents –2–9.828125 ≅ –(0.0011)ten

number range ≅ [–216, 216], with min = 2–16

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 265

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

19 Errors and Error Control

 Go to TOC
Chapter Goals
 Learn about sources of computation errors
 consequences of inexact arithmetic
 and methods for avoiding or limiting errors

Chapter Highlights
 Representation and computation errors
 Absolute versus relative error
 Worst-case versus average error
 Why 3 × (1/3) is not necessarily 1?
 Error analysis and bounding

Chapter Contents
19.1 Sources of Computational Errors
19.2 Invalidated Laws of Algebra
19.3 Worst-Case Error Accumulation
19.4 Error Distribution and Expected Errors
19.5 Forward Error Analysis
19.6 Backward Error Analysis

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 266

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

19.1 Sources of Computational Errors

FLP approximates exact computation with real numbers

Two sources of errors to understand and counteract:

 Representation errors
 e.g., no machine representation for 1/3, 2 , or π
 Arithmetic errors
 e.g., (1 + 2–12)2 = 1 + 2–11 + 2–24
 not representable in IEEE format

We saw early in the course that errors due to finite
precision can lead to disasters in life-critical applications

Example 19.1: Compute 1/99 – 1/100
(decimal floating-point format, 4-digit significand in [1, 10),
single-digit signed exponent)
precise result = 1/9900 ≅ 1.010×10–4

 (error ≅ 10–8
 or 0.01%)

x = 1/99 ≅ 1.010 × 10–2 Error ≅ 10–6 or 0.01%
y = 1/100 = 1.000 × 10–2 Error = 0
z = x –fp y = 1.010 × 10–2 – 1.000 × 10–2 = 1.000 × 10–4

 Error ≅ 10–6 or 1%

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 267

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Notation for floating-point system FLP(r, p, A)

Radix r (assume to be the same as the exponent base b)
Precision p in terms of radix-r digits
Approximation scheme A ∈ {chop, round, rtne, chop(g), ...}

Let x = res be an unsigned real number, normalized such
that 1/r ≤ s < 1, and xfp be its representation in FLP(r, p, A)

xfp = resfp = (1 + η)x

A = chop –ulp < sfp – s ≤ 0 –r × ulp < η ≤ 0

A = round –ulp/2 < sfp – s ≤ ulp/2 |η| ≤ r × ulp/2

Arithmetic in FLP(r, p, A)

Obtain an infinite-precision result, then chop, round, . . .

Real machines approximate this process by keeping g > 0
guard digits, thus doing arithmetic in FLP(r, p, chop(g))

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 268

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Error analysis for FLP(r, p, A)

Consider multiplication, division, addition, and subtraction
for positive operands xfp and yfp in FLP(r, p, A)

Due to representation errors, xfp = (1 + σ)x , yfp = (1 + τ)y

xfp ×fp yfp = (1 + η)xfpyfp = (1 + η)(1 + σ)(1 + τ)xy

 = (1 + η + σ + τ + ησ + ητ + στ + ηστ)xy
 ≅ (1 + η + σ + τ)xy

xfp /fp yfp = (1 + η)xfp/yfp = (1 + η)(1 + σ)x/[(1 + τ)y]

 = (1 + η)(1 + σ)(1 – τ)(1 + τ2)(1 + τ4)(. . .)x/y
 ≅ (1 + η + σ – τ)x/y

xfp +fp yfp = (1 + η)(xfp + yfp) = (1 + η)(x + σx + y + τy)

 = (1 + η)(1 +
σx + τy
x + y)(x + y)

Since |σx + τy| ≤ max(|σ|, |τ|)(x + y), the magnitude of the
worst-case relative error in the computed sum is roughly
bounded by |η| + max(|σ|, |τ|)

xfp –fp yfp = (1 + η)(xfp – yfp) = (1 + η)(x + σx – y – τy)

 = (1 + η)(1 +
σx – τy
x – y)(x – y)

The term (σx – τy)/(x – y) can be very large if x and y are
both large but x – y is relatively small

This is known as cancellation or loss of significance

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 269

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Fixing the problem

The part of the problem that is due to η being large can be
fixed by using guard digits

Theorem 19.1: In floating-point system FLP(r, p, chop(g))
with g ≥ 1 and –x < y < 0 < x, we have:

x +fp y = (1 + η)(x + y) with –r–p +1 < η < r–p–g+2

Corollary: In FLP(r, p, chop(1))
 x +fp y = (1 + η)(x + y) with |η| < r–p+1

So, a single guard digit is sufficient to make the relative
arithmetic error in floating-point addition/subtraction
comparable to the representation error with truncation

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 270

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Example 19.2: Decimal floating-point system (r = 10)
 with p = 6 and no guard digit

x = 0.100 000 000 × 103 y = –0.999 999 456 × 102
xfp = .100 000 × 103 yfp = – .999 999 × 102

x + y = 0.544×10–4 and xfp + yfp = 10–4, but:

 xfp +fp yfp = .100 000 × 103 –fp .099 999 × 103

 = .100 000 × 10–2

Relative error = (10–3 – 0.544×10–4)/(0.544×10–4) ≅ 17.38
 (i.e., the result is 1738% larger than the correct sum!)

With 1 guard digit, we get:

 xfp +fp yfp = 0.100 000 0 × 103 –fp 0.099 999 9 × 103

 = 0.100 000 × 10–3

Relative error = 80.5% relative to the exact sum x + y
but the error is 0% with respect to xfp + yfp

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 271

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

19.2 Invalidated Laws of Algebra

Many laws of algebra do not hold for floating-point
arithmetic (some don’t even hold approximately)

This can be a source of confusion and incompatibility

Associative law of addition: a + (b + c) = (a + b) + c

a = 0.123 41×105 b = –0.123 40×105 c = 0.143 21×101

a +fp (b +fp c)

 = 0.123 41×105 +fp (–0.123 40×105 +fp 0.143 21×101)

 = 0.123 41 × 105 –fp 0.123 39 × 105

= 0.200 00 × 101

(a +fp b) +fp c

 = (0.123 41×105 –fp 0.123 40×105) +fp 0.143 21×101

 = 0.100 00 × 101 +fp 0.143 21 × 101

= 0.243 21 × 101

The two results differ by about 20%!

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 272

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

A possible remedy: unnormalized arithmetic

a +fp (b +fp c)

 = 0.123 41×105 +fp (–0.123 40×105 +fp 0.143 21×101)

 = 0.123 41 × 105 –fp 0.123 39 × 105 = 0.000 02 × 105

(a +fp b) +fp c

 = (0.123 41×105 –fp 0.123 40×105) +fp 0.143 21×101

 = 0.000 01 × 105 +fp 0.143 21 × 101 = 0.000 02 × 105
Not only are the two results the same but they carry with
them a kind of warning about the extent of potential error

Let’s see if using 2 guard digits helps:

a +fp (b +fp c)

 = 0.123 41×105 +fp (–0.123 40×105 +fp 0.143 21×101)

 = 0.123 41×105 –fp 0.123 385 7×105 = 0.243 00 × 101

(a +fp b) +fp c

 = (0.123 41×105 –fp 0.123 40×105) +fp 0.143 21×101

 = 0.100 00 × 101 +fp 0.143 21 × 101 = 0.243 21 × 101

The difference is now about 0.1%; still too high

Using more guard digits will improve the situation but does
not change the fact that laws of algebra cannot be
assumed to hold in floating-point arithmetic

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 273

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Examples of other laws of algebra that do not hold:
 Associative law of multiplication
 a × (b × c) = (a × b) × c
 Cancellation law (for a > 0)
 a × b = a × c implies b = c
 Distributive law
 a × (b + c) = (a × b) + (a × c)
 Multiplication canceling division
 a × (b / a) = b

Before the ANSI-IEEE floating-point standard became
available and widely adopted, these problems were
exacerbated by the use of many incompatible formats

Example 19.3: The formula x = –b ± d, with d = b2 – c ,
yielding the roots of the quadratic equation x2 + 2bx + c = 0,
can be rewritten as x = –c / (b ± d)

Example 19.4: The area of a triangle with sides a, b, and
c (assume a ≥ b ≥ c) is given by the formula

 A = s(s – a)(s – b)(s – c)

where s = (a + b + c)/2. When the triangle is very flat, such
that a ≅ b + c, Kahan’s version returns accurate results:

 A =
1
4 (a + (b + c))(c – (a – b))(c + (a – b))(a + (b – c))

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 274

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

19.3 Worst-Case Error Accumulation

In a sequence of operations, round-off errors might add up

The larger the number of cascaded computation steps
(that depend on results from previous steps), the greater
the chance for, and the magnitude of, accumulated errors

With rounding, errors of opposite signs tend to cancel
each other out in the long run, but one cannot count on
such cancellations

Example: inner-product calculation z = ∑1023
i=0 x(i)y(i)

Max error per multiply-add step = ulp/2 + ulp/2 = ulp
Total worst-case absolute error = 1024 ulp
 (equivalent to losing 10 bits of precision)

A possible cure: keep the double-width products in their
entirety and add them to compute a double-width result
which is rounded to single-width at the very last step

Multiplications do not introduce any round-off error
Max error per addition = ulp2/2
Total worst-case error = 1024 × ulp2/2

Therefore, provided that overflow is not a problem, a
highly accurate result is obtained

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 275

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Moral of the preceding examples:

Perform intermediate computations with a higher precision
than what is required in the final result

Implement multiply-accumulate in hardware (DSP chips)

Reduce the number of cascaded arithmetic operations;
So, using computationally more efficient algorithms has
the double benefit of reducing the execution time as well
as accumulated errors

Kahan’s summation algorithm or formula

To compute s = ∑n–1
i=0 x(i), proceed as follows

 s ← x(0)

 c ← 0 {c is a correction term}

 for i = 1 to n – 1 do

 y ← x(i) – c {subtract correction term}

 z ← s + y

 c ← (z – s) – y {find next correction term}

 s ← z

 endfor

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 276

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

19.4 Error Distribution and Expected Errors

MRRE = maximum relative representation error

 MRRE(FLP(r, p, chop)) = r–p+1

 MRRE(FLP(r, p, round)) = r–p+1/2

From a practical standpoint, however, the distribution of
errors and their expected values may be more important

Limiting ourselves to positive significands, we define:

 ARRE(FLP(r, p, A)) =
⌡


⌠

1/r

1

|xfp – x|

x
dx

x ln r

1/(x ln r) is a probability density function

0

1

2

3

1/2 1 3/4
Significand x

1 / (x ln 2)

Fig. 19.1 Probability density function for the distribution of
normalized significands in FLP(r = 2, p, A).

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 277

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

19.5 Forward Error Analysis

Consider the computation y = ax + b
and its floating-point version:

 yfp = (afp ×fp xfp) +fp bfp = (1 + η)y

Can we establish any useful bound on the magnitude of
the relative error η, given the relative errors in the input
operands afp, bfp, and xfp?

The answer is “no”

Forward error analysis =

 Finding out how far yfp can be from ax + b,
 or at least from afpxfp + bfp, in the worst case

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 278

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

a. Automatic error analysis

 Run selected test cases with higher precision
 and observe the differences between the new,
 more precise, results and the original ones

b. Significance arithmetic

 Roughly speaking, same as unnormalized arithmetic,
 although there are some fine distinctions
 The result of the unnormalized decimal addition

 .1234 × 105 +fp .0000 × 1010 = .0000 × 1010

 warns us that precision has been lost

c. Noisy-mode computation

 Random digits, rather than 0s, are inserted
 during normalizing left shifts
 If several runs of the computation in noisy mode
 yield comparable results, then we are probably safe

d. Interval arithmetic

 An interval [xlo, xhi] represents x, xlo ≤ x ≤ xhi

 With xlo, xhi, ylo, yhi > 0, to find z = x / y, we compute

 [zlo, zhi] = [xlo /∇fp yhi, xhi /∆fp ylo]

 Intervals tend to widen after many computation steps

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 279

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

19.6 Backward Error Analysis

Backward error analysis replaces the original question

 How much does yfp deviate from the correct result y?

with another question:

 What input changes produce the same deviation?

In other words, if the exact identity

yfp = aaltxalt + balt

holds for alternate parameter values aalt, balt, and xalt,
we ask how far aalt, balt, xalt can be from afp, bfp, xfp

Thus, computation errors are converted or compared to
additional input errors

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 280

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Example of backward error analysis

yfp = afp ×fp xfp +fp bfp

 = (1 + µ)[afp ×fp xfp + bfp] with |µ| < r–p+1 = r × ulp

 = (1 + µ)[(1 + ν)afpxfp + bfp] with |ν| < r–p+1 = r × ulp

 = (1 + µ)afp (1 + ν)xfp + (1 + µ)bfp

 = (1 + µ)(1 + σ)a (1 + ν)(1 + δ)x + (1 + µ)(1 + γ)b
 ≅ (1 + σ + µ)a (1 + δ + ν)x + (1 + γ + µ)b

So the approximate solution of the original problem is the
exact solution of a problem close to the original one

We are, thus, assured that the effect of arithmetic errors
on the result yfp is no more severe than that of r × ulp
additional error in each of the inputs a, b, and x

