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CHAPTER 1

Introduction

Interval Arithmetic is a computing system that makes it possible to:

■ automatically perform rigorous error analysis by computing mathematical
bounds on the set of all possible problem solutions, and

■ solve nonlinear problems that were previously thought to be impossible to
solve.

Computing with interval arithmetic produces numerical proofs, or 100%
confidence intervals. Intervals have been used in just this way to prove
mathematical theorems that were not possible to prove otherwise1. This claim can
be made for no other known numerical computing system. By using interval
algorithms to solve nonlinear problems, more accurate mathematical models of
physical phenomena become practical. Interval arithmetic is arguably the best and
most efficient way to safely translate ever-increasing computer speed into
mission-critical problem solutions that are otherwise impractical or impossible to
obtain. From interval bounds on uncertain values, interval arithmetic computes
guaranteed bounds on the set of all possible result values.

Sun Microsystems, Inc. is one of the few computer companies to currently offer
both language and hardware support for computing with intervals. With this
support, it is practical to compute mathematical bounds on solutions to difficult
linear and nonlinear problems. Interval arithmetic is a feature intrinsically
supported with a rich set of features and extensions in the SunTM ONE (Open
Network Environment) Studio 7, Compiler Collection Fortran 95 compiler, and in
a C++ class library. Sun ONE Fortran 95 is a language component of the Sun ONE
High Performance Technical Computing 6 Update 2 product line.

Interval Arithmetic is also supported in Sun’s UltraSPARC® III processor’s VISTM

Instruction Set2. The SIAM (Set Interval Arithmetic Mode) rounding mode, is
available to support interval arithmetic. Interval-specific hardware instructions
for the basic arithmetic operations (+, −, ×, ÷) in single, double, and quadruple
precision floating-point will eliminate the existing performance deficit in the time
required to compute interval versus floating-point expressions.

1. http://mathworld.wolfram.com/news/2002-02-13_smale14th

2. VIS Whitepaper
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A generic nonlinear interval solver library is the key to raising the level of
abstraction at which High Performance Technical Computing (HPTC) software
application developers and end users can work. Sun is perfectly positioned to
efficiently supply both the needed hardware support and the generic interval
solver library:

■ Sun is committed to deliver the highest quality floating-point mathematical
function library. This is a key requirement for interval versions of these basic
functions to return narrow guaranteed bounds.

■ Sun’s latest developer suites include intrinsic compiler support for interval
data types. In addition to Fortran, intrinsic interval support can be added to C,
C++, and the JavaTM programming language.

■ By leveraging compiler support to compute narrow intervals and increase
speed, Sun can exploit its position as a computer systems company that
provides the entire hardware and software stack to perform the most
demanding mission critical computing.

■ Sun owns the intellectual property for basic interval algorithms that can be
implemented in hardware and for new state-of-the-art algorithms to solve
nonlinear systems of equations and global optimization. By implementing
these algorithms, Sun has the opportunity to establish itself as the leading
provider of this key, “generic3” technology4.

3. Interval algorithms for solving nonlinear equations and global optimizations are purely mathematical.
They are not specific to any discipline, or vertical market. In this sense, they are “generic.”

4. Sun has applied for 26 arithmetic interval related patents on fundamental technology that is needed to
efficiently and completely implement interval computing systems using digital computers.
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CHAPTER 2

Fallible Measures

Except when counting, almost all measurements contain uncertainty. The most
accurate (to about 10 decimal digits), frequently-used, measured physical
constants are provided by the National Institute of Science and Technology5. The
implication is that in almost any calculation, inputs should be intervals to bound
input uncertainty.

To illustrate the fact that interval data need not be precise to be useful, suppose
one wants to calculate how long it will take to double a sum of money if invested
at an annual interest rate (compounded monthly) in the interval [3, 6]%. The
minimum value in months is the interval [11 yr. 7 mo., 23 yr. 2mo.].

Alternatively, to illustrate that the interval evaluation of an expression does not
always increase interval result width, evaluate the expression:

f(x) = ln(x)/x over the interval X = [2.716, 2.718].

The answer is [0.3678793, 0.3678795].

Using the simple convention that displayed numbers are accurate to ±1 unit in the
last printed digit, with X = 2.717, the value of f(X) is 0.3678794.

While representing fallible values, using the familiar “x ± ε“ notation is
convenient, computing with this representation is cumbersome. Using assumed
statistical distributions for input uncertainty is even more cumbersome and risky.
If input uncertainty and finite precision arithmetic errors are simultaneously
considered, the complexity of nonlinear expression error analysis quickly becomes
overwhelming. Rigorous error analysis of even modestly small algorithms is so
labor-intensive it is rarely done. At the same time, there is an ever increasing
requirement to use computers for mission-critical computations in which errors
must be bounded because the consequences of these errors can be catastrophic6.

5. http://physics.nist.gov/cuu/Constants/index.html

6. http://www.nytimes.com/2002/06/25/science/physical/
25COMP.html?pagewanted=print&position=bottom
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A single number written in scientific notation (such as 2.35 × 10-3) contains
implicit accuracy information in the number of digits of the fractional part − in
this case the three digits 2.35. A frequently used convention is to let the last
displayed digit be incorrect by at most ±1 unit. Unfortunately, no accuracy
information exists in the format used to store such numbers in computers. Using
floating-point computer notation, when the number 2.35E-03 is entered, it is
incorrectly stored as if it were much more accurate.

Unfortunately, two problems arise:

■ First, the actual uncertainty in input values has no convenient way to be either
represented or rigorously propagated through a floating-point computation.

■ Second, most real numbers cannot be represented as finite precision floating-
point values.

Without intervals, validated arithmetic (with guaranteed bounds) has been
almost unknown in numerical computing. To the exclusion of any concern for
accuracy, focus has been only on speed as measured by floating-point operations
per second (FLOPS). Evidence of this fact is not difficult to find. For example, the
Fortran language standard does not contain a single word about accuracy of
floating-point or even integer results7.

As more critical decisions are based on unvalidated computing, the resulting
risks becomes essentially unbounded. The “Patriot Missile Failure,” which was
traced to an inaccurate calculation of the time since boot due to computer
arithmetic errors. The “Explosion of the Ariane 5” forty seconds after its lift-off
was caused by an arithmetic conversion in software. Specifically a 64-bit
floating-point number was converted to a 16-bit signed integer. The initial
number was greater than 32,767 and conversion failed. Clearly, there is a growing
requirement to compute with guaranteed accuracy the first time and to solve
increasingly difficult nonlinear problems8.

7. http://www.j3-Fortran.org/

8. http://www.nytimes.com/2002/06/25/science/physical/
25COMP.html?pagewanted=print&position=bottom
8 − Interval Arithmetic in High Performance Technical Computing



CHAPTER 3

Interval Arithmetic

The requirements for rigorous error analysis are logically satisfied by interval
arithmetic. An interval is simply a range of numbers bounded by the interval’s
endpoints. For example, the range from 950 to 1050 is written as [950, 1050] and
contains all the numbers between and including 950 and 1050. Hence, in planning
a trip, assume the following: number of miles traveled will be bounded by the
interval [950, 1050] miles; the number of miles traveled per gallon of gasoline is
bounded by the interval [20, 23] miles; and the price of gasoline per gallon is
bounded by the interval $[1.15, 2.00]. Performing arithmetic on the given intervals
produces the interval $[47.50, 105.00] that must contain the set of all possible costs
of gasoline for the planned trip.

The width of any interval is a natural accuracy measure. Computing with
intervals makes accuracy as visible as program execution time. A direct
consequence of seeing numerical accuracy is the motivation to develop interval
procedures and algorithms that quickly return ever narrower (more accurate)
intervals.

The two common ways to improve numerical accuracy and reduce interval width
are the following:

■ Reduce the width of input values.
■ Increase the number of interval data values used to compute interval bounds

on a given parameter.

Although the first is obvious, the second is more subtle because working with
intervals leads to new unfamiliar ways to compute parameter bounds from
fallible interval data.

For example, given n interval observations Xi (i = 1, … ,n) of the same true value,
say t, the best way to compute a narrow interval bound T on t is not to compute
the average value (or arithmetic mean) of the interval observations. Rather, the
intersection of the observations is used. The logic for this is simple: Given that
each and every observation Xi must contain t, so must their intersection. If all the
Chapter 3: Interval Arithmetic − 9



observations do not contain at least one common value, then their intersection is
empty9. The beauty of this interval procedure is that the empty outcome is
undeniable proof that something is wrong. The assumed error in the observations
might be too small or, because of uncontrolled factors in the measurement
procedure, there might really be no single value t in the given observations. That
is, the observation model (or theory) is wrong.

Another simplicity of the interval parameter estimation procedure is that it
requires only interval observation error bounds. No assumption about statistical
error distributions must be made. Nevertheless, if available in any of a variety of
forms, statistical distribution information can also be rigorously used with
interval algorithms, even when computing complicated nonlinear expressions.

Three properties of intervals and interval arithmetic precisely link the fallible
observations of real engineering and scientific observations to mathematics and
floating-point numbers:

■ Any contiguous set of real numbers (or a continuum) is represented by a
containing interval.

■ Intervals provide a convenient and mechanical way to represent and compute
error bounds from fallible data.

■ With the use of “directed rounding,” the most important properties of infinite
precision intervals are preserved in finite precision floating-point interval
arithmetic. Directed rounding is commonly available on all computers
supporting the IEEE 754 floating-point standard. Indeed, the reason for
directed rounding in the floating-point standard is to support rigorously
computing interval bounds.

3.1. Interval Arithmetic Operation Example
Let [a, b] and [c, d] denote two intervals in which a and c are the lower bounds
and b and d are the upper bounds, respectively. Further, let the interval endpoints
be finite precision floating-point numbers. Then interval addition is defined:

[a, b] + [c, d] = [↓ (a + c), ↑ (b + d)]

where the arrows indicate the rounding direction for the computed sum. All the
basic interval operations for finite real and complex interval arithmetic have been
developed starting with R. E. Moore in 195710. Sun’s compiler has been extended
to support infinite intervals, meaning one can divide by intervals containing zero.
There is also support for computing other “indeterminate forms,” such as ∞ ÷ ∞
and 0 ÷ 0.

The field of interval analysis has stimulated the creation of interval algorithms to
solve nonlinear problems, including nonlinear systems of equations and global
nonlinear optimization. With these algorithms, otherwise numerically unsolvable
problems can be numerically solved while bounding errors from all sources,

9. An empty interval is the same thing as the empty set

10. http://www.interval.louisiana.edu/Moores_early_papers/bibliography.html
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including: input data uncertainty, modeling errors, machine rounding errors, and
all their interactions. In the future, safely solving nonlinear problems will become
increasingly important as the speed of computers and parallel processing are used
to replace physical experiments that are too costly or impractical to conduct.

There are indications that intervals are currently being used by both the
automotive and aerospace industries to validate on-board processor optimal
control software. Unfortunately, because these applications are perceived to be
such a competitive advantage, no public statements about them have yet been
made. The number of significant real interval applications is quietly increasingly
every year.

When the interval computing “tsunami” arrives, Sun is ideally positioned to ride
this wave into the future of High Performance Technical Computing (HPTC).
Once interval solutions to engineering design problems become commercially
available, product liability and safety will force manufacturers to use interval-
based design tools. They will simply have no other choice11.

3.2. Interval Arithmetic Advantages
In many cases, interval algorithms are actually faster than conventional
algorithms. Moreover, for important interval algorithms called “contracting
maps,” widths decrease as algorithms proceed. The interval version of Newton’s
method for finding (and bounding) roots of nonlinear equations is an example of
a “contracting map.”

Important interval algorithms are naturally parallel, because they progress by
deleting regions where solutions are proved not to exist. Because these problems
are also “generic” (neither vertical-market specific nor problem specific), intervals
provide the only known general algorithms that achieve linear speedup as the
number of processors increases in parallel computing systems. These profoundly
parallel interval algorithms can even run on low-power “green12” yet massively
parallel systems.

11. It is the law in the field of product liability, that if a producer of a product does not use the best
commercially available design techniques, then the producer is liable for the consequence of a flawed
product design. Current practice in the computing industry is to ship every system and piece of software
with a disclaimer stating that these systems are not designed for mission critical applications in which
there could be serious consequences from erroneous results. When computing with floating-point
numbers, nothing else is logically possible, as it is generally impossible to guarantee the accuracy of
floating-point computations. With intervals, on the other hand, it is logically and technically possible to
“warrant” that the results of interval computations are bounds on the set of all possible answers to the
problem defined by the user’s code. Of course, the code will have to have passed a stringent “lint”
certification. However, such a test and such a warranty are logically possible using intervals. They are
not using floating-point computing.

12. http://www.nytimes.com/2002/06/25/science/physical/
25COMP.html?pagewanted=print&positon=bottom
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Additional interval advantages include:

■ A closed mathematical system that eliminates the need for complicated
exception handling.

■ Otherwise numerically unstable algorithms can be safely used, thereby
allowing substantial speedups for most applications.

■ Sums and dot products can be performed without need for sorting to guard
against rounding errors (although narrower width, if needed, can be achieved
by sorting).

■ Precise argument reduction for periodic functions like sin(x) and cos(x) is only
required for degenerate (zero width) interval arguments.

■ For increased speed, interval algorithms can dynamically reduce the precision
of interval endpoints when computing with wide intervals.

■ Embedded differential equations need only be implicitly solved in the process
of using interval algorithms to find and bound the global minimum of a
nonlinear function.
12 − Interval Arithmetic in High Performance Technical Computing



CHAPTER 4

Real World Examples

Almost every computational problem can benefit from computing with intervals.
Intervals even provide a consistent framework within which to evaluate the total
quality (speed and accuracy) of different interval algorithms on different
machines.

Suppose the result of some complicated computation, or even a computer
simulation, is the single quantity (f) that is a function of a number of measured
values, such as space (x, y, z) and time (t). Suppose further that from physics, it is
impossible for f(x, y, z, t) to be outside the interval F(x,y,z,t), where F is an interval
enclosure of f. If true values of x, y, z, and t are assumed to be contained
respectively in the intervals X, Y, Z, and T, an interval bound on the true value of
f can be simply computed from the interval evaluation of F(X, Y, Z, T). This fact
was first proved by Moore and later dubbed “The Fundamental Theorem of
Interval Arithmetic.” The total absolute error Ea is bounded by the width of the
interval evaluation of f: Ea = w(F(X, Y, Z, T)), where w([a,b]) = b − a is the width of
the interval [a, b].

Even if the interval bound on f contains zero, an extended interval (including
infinite endpoints) bound on relative error can be computed:

Er =E a/abs(F(X,Y,Z,T))

where “abs” is the interval extension of the absolute value function.

These two definitions permit valid comparison of interval algorithms and a way
to rigorously assess performance including both speed and accuracy.

For example, two very different computers using very different interval
approaches to solve a given problem can be compared using the absolute or
relative error bound achieved in a given amount of time. Alternatively, the time
required to achieve a given accuracy can be measured. The trick is to compute the
interval bound F in practical real world situations.
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Examples of problems to which interval methods have been successfully applied
include:

■ Chemical Process Engineeringa13

■ Computing Guaranteed Parameter Bounds from Fallible Datab

■ Optimal design of Quantitative Feedback Control Systemsc

■ Many more exist in published papers and reports and some are quietly being
used commercially.

13. Notes a, b, and c appear at the end of this document.
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CHAPTER 5

Sun Support for Interval Arithmetic

Hardware support for interval instructions is provided in UltraSPARC III
processors with the “Set Interval Arithmetic Mode” (SIAM) instructions. These
instructions improve the efficiency of interval arithmetic by enabling the
rounding mode bits in the floating-point status register (FSR) to be overridden
without the overhead of modifying the RD field of the FSR and the resulting
pipeline flush. Typical interval performance improvement from the SIAM
instructions has been measured to be approximately 30%d14.

Software support for interval arithmetic is featured intrinsically in Sun’s Fortran
compiler and in a class library for C++. Interval support in both Fortran and C++
include three interval data types, one each for: single, double, and quadruple
(128-bit) precisione. Additional hardware support is an obvious next step because
interval multiplication in software requires up to nine floating-point operations.
Clearly, a performance enhancement will be experienced when interval basic
arithmetic operations (+, −, ×, ÷) are included in next generation processors.

With a shipping library of interval nonlinear solvers, and with compiler and
hardware support, Sun is positioning itself to be unassailable in HPTC.

14. Notes d and e appear at the end of this document.
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CHAPTER 6

Conclusion

Moore’s Law (reducing chip feature size by a factor of 2 every 18 months) and the
market for “virtual experimentation”15 are increasing the pressure to find
verifiable ways for safe computation. The National Science Foundation has
recently announced a $[4, 6]M grant program to fund “trusted computing”
research16. Sun is the only commercial computer manufacturer that is currently
supplying compiler support for interval computing − the only known practical
way to compute mathematical bounds on solution sets.

The principle barrier to mainstream use of interval arithmetic is the effort
required to successfully apply interval algorithms to solve commercial, industrial,
financial, and scientific problems. Numerous successful interval applications
already exist, but have required more time, effort, and skill, than typical
commercial software manufacturers and users can afford. An important first step
in making the use of intervals commercially practical has been taken with Sun’s
Fortran intrinsic compiler support. Extending intrinsic support to other languages
and easy-to-access fast solver libraries are the next steps.

With more interval support in education, hardware, and software, intervals will
become the natural way to think about and compute numerical solutions to
physical problems.

15. http://www.nytimes.com/2002/06/25/science/physical/
25COMP.html?pagewanted=print&position=bottom

16. http://www.nsf.gov/pubs/2002/nsf01160/nsf01160.html
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Work in Progress: The Dependence
“Problem” or “Opportunity”

Even elementary school children learn that 2 − 2 = 0. In middle school, they learn that
x − x = 0, where x can be any real number. For a real interval, such as [2, 3]
then [2, 3] − [2, 3] = [−1, +1], which is not zero. Why? The reason is that the two
occurrences of the interval [2, 3] are not necessarily dependent. They could be two
separate measurements that just happen to have the same interval endpoints. Because
interval arithmetic guarantees to contain the set of all possible results, the worst case
assumption is implicitly made: namely that all intervals are independent.

However, if it is known that two intervals are dependent, this information can be used to
compute narrower intervals that are still bounds on the set of all possible results. As a
simple example, given the interval variable X = [xl, xu], then X − X = 0, which is also the
degenerate interval [0, 0].

Failing to take dependence into account has been a “difficulty” that has caused many
interval results to be unnecessarily wide. The dependence opportunity is to provide tools
to rigorously and automatically take dependence information into account. This is “work
in progress” that can be integrated into compiler support for interval data types.

While it is easy to compute interval bounds, it is often unnecessarily time-consuming to
compute usefully narrow (or tight) bounds without tools to automate the use of
dependence information. Bounds that are as narrow as possible are called “sharp.”
Computing sharp bounds is a member of the class of extremely difficult computing
problems, called NP-hard. The “dependence opportunity” is to develop fast algorithms to
compute approximate interval bounds that, while still bounds, are narrow enough to be
practically useful. In practice, sharp intervals are not required.
Chapter :  − 19
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Notes

a - There are many important problems in the design of chemical process controls and oil
refineries. Without intervals, totally incorrect solutions are not hard to find in published
papers and reports. Using intervals, correct results can be guaranteed. Specific problems
that intervals have successfully solved include the computation of phase stability using
excess Gibbs energy models, mixture critical points, solid-fluid equilibrium points, and
parameter bounds in vapor-liquid equilibrium models. (For an example, visit
www.nd.edu/~markst/Interv.html.)

b - Newton’s gravitational constant G is difficult to measure. Interval methods were used
a few years ago at the University of Karlsruhe to compute an interval bound on G. The
computed bound was sufficiently different from the accepted approximate value that
other experiments were designed to estimate G. If they all compute valid interval bounds,
then the intersection of these intervals must contain the true value of G. If any intervals do
not overlap, this proves there is a flaw in at least one of the following or some other part
of the method used to compute bounds on G: the theoretical model used to estimate G,
the experimental apparatus, or the analysis of the data. The point is that computing with
intervals is the only known way to prove some combination of theory and/or experiments
is measurably flawed (for more information, visit
http:// www.npl.washington.edu/eotwash/gconst.html).

c - The goal of optimal feedback control system design is to construct simple, low-order,
minimum-bandwidth controllers that satisfy given performance constraints in the
presence of uncertainties in the form of plant changes and/or external disturbances (for
more information, visit
http://www.ee.iitb.ac.in/~nataraj/projects.htm).

d - Test runs were executed against the library libsunimath built with and without SIAM
support with performance increments of 26.44%, 35.59% and 37.70%. ForteTM Developer 7
Fortran 95 6.1, Sun WorkshopTM 6 update 2 C 5.3, and Forte Developer 7 C 5.4.

e - The interval classes include; operations and mathematics functions that form a closed
mathematical system.This means that valid results are produced for any possible
operator-operand combination, including division by zero and other indeterminate forms
involving zero and infinities. Three types of interval relational functions are supported;
certainty, possibility and set. The classes also support interval-specific functions such as
intersection and interval_hull.
 − 21
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