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Preface to the Instructor’s Manual 

This instructor’s manual consists of two volumes. Volume 1 presents solutions to selected 
problems and includes additional problems (many with solutions) that did not make the cut for 
inclusion in the text Computer Arithmetic: Algorithms and Hardware Designs (Oxford 
University Press, 2000) or that were designed after the book went to print. Volume 2 contains 
enlarged versions of the figures and tables in the text as well as additional material, presented in 
a format that is suitable for use as transparency masters.  

The fall 2001 edition Volume 1, which consists of the following parts, is available to quali fied 
instructors through the publisher: 

Volume 1 Part I  Selected solutions and additional problems 

   Part II   Question bank, assignments, and projects 

The fall 2001 edition of Volume 2, which consists of the following parts, is available as a large 
file in postscript format through the book’s Web page: 

Volume 2 Parts I-VII Lecture slides and other presentation material 

The book’s Web page, given below, also contains an errata and a host of other material (please 
note the upper-case “F” and “P” and the underscore symbol after “ text” and “comp”: 

http://www.ece.ucsb.edu/Faculty/Parhami/text_comp_arit.htm 

The author would appreciate the reporting of any error in the textbook or in this manual, 
suggestions for additional problems, alternate solutions to solved problems, solutions to other 
problems, and sharing of teaching experiences. Please e-mail your comments to  

 parhami@ece.ucsb.edu 

or send them by regular mail to the author’s postal address: 

 Department of Electrical and Computer Engineering 
 University of Cali fornia 
 Santa Barbara, CA 93106-9560, USA 

Contributions will be acknowledged to the extent possible. 

 
      Behrooz Parhami 
      Santa Barbara, Fall 2001 
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Part I Number Representation 

Part Goals 
 Review fixed-point number systems 
  (floating-point covered in Part V) 
 Learn how to handle signed numbers 
 Discuss some unconventional methods 
 
Part Synopsis 
  Number representation is is a key element 
  affecting hardware cost and speed 
 Conventional, redundant, residue systems 
 Intermediate vs endpoint representations 
 Limits of fast arithmetic 
 
Part Contents 
Chapter 1 Numbers and Arithmetic 
Chapter 2 Representing Signed Numbers 
Chapter 3 Redundant Number Systems 
Chapter 4 Residue Number Systems 
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1 Numbers and Arithmetic 

   Go to TOC 
Chapter Goals 
 Define scope and provide motivation 
 Set the framework for the rest of the book 
 Review positional fixed-point numbers 
 
Chapter Highlights 
 What goes on inside your calculator? 
 Ways of encoding numbers in k bits 
 Radix and digit set: conventional, exotic 
 Conversion from one system to another 
 
Chapter Contents 
1.1 What is Computer Arithmetic? 
1.2 A Motivating Example 
1.3 Numbers and Their Encodings 
1.4 Fixed-Radix Positional Number Systems 
1.5 Number Radix Conversion 
1.6 Classes of Number Representations 
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1.1 What Is Computer Arithmetic? 

Pentium Division Bug (1994-95): Pentium’s radix-4 SRT 
algorithm occasionally produced an incorrect quotient  
First noted in 1994 by T. Nicely who computed sums of 
reciprocals of twin primes:  

1/5 + 1/7 + 1/11 + 1/13 + . . . + 1/p + 1/(p + 2) + . . . 
Worst-case example of division error in Pentium: 
 

4 195 835 

3 145 727 

1.333 820 44... 
1.333 739 06... 

c = = 
Correct quotient 

circa 1994 Pentium   
double FLP value;  

 accurate to only 14 bits  
(worse than single!) 

 
Humor, circa 1995 

Top Ten New Intel Slogans for the Pentium: 
 
9.999 997 325 It’s a FLAW, dammit, not a bug 
8.999 916 336 It’s close enough, we say so 
7.999 941 461 Nearly 300 correct opcodes 
6.999 983 153 You don’t need to know what’s inside 
5.999 983 513 Redefining the PC –– and math as well 
4.999 999 902 We fixed it, really 
3.999 824 591 Division considered harmful 
2.999 152 361 Why do you think it’s called “floating” point? 
1.999 910 351 We’re looking for a few good flaws 
0.999 999 999 The errata inside 
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 Hardware (our focus in this book) Software  ––––––––––––––––––––––––––––––––  –––––––––––––––––––––––––––  
 Design of efficient digital circuits for Numerical methods for solving 
 primitive and other arithmetic operations systems of linear equations, 
 such as +, –, ×, ÷, √, log, sin, and cos partial differential equations, etc. 
 
 Issues:  Algorithms Issues:  Algorithms 
  Error analysis  Error analysis 
  Speed/cost tradeoffs  Computational complexity 
  Hardware implementation  Programming 
  Testing, verification  Testing, verification 
 
     General-Purpose Special-Purpose      –––––––––––––– –––––––––––––––– 
     Flexible data paths  Tailored to application 
     Fast primitive     areas such as: 
     operations like  Digital filtering 
     +, –, ×, ÷, √ Image processing 
  Benchmarking Radar tracking 

 Fig. 1.1 The scope of computer arithmetic. 
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1.2 A Motivating Example 

Using a calculator with √, x2, and xy functions, compute: 

u =  ... 2   =  1.000 677 131   “1024th root of 2” 
 ----------- 
   10 times       
v  =  21/1024      =  1.000 677 131   

Save u and v; If you can’t, recompute when needed.    
       10 times     ----------- 
x  = (((u2)2)...)2  =  1.999 999 963 

x'  =  u1024     =  1.999 999 973  
       10 times     ----------- 
y = (((v2)2)...)2  =  1.999 999 983 

y' = v1024       =  1.999 999 994  

Perhaps v and u are not really the same value.  

w = v – u  = 1 × 10–11  Nonzero due to hidden digits     

(u – 1) × 1000   =  0.677 130 680   [Hidden  ... (0) 68] 
(v – 1) × 1000    =  0.677 130 690    [Hidden  ... (0) 69] 

A simple analysis: 

v1024 = (u + 10–11)1024 ≅ u1024 + 1024 × 10–11u1023  

            ≅ u1024 + 2 × 10–8   
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Finite Precision Can Lead to Disaster 
 

Example: Failure of Patriot Missile (1991 Feb. 25) 
 Source http://www.math.psu.edu/dna/455.f96/disasters.html 
 
American Patriot Missile battery in Dharan, Saudi Arabia,  
 failed to intercept incoming Iraqi Scud missile 
The Scud struck an American Army barracks, killing 28  
 
Cause, per GAO/IMTEC-92-26 report: “software problem” 
 (inaccurate calculation of the time since boot) 
 
Specifics of the problem: time in tenths of second  
 as measured by the system’s internal clock  
 was multiplied by 1/10 to get the time in seconds  
Internal registers were 24 bits wide 
1/10 = 0.0001 1001 1001 1001 1001 100 (chopped to 24 b) 
Error ≅ 0.1100 1100 × 2–23 ≅ 9.5 × 10–8 
Error in 100-hr operation period  
   ≅ 9.5 × 10–8 × 100 × 60 × 60 × 10 = 0.34 s 
Distance traveled by Scud = (0.34 s) × (1676 m/s) ≅ 570 m 
This put the Scud outside the Patriot’s “range gate” 
 
Ironically, the fact that the bad time calculation  
 had been improved in some (but not all) code parts 
 contributed to the problem,  
 since it meant that inaccuracies did not cancel out  
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Finite Range Can Lead to Disaster 
 
Example: Explosion of Ariane Rocket (1996 June 4) 
 Source http://www.math.psu.edu/dna/455.f96/disasters.html  
 
Unmanned Ariane 5 rocket  
 launched by the European Space Agency 
 veered off its flight path, broke up, and exploded 
 only 30 seconds after lift-off (altitude of 3700 m) 
 
The $500 million rocket (with cargo) was on its 1st voyage 
 after a decade of development costing $7 billion 
 
Cause: “software error in the inertial reference system” 
 
Specifics of the problem: a 64 bit floating point number  
 relating to the horizontal velocity of the rocket 
 was being converted to a 16 bit signed integer 
 
An SRI* software exception arose during conversion 
 because the 64-bit floating point number  
 had a value greater than what could be represented  
 by a 16-bit signed integer (max 32 767) 
 
*SRI stands for Système de Référence Inertielle  
 or Inertial Reference System 
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1.3 Numbers and Their Encodings 

Numbers versus their representations (numerals)  
 
The number “twenty-seven” can be represented in 
different ways using numerals or numeration systems: 
 
||||| ||||| ||||| ||||| ||||| || sticks or unary code 
 
27    radix-10 or decimal code (27)ten  
11011   radix-2 or binary code  (11011)two  
XXVII    Roman numerals  
 
 
 
Encoding of digit sets as binary strings: BCD example 
 
    Digit  BCD representation 

0   0 0 0 0   
1   0 0 0 1 
2   0 0 1 0 
3   0 0 1 1 
4   0 1 0 0 
5   0 1 0 1 
6   0 1 1 0 
7   0 1 1 1 
8   1 0 0 0 
9   1 0 0 1 
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Encoding of numbers in 4 bits: 

 
Unsigned integer ± Signed integer 

Signed fraction 2's-compl fraction 

Floating point Logarithmic 

Fixed point, 3+1 

± 

e s log x 

Radix  
point 

 
 
 

0 2 4 6 8 10 12 14 16 −2 −4 −6 −8 −10 −12 −14 −16 

Unsigned integers 

Signed-magnitude 

3 + 1 fixed-point, xxx.x 

Signed fractions, ±.xxx 

2’s-compl. fractions, x.xxx 

2 + 2 floating-point, s × 2^e 
      e in [−2, 1], s in [0, 3] 

2 + 2 logarithmic (log = xx.xx) 
  

Fig. 1.2 Some of the possible ways of assigning 16 distinct 
codes to represent numbers.  
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1.4 Fixed-Radix Positional Number Systems 

 ( xk–1xk–2 . . . x1x0 . x–1x–2 . . . x–l )r  = ∑
i=–l

k–1
 xi r

i  

One can generalize to:  
arbitrary radix (not necessarily integer, positive, constant)  
arbitrary digit set, usually  {–α, –α+1, ... , β–1, β} = [–α, β] 
 
Example 1.1. Balanced ternary number system:  
 radix r = 3,  digit set = [–1, 1] 
 
Example 1.2. Negative-radix number systems:  
 radix –r,  r ≥ 2, digit set = [0, r – 1] 
 
 The special case with radix –2 and digit set [0, 1]  
 is known as the negabinary number system 
 
Example 1.3. Digit set [–4, 5] for r = 10:   
 (3  -1   5)ten     represents    295 = 300 – 10 + 5  
 
Example 1.4. Digit set [–7, 7] for r = 10:   
 (3  -1   5)ten  =  (3   0  -5)ten  =   (1  -7   0  -5)ten   
 
Example 1.7. Quater-imaginary number system: 
 radix r = 2j, digit set [0, 3]. 
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1.5 Number Radix Conversion 

u  = w . v  

 = ( xk–1xk–2 . . . x1x0 . x–1x–2 . . . x–l )r    Old 

 = ( XK–1XK–2 . . . X1X0 . X–1X–2 . . . Xx–L )R New 

Radix conversion: arithmetic in the old radix r   

Converting whole part w:  (105)ten = (?)five 
Repeatedly divide by five  Quotient Remainder 
 105 0 
 21 1 
 4 4  
 0 
Therefore, (105)ten = (410)five   
 
Converting fractional part v: (105.486)ten = (410.?)five 
Repeatedly multiply by five  Whole Part Fraction    
             .486 
        2     .430 
        2     .150 
        0     .750 
        3     .750 
        3     .750               
Therefore, (105.486)ten ≅ (410.22033)five   
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Radix conversion: arithmetic in the new radix R   

Converting the whole part w 
  ((((2 × 5) + 2) × 5 + 0) × 5 + 3) × 5 + 3  
     |-----|    :        :        :        :     
        10      :        :        :        :     
    |-----------|        :        :        :     
          12             :        :        :     
   |---------------------|        :        :     
             60                   :        :     
  |-------------------------------|        :     
                303                        :     
 |-----------------------------------------|     
                    1518   

Fig. 1.A Horner’s rule used to convert (22033)five to decimal. 

Converting fractional part v: (410.22033)five = (105.?)ten 

 (0.22033)five × 55 = (22033)five = (1518)ten  

 1518 / 55 = 1518 / 3125 = 0.48576  
Therefore, (410.22033)five = (105.48576)ten     

 (((((3 / 5) + 3) / 5 + 0) / 5 + 2) / 5 + 2) / 5 
     |-----|    :        :        :        :     
       0.6      :        :        :        :     
    |-----------|        :        :        :     
         3.6             :        :        :     
   |---------------------|        :        :     
            0.72                  :        :     
  |-------------------------------|        :     
               2.144                       :     
 |-----------------------------------------|     
                  2.4288                        
|-----------------------------------------------| 
                     0.48576 

Fig. 1.3 Horner’s rule used to convert (0.22033)five to 
decimal. 
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1.6 Classes of Number Representations 

Integers (fixed-point), unsigned: Chapter 1 
 
Integers (fixed-point), signed  
 
 signed-magnitude, biased, complement: Chapter 2 
 
 signed-digit: Chapter 3 
  (but the key point of Chapter 3 is  
  use of redundancy for faster arithmetic, 
  not how to represent signed values) 
 
 residue number system: Chapter 4 
  (again, the key to Chapter 4 is  
  use of parallelism for faster arithmetic,  
  not how to represent signed values) 
 
Real numbers, floating-point: Chapter 17 
 covered in Part V, just before real-number arithmetic 
 
Real numbers, exact: Chapter 20 
 continued-fraction, slash, ... (for error-free arithmetic)  
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Part V Real Arithmetic 

Part Goals 
 Review floating-point representations 
 Learn about floating-point arithmetic 
 Discuss error sources and error bounds 
 
Part Synopsis 
  Combining wide range and high precision 
 Floating-point formats and operations 
 The ANSI/IEEE standard 
 Errors: causes and consequences 
 When can we trust computation results? 
 
Part Contents 
Chapter 17 Floating-Point Representations 
Chapter 18 Floating-Point Operations 
Chapter 19 Errors and Error Control 
Chapter 20 Precise and Certifiable Arithmetic 
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17 Floating-Point Representations 

   Go to TOC 
Chapter Goals 
 Study representation method offering both 
 wide range (e.g., astronomical distances) 
 and high precision (e.g., atomic distances)  
 
Chapter Highlights 
 Floating-point formats and tradeoffs 
 Why a floating-point standard? 
 Finiteness of precision and range 
 The two extreme special cases:  
    fixed-point and logarithmic numbers 
 
Chapter Contents 
17.1 Floating-Point Numbers 
17.2 The ANSI/IEEE Floating-Point Standard 
17.3 Basic Floating-Point Algorithms 
17.4 Conversions and Exceptions 
17.5 Rounding Schemes 
17.6 Logarithmic Number Systems 
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17.1 Floating-Point Numbers 

No finite number system can represent all real numbers 
Various systems can be used for a subset of real numbers 
 
 Fixed-point ± w . f low precision and/or range 
 Rational ± p / q difficult arithmetic 
 Floating-point ± s × be most common scheme 
 Logarithmic ± logbx limiting case of floating-point 
 
Fixed-point numbers 
 x = (0000 0000 . 0000 1001)two  Small number 

 y = (1001 0000 . 0000 0000)two  Large number  

 
Floating-point numbers 

 x  =  ± s × be    or    ± significand × baseexponent    

Two signs are involved in a floating-point number.  
 
 1. The significand or number sign,  
  usually represented by a separate sign bit  
 
 2. The exponent sign, 
  usually embedded in the biased exponent  
  (when the bias is a power of 2,  
  the exponent sign is the complement of its MSB) 



Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 238 

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara 

E x p o n  e n t : 
Signed integer, 
often represented 
as unsigned value 
by adding a bias   
 
Range with h bits: 
[–bias, 2  –1–bias]h

S i g n i f i c a n d : 
Represented as a fixed-point number

Usually normalized by shifting,  
so that the MSB becomes nonzero.  
In radix 2, the fixed leading 1   
can be removed to save one bit;  
this bit is known as "hidden 1".

Sign 
 
0 : + 
1 : –

± e s

 

Fig. 17.1 Typical floating-point number format. 

 

 
–∞ +∞ 0 FLP– FLP+ 

Underflow  
  Regions 

Overflow  
  Region 

Overflow  
  Region 

max min 

Denser Sparser 
Positive  
numbers 

Negative  
numbers 

–max –min 

Denser Sparser 
.  .  . .  .  . .  .  . .  .  . 

 

Fig. 17.2 Subranges and special values in floating-point 
number representations. 
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17.2 The ANSI/IEEE Floating-Point Standard 

 

Short (32-bit) format 

Long (64-bit) format 

Sign  Exponent Significand 

 8 bits, 
 bias = 127, 
 –126 to 127 

 11 bits, 
 bias = 1023, 
 –1022 to 1023 

52 bits for fractional part  
(plus hidden 1 in integer part) 

23 bits for fractional part  
(plus hidden 1 in integer part) 

 

Fig. 17.3 The ANSI/IEEE standard floating-point number 
representation formats.  
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Table 17.1 Some features of the ANSI/IEEE standard floating-
point number representation formats 

––––––––––––––––––––––––––––––––––––––––––––––––– 
Feature       Single/Short      Double/Long 
––––––––––––––––––––––––––––––––––––––––––––––––– 
Word width (bits)  32           64 

Significand bits   23 + 1 hidden     52 + 1 hidden 

Significand range  [1, 2 – 2–23]       [1, 2 – 2–52] 

Exponent bits    8            11 

Exponent bias    127           1023 

Zero (±0)      e + bias = 0, f = 0   e + bias = 0, f = 0 

Denormal      e + bias = 0, f ≠ 0   e + bias = 0, f ≠ 0  
          represents ±0.f×2–126 represents ±0.f×2–1022 

Infinity (±∞)     e + bias = 255, f = 0  e + bias = 2047, f = 0 

Not-a-number (NaN)  e + bias = 255, f ≠ 0  e + bias = 2047, f ≠ 0 

Ordinary number   e + bias ∈ [1, 254]   e + bias ∈ [1, 2046] 
         e ∈ [–126, 127]    e ∈ [–1022, 1023] 
          represents 1.f × 2e   represents 1.f × 2e 

min         2–126 ≅ 1.2 × 10–38   2–1022 ≅ 2.2 × 10–308 

max         ≅ 2128  ≅ 3.4 × 1038   ≅ 21024 ≅ 1.8 × 10308 
––––––––––––––––––––––––––––––––––––––––––––––––– 
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Operations on special operands: 
 Ordinary number ÷ (+∞)  =  ±0 
 (+∞) × Ordinary number  =  ±∞ 
 NaN + Ordinary number  =  NaN 
 

0 2
–126Denormals 2

–125

.     .     .    .     .     .    

min

. . .

 

Fig. 17.4 Denormals in the IEEE single-precision format. 

  
The IEEE floating-point standard also defines 
  
 The four basic arithmetic op’s (+, –, ×, ÷) and x  
  must match the results that would be obtained if  
  intermediate computations were infinitely precise 
  
 Extended formats for greater internal precision 
 
  Single-extended: ≥ 11 bits for exponent 
      ≥ 32 bits for significand 
      bias unspecified, but  
      exp range ⊇ [–1022, 1023] 
 
  Double-extended: ≥ 15 bits for exponent 
      ≥ 64 bits for significand   
      exp range ⊇ [–16 382, 16 383] 
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17.3 Basic Floating-Point Algorithms 

Addition/Subtraction 
 
Assume e1 ≥ e2; need alignment shift (preshift) if e1 > e2: 

 (± s1 × be1) + (± s2 × be2)  = (± s1 × be1) + (± s2 / be1–e2) × be1 
       = (± s1 ± s2 / be1–e1) × be1 = ± s × be   

Like signs: 1-digit normalizing right shift may be needed 
Different signs: shifting by many positions may be needed  
Overflow/underflow during addition or normalization 
 
Multiplication 
 

(± s1 × be1)  × (± s2 × be2)  =  ± (s1 × s2) × be1+e2 

Postshifting for normalization, exponent adjustment  
Overflow/underflow during multiplication or normalization 
 
Division  
 
(± s1 × be1) / (± s2 × be2)  =  ± (s1/s2) × be1–e2 
 
Square-rooting 
 
First make the exponent even, if necessary  

  √(s × be) =  s   × be/2 

In all algorithms, rounding complications are ignored here 
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17.4 Conversions and Exceptions 

Conversions from fixed- to floating-point 
 
Conversions between floating-point formats 
 
Conversion from high to lower precision: Rounding  
 
ANSI/IEEE standard includes four rounding modes: 
 
 Round to nearest even [default rounding mode] 
 Round toward zero (inward) 
 Round toward +∞ (upward) 
 Round toward –∞ (downward) 
 
Exceptions 
 
 divide by zero 
 overflow 
 underflow  
 inexact result: rounded value not same as original 
 invalid operation: examples include 
  addition   (+∞) + (–∞) 
  multiplication  0 × ∞ 
  division   0 / 0    or    ∞ / ∞ 
  square-root  operand < 0 
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17.5 Round ing Schemes 

       Round 

xk–1xk–2 . . . x1x0 . x–1x–2 . . . x–l     ⇒     yk–1yk–2 . . . y1y0 . 
 
Special case: truncation or chopping  
                         
       Chop 

xk–1xk–2 . . . x1x0 . x–1x–2 . . . x–l    ⇒     xk–1xk–2 . . . x1x0 . 
 

chop(x) 

–4 

–3 

–2 

–1 

x 
–4 –3 –2 –1 4 3 2 1 

4 

3 

2 

1 

    

chop(x) 

–4 

–3 

–2 

–1 

x 
–4 –3 –2 –1 4 3 2 1 

4 

3 

2 

1 

  
Fig. 17.5 Truncation o r chopp ing o f a signed-magnitude 

number (same as round toward 0). 

Fig. 17.6 Truncation o r chopp ing o f a 2’s-complement 
number (same as downward-directed round ing). 
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rtn(x) 

–4 

–3 

–2 

–1 

x 
–4 –3 –2 –1 4 3 2 1 
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Fig. 17.7 Rounding of a signed-magnitude value to the 
nearest number. 

 
Ordinary rounding has a slight upward bias  
 
Assume that (xk–1xk–2 

. . . x1x0 . x–1x–2)two is to be rounded  

 to an integer (yk–1yk–2 
. . . y1y0 .)two  

 
The four possible cases, and their representation errors: 
 
 x–1x–2 = 00 round down  error =   0 
 x–1x–2 = 01 round down  error = –0.25 
 x–1x–2 = 10 round up   error =   0.5 
 x–1x–2 = 11 round up   error =   0.25 
 
Assume 4 cases are equiprobable ⇒ mean error = 0.125 
 
For certain calculations, the probability of getting a 
midpoint value can be much higher than 2–l   
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Fig. 17.8 Rounding to the nearest even number. 

Fig. 17.9 R* rounding or rounding to the nearest odd number. 
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Fig. 17.10 Jamming or von Neumann rounding. 
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ROM rounding 

                    32×4-ROM-Round 

xk–1 . . . x4x3x2x1x0 . x–1 . . . x–l  ⇒  xk–1 . . . x4y3y2y1y0  . 
       |–––––––––––|                  |––––––| 
      ROM Address                       ROM Data 

The rounding result is the same as that of the round to 
nearest scheme in 15 of the 16 possible cases, but a 
larger error is introduced when x3 = x2 = x1 = x0 = 1 
 

ROM(x) 
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Fig. 17.11 ROM rounding with an 8 ×× 2 table. 
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We may need result errors to be in a known direction 
 
Example: in computing upper bounds,  
 larger results are acceptable,  
 but results that are smaller than correct values  
 could invalidate the upper bound  
 
This leads to the definition of directed rounding modes 
 upward-directed rounding (round toward +∞) and  
 downward-directed rounding (round toward –∞) 
 (required features of the IEEE floating-point standard) 
 

up(x) 
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chop(x) = down(x) 
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Fig. 17.12 Upward-directed round ing o r round ing toward +∞∞ 

(see Fig. 17.6 for downward-directed round ing, or 
round ing toward –∞∞). 

Fig. 17.6 Truncation o r chopp ing o f a 2’s-complement 
number (same as downward-directed round ing). 
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17.6 Logarithmic Number Systems 

sign-and-logarithm number system:  
   limiting case of floating-point representation 

 x  =  ±be × 1      e  =  logb |x| 

b usually called the logarithm base, not exponent base  
 

Sign

Implied radix point

e±

Fixed-point exponent

 

Fig. 17.13 Logarithmic number representation with sign and 
fixed-point exponent. 

 
The log is often represented as a 2’s-complement number 

 (Sx, Lx)  =  (sign(x ), log2|x|) 

Simple multiply and divide; harder add and subtract 

Example: 12-bit, base-2, logarithmic number system 
 

 1 1 0 1 1 0 0 0 1 0 1 1 
               ∆ 
     Sign         Radix point 

The above represents –2–9.828125 ≅ –(0.0011)ten  

number range ≅ [–216, 216], with min = 2–16   



Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 265 

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara 

19 Errors and Error Control 

   Go to TOC 
Chapter Goals 
 Learn about sources of computation errors  
 consequences of inexact arithmetic  
 and methods for avoiding or limiting errors  
 
Chapter Highlights 
 Representation and computation errors 
 Absolute versus relative error 
 Worst-case versus average error 
 Why 3 × (1/3) is not necessarily 1? 
 Error analysis and bounding 
 
Chapter Contents 
19.1 Sources of Computational Errors  
19.2 Invalidated Laws of Algebra 
19.3 Worst-Case Error Accumulation 
19.4 Error Distribution and Expected Errors 
19.5 Forward Error Analysis 
19.6 Backward Error Analysis 
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19.1 Sources of Computational Errors 

FLP approximates exact computation with real numbers 
 
Two sources of errors to understand and counteract:  
 
 Representation errors 
  e.g., no machine representation for 1/3, 2 , or π  
 Arithmetic errors  
  e.g., (1 + 2–12)2 = 1 + 2–11 + 2–24  
  not representable in IEEE format 
 
We saw early in the course that errors due to finite 
precision can lead to disasters in life-critical applications 
 
Example 19.1: Compute 1/99 – 1/100  
(decimal floating-point format, 4-digit significand in [1, 10),  
single-digit signed exponent) 
precise result = 1/9900 ≅ 1.010×10–4

 (error ≅ 10–8
 or 0.01%) 

x  =  1/99  ≅  1.010 × 10–2  Error ≅ 10–6 or 0.01%  
y  =  1/100  =  1.000 × 10–2  Error = 0 
z = x –fp y = 1.010 × 10–2 – 1.000 × 10–2 = 1.000 × 10–4   

       Error ≅ 10–6 or 1% 
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Notation for floating-point system FLP(r, p, A) 
 
Radix r (assume to be the same as the exponent base b) 
Precision p in terms of radix-r digits 
Approximation scheme A ∈ {chop, round, rtne, chop(g), ...} 
 
Let x = res be an unsigned real number, normalized such 
that 1/r ≤ s < 1, and xfp be its representation in FLP(r, p, A) 
 
xfp  =  resfp  =  (1 + η)x 

A = chop  –ulp  < sfp – s ≤ 0   –r × ulp < η ≤ 0      

A = round –ulp/2 < sfp – s ≤ ulp/2  |η| ≤ r × ulp/2 
 
 
Arithmetic in FLP(r, p, A)  
 
Obtain an infinite-precision result, then chop, round, . . . 
 
Real machines approximate this process by keeping g > 0 
guard digits, thus doing arithmetic in FLP(r, p, chop(g)) 
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Error analysis for FLP(r, p, A)  
 
Consider multiplication, division, addition, and subtraction 
for positive operands xfp and yfp in FLP(r, p, A) 

Due to representation errors, xfp = (1 + σ)x , yfp = (1 + τ)y  

xfp  ×fp yfp  = (1 + η)xfpyfp  =  (1 + η)(1 + σ)(1 + τ)xy 

 = (1 + η + σ + τ + ησ + ητ + στ + ηστ)xy 
 ≅ (1 + η + σ + τ)xy     
 
xfp  /fp  yfp = (1 + η)xfp/yfp  =  (1 + η)(1 + σ)x/[(1 + τ)y] 

 = (1 + η)(1 + σ)(1 – τ)(1 + τ2)(1 + τ4)( . . . )x/y 
 ≅ (1 + η + σ – τ)x/y    
 
xfp +fp yfp = (1 + η)(xfp + yfp)  =  (1 + η)(x + σx + y + τy) 

 = (1 + η)(1 +  
σx + τy
x + y  )(x + y) 

Since |σx + τy| ≤ max(|σ|, |τ|)(x + y), the magnitude of the 
worst-case relative error in the computed sum is roughly 
bounded by |η| + max(|σ|, |τ|) 

xfp –fp yfp  =  (1 + η)(xfp – yfp)  =  (1 + η)(x + σx – y – τy) 

            =  (1 + η)(1 +  
σx – τy
x – y  )(x – y) 

The term (σx – τy)/(x – y) can be very large if x and y are 
both large but x – y is relatively small 
 
This is known as cancellation or loss of significance  
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Fixing the problem 
 
The part of the problem that is due to η being large can be 
fixed by using guard digits 
 
Theorem 19.1: In floating-point system FLP(r, p, chop(g)) 
with g ≥ 1 and –x < y < 0 < x, we have: 

x +fp y  =  (1 + η)(x + y)    with    –r–p +1 < η < r–p–g+2    
 
Corollary: In FLP(r, p, chop(1)) 
 x +fp y  =  (1 + η)(x + y) with |η| < r–p+1     
 
So, a single guard digit is sufficient to make the relative 
arithmetic error in floating-point addition/subtraction 
comparable to the representation error with truncation   
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Example 19.2: Decimal floating-point system (r = 10)  
 with p = 6 and no guard digit 

x   =  0.100 000 000 × 103     y   = –0.999 999 456 × 102  
xfp =   .100 000 × 103        yfp =  – .999 999 × 102    

x + y =  0.544×10–4 and      xfp + yfp = 10–4,     but: 

 xfp +fp yfp  =  .100 000 × 103 –fp .099 999 × 103   

      =  .100 000 × 10–2    

Relative error = (10–3 – 0.544×10–4)/(0.544×10–4) ≅ 17.38 
 (i.e., the result is 1738% larger than the correct sum!)  

With 1 guard digit, we get: 

 xfp +fp yfp  =  0.100 000 0 × 103 –fp 0.099 999 9 × 103 

     =  0.100 000 × 10–3    

Relative error = 80.5% relative to the exact sum x + y 
but the error is 0% with respect to xfp + yfp 
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19.2 Invalidated Laws of Algebra  

Many laws of algebra do not hold for floating-point 
arithmetic (some don’t even hold approximately) 
 
This can be a source of confusion and incompatibility  
 
Associative law of addition:        a + (b + c)  =  (a + b) + c 

a = 0.123 41×105   b = –0.123 40×105   c = 0.143 21×101     

a +fp (b +fp c)  

 = 0.123 41×105 +fp (–0.123 40×105 +fp 0.143 21×101)  

 = 0.123 41 × 105 –fp 0.123 39 × 105  

= 0.200 00 × 101     

(a +fp b) +fp c  

 = (0.123 41×105 –fp 0.123 40×105) +fp 0.143 21×101  

 = 0.100 00 × 101 +fp 0.143 21 × 101  

= 0.243 21 × 101     

The two results differ by about 20%! 
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A possible remedy: unnormalized arithmetic 

a +fp (b +fp c)  

 = 0.123 41×105 +fp (–0.123 40×105 +fp 0.143 21×101)  

 = 0.123 41 × 105 –fp 0.123 39 × 105 = 0.000 02 × 105     

(a +fp b) +fp c  

 = (0.123 41×105 –fp 0.123 40×105) +fp 0.143 21×101  

 = 0.000 01 × 105 +fp 0.143 21 × 101 = 0.000 02 × 105     
Not only are the two results the same but they carry with 
them a kind of warning about the extent of potential error  
 
Let’s see if using 2 guard digits helps: 

a +fp (b +fp c)  

 = 0.123 41×105 +fp (–0.123 40×105 +fp 0.143 21×101)  

 = 0.123 41×105 –fp 0.123 385 7×105 = 0.243 00 × 101     

(a +fp b) +fp c  

 = (0.123 41×105 –fp 0.123 40×105) +fp 0.143 21×101  

 = 0.100 00 × 101 +fp 0.143 21 × 101 = 0.243 21 × 101     

The difference is now about 0.1%; still too high 
 
Using more guard digits will improve the situation but does 
not change the fact that laws of algebra cannot be 
assumed to hold in floating-point arithmetic  
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Examples of other laws of algebra that do not hold: 
 Associative law of multiplication  
       a × (b × c)  =  (a × b) × c 
 Cancellation law  (for a > 0)   
       a × b = a × c  implies  b = c 
 Distributive law          
       a × (b + c) = (a × b) + (a × c) 
 Multiplication canceling division 
       a × (b / a)  =  b  
 
Before the ANSI-IEEE floating-point standard became 
available and widely adopted, these problems were 
exacerbated by the use of many incompatible formats 
 

Example 19.3: The formula x = –b ± d, with d = b2 – c , 
yielding the roots of the quadratic equation x2 + 2bx + c = 0, 
can be rewritten as x = –c / (b ± d)  
 
Example 19.4: The area of a triangle with sides a, b, and 
c (assume a ≥ b ≥ c) is given by the formula  

 A = s(s – a)(s – b)(s – c)  

where s = (a + b + c)/2. When the triangle is very flat, such 
that a ≅ b + c, Kahan’s version returns accurate results:  

 A  =  
1
4 (a + (b + c))(c – (a – b))(c + (a – b))(a + (b – c))   
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19.3 Worst-Case Error Accumulation 

In a sequence of operations, round-off errors might add up  
 
The larger the number of cascaded computation steps 
(that depend on results from previous steps), the greater 
the chance for, and the magnitude of, accumulated errors 
 
With rounding, errors of opposite signs tend to cancel 
each other out in the long run, but one cannot count on 
such cancellations 

Example: inner-product calculation  z = ∑1023
i=0  x(i)y(i) 

Max error per multiply-add step = ulp/2 + ulp/2 = ulp 
Total worst-case absolute error = 1024 ulp   
 (equivalent to losing 10 bits of precision) 
 
A possible cure: keep the double-width products in their 
entirety and add them to compute a double-width result 
which is rounded to single-width at the very last step 
 

Multiplications do not introduce any round-off error  
Max error per addition = ulp2/2 
Total worst-case error = 1024 × ulp2/2  

 
Therefore, provided that overflow is not a problem, a 
highly accurate result is obtained 
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Moral of the preceding examples: 
 
Perform intermediate computations with a higher precision 
than what is required in the final result  
 
Implement multiply-accumulate in hardware (DSP chips) 
 
Reduce the number of cascaded arithmetic operations;    
So, using computationally more efficient algorithms has 
the double benefit of reducing the execution time as well 
as accumulated errors 
 
Kahan’s summation algorithm or formula 

To compute s = ∑n–1
i=0   x(i), proceed as follows  

 s  ←  x(0) 

 c  ←  0         {c is a correction term} 

 for i = 1 to n – 1 do 

   y  ←  x(i) – c    {subtract correction term} 

   z  ←  s + y 

   c  ←  (z – s) – y  {find next correction term} 

   s  ←  z 

 endfor 
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19.4 Error Distribution and Expected Errors 

MRRE = maximum relative representation error 

 MRRE(FLP(r, p, chop))  = r–p+1  

 MRRE(FLP(r, p, round)) = r–p+1/2 

From a practical standpoint, however, the distribution of 
errors and their expected values may be more important 
 
Limiting ourselves to positive significands, we define:  

 ARRE(FLP(r, p, A)) =   
⌡


⌠

1/r

1

  
|xfp – x|

x  
dx

x ln r  

 
1/(x ln r) is a probability density function 
 

0 

1 

2 

3 

1/2 1 3/4 
Significand x 

1 / (x ln 2) 

 

Fig. 19.1 Probability density function for the distribution of 
normalized significands in FLP(r = 2, p, A). 
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19.5 Forward Error Analysis 

Consider the computation y = ax + b  
and its floating-point version:  

 yfp  =  (afp ×fp xfp) +fp bfp  =  (1 + η)y 

Can we establish any useful bound on the magnitude of 
the relative error η, given the relative errors in the input 
operands afp, bfp, and xfp?  
 

The answer is “no” 
 
Forward error analysis =  
 
 Finding out how far yfp can be from ax + b,  
 or at least from afpxfp + bfp, in the worst case  
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a. Automatic error analysis 
 
 Run selected test cases with higher precision  
 and observe the differences between the new,  
 more precise, results and the original ones  
 
b. Significance arithmetic 
 
 Roughly speaking, same as unnormalized  arithmetic, 
 although there are some fine distinctions  
 The result of the unnormalized decimal addition  

 .1234 × 105 +fp .0000 × 1010  =  .0000 × 1010 

 warns us that precision has been lost 
 
c. Noisy-mode computation 
 
 Random digits, rather than 0s, are inserted  
 during normalizing left shifts 
 If several runs of the computation in noisy mode  
 yield comparable results, then we are probably safe 
 
d. Interval arithmetic 
 
 An interval [xlo, xhi] represents x, xlo ≤ x ≤ xhi 

 With xlo, xhi, ylo, yhi > 0, to find z = x / y, we compute  

 [zlo, zhi]  =  [xlo /∇fp yhi, xhi /∆fp ylo]  

 Intervals tend to widen after many computation steps 
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19.6 Backward Error Analysis 

Backward error analysis replaces the original question 
 
 How much does yfp deviate from the correct result y? 
 
with another question: 
 
 What input changes produce the same deviation? 
 
In other words, if the exact identity  

yfp = aaltxalt + balt  

holds for alternate parameter values aalt, balt, and xalt,  
we ask how far aalt, balt, xalt can be from afp, bfp, xfp 
 
Thus, computation errors are converted or compared to 
additional input errors 
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Example of backward error analysis 
 
yfp =  afp ×fp xfp +fp bfp   

 =  (1 + µ)[afp ×fp xfp + bfp]  with |µ| < r–p+1 = r × ulp  

  =  (1 + µ)[(1 + ν)afpxfp + bfp] with |ν| < r–p+1 = r × ulp     

 =  (1 + µ)afp (1 + ν)xfp + (1 + µ)bfp 

 =  (1 + µ)(1 + σ)a (1 + ν)(1 + δ)x + (1 + µ)(1 + γ)b 
 ≅  (1 + σ + µ)a (1 + δ + ν)x + (1 + γ + µ)b 
 
So the approximate solution of the original problem is the 
exact solution of a problem close to the original one 
 
We are, thus, assured that the effect of arithmetic errors 
on the result yfp is no more severe than that of r × ulp 
additional error in each of the inputs a, b, and x 


