
Media Applications on Hyper-Threading Technology 1

Media Applications on Hyper-Threading Technology

Yen-Kuang Chen, Microprocessor Research, Intel Labs
Matthew Holliman, Microprocessor Research, Intel Labs

Eric Debes, Microprocessor Research, Intel Labs
Sergey Zheltov, Microprocessor Research, Intel Labs

Alexander Knyazev, Microprocessor Research, Intel Labs
Stanislav Bratanov, Microprocessor Research, Intel Labs
Roman Belenov, Microprocessor Research, Intel Labs

Ishmael Santos, Software Solutions Group, Intel Corporation

Index words: Hyper-Threading Technology, multithreading, multimedia, MPEG, performance analysis

ABSTRACT

This paper characterizes selected workloads of multimedia
applications on current superscalar architectures, and then
it characterizes the same workloads on Intel Hyper-
Threading Technology. The workloads, including video
encoding, decoding, and watermark detection, are
optimized for the Intel® Pentium® 4 processor. One of the
workloads is even commercially available and it performs
best on the Pentium 4 processor. Nonetheless, due to the
inherently sequential constitution of the algorithms, most
of the modules in these well-optimized workloads cannot
fully utilize all the execution units available in the
microprocessor. Some of the modules are memory-
bounded, while some are computation-bounded.
Therefore, Hyper-Threading Technology is a promising
architecture feature that allows more CPU resources to be
used at a given moment.

Our goal, in this paper, is to better explain the performance
improvements that are possible in multimedia applications
using Hyper-Threading Technology. Our initial studies
show that there are many unexplored issues in algorithms
and applications for Hyper-Threading Technology. In
particular, there are many techniques to develop better
software for multithreading systems. We demonstrate
different task partition/scheduling schemes and discuss
their trade-offs so that a reader can understand how to

Intel and Pentium are registered trademarks of Intel
Corporation or its subsidiaries in the United States and
other countries.

develop efficient applications on processors with Hyper-
Threading Technology.

INTRODUCTION
To date, computational power has typically increased over
time because of the evolution from simple pipelined
designs to the complex speculation and out-of-order
execution of many of today’s deeply-pipelined superscalar
designs. While processors are now much faster than they
used to be, the rapidly growing complexity of such
designs also makes achieving significant additional gains
more difficult. Consequently, processors/systems that
can run multiple software threads have received increasing
attention as a means of boosting overall performance. In
this paper, we first characterize the workloads of video
decoding, encoding, and watermarking on current
superscalar architectures, and then we characterize the
same workloads using the recently-announced Hyper-
Threading Technology. Our goal is to provide a better
understanding of performance improvements in multimedia
applications on processors with Hyper-Threading
Technology.

Figure 1 shows a high-level view of Hyper-Threading
Technology and compares it to a dual-processor system.
In the first implementation of Hyper-Threading
Technology, one physical processor exposes two logical
processors . Similar to a dual-core or dual-processor
system, a processor with Hyper-Threading Technology
appears to an application as two processors . Two
applications or threads can be executed in parallel. The
major difference between systems that use Hyper-
Threading Technology and dual-processor systems is the

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1

Media Applications on Hyper-Threading Technology 2

different amounts of duplicated resources. In today’s
Hyper-Threading Technology, only a small set of the
microarchitecture state is duplicated1, while the front-end
logic, execution units, out-of-order retirement engine, and
memory hierarchy are shared. Thus, compared to
processors without Hyper-Threading Technology, the die-
size is increased by less than 5% [7]. While sharing some
resources may increase the latency of some single-
threaded applications, the overall throughput is higher for
multi-threaded or multi-process applications.

Cache(s)

ALU’s

Arch states
(registers)

Arch states
(registers)

Main memory

System bus

Logical
processor 1

Logical
processor 2

Cache(s)

ALU’s

Arch states
(registers)

Arch states
(registers)

Main memory

System bus

Logical
processor 1

Logical
processor 2

(a)

Cache(s)

ALU’s

Arch states
(registers)

Main memory

System bus

Physical
processor 1

Physical
processor 2

Cache(s)

ALU’s

Arch states
(registers)

Cache(s)

ALU’s

Arch states
(registers)

Main memory

System bus

Physical
processor 1

Physical
processor 2

Cache(s)

ALU’s

Arch states
(registers)

(b)

Figure 1: High-level diagram of (a) a processor with
Hyper-Threading Technology and (b) a dual-processor

system

This paper is organized as follows. First, we provide a
brief review of the basic principles behind most current
video codecs, describing the overall application behavior
of video decoding/encoding/watermarking and the
implications of the key kernels for current and emerging
architectures. Then, we show the multi-threaded software
architectures of our applications, including data-domain
and functional decomposition. Additionally, we describe
some potential pitfalls when developing software on
processors with Hyper-Threading Technology and our

1 Nearly all the architectural state is duplicated, however.

techniques to avoid them. Finally, we provide some
performance numbers and our observations.

MULTIMEDIA WORKLOADS
This section describes the workload characterization of
selected multimedia applications on current superscalar
architectures. Although the workloads are well optimized
for Pentium® 4 processors, due to the inherent
constitution of the algorithms, most of the modules in
these workloads cannot fully utilize all the execution
resources available in the microprocessor. The particular
workloads we target are video decoding, encoding, and
watermark detection2, which are key components in both
current and many future applications and are
representative of many media workloads.

MPEG Decoder and Encoder
The Moving Pictures Expert Group (MPEG) is a standards
group founded in 1988. Since its inception, the group has
defined a number of popular audio and video compression
standards, including MPEG-1, MPEG-2, and MPEG-4 [3].
The standards incorporate three major compression
techniques: (1) predictive coding; (2) transform-based
coding; and (3) entropy coding. To implement these, the
MPEG encoding pipeline consists of motion estimation,
Discrete Cosine Transform (DCT), quantization, and
variable-length coding. The MPEG decoding pipeline
consists of the counterpart operations of Variable-Length
Decoding (VLD), Inverse Quantization (IQ), Inverse
Discrete Cosine Transform (IDCT), and Motion
Compensation (MC), as shown in Figure 2.

IDCT
VLD &

IQ

Reference
frames

Pictures
Motion
Comp.Bitstream IDCT

VLD &
IQ

Reference
frames

Pictures
Motion
Comp.Bitstream

Figure 2: Block diagram of an MPEG decoder

2 A digital video watermark, which is invisible and hard to
alter by others, is information embedded in the video
content. A watermark can be made by slightly changing
the video content according to a secret pattern. For
example, when just a few out of the millions of pixels in a
picture are adjusted, the change is imperceptible to the
human eye. A decoder can detect and retrieve the
watermark by using the key that was used to create the
watermark.

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Media Applications on Hyper-Threading Technology 3

MC
19%

IDCT
30%Block-level VLD

28%

Bitstream I/O
7%

Header parsing
6%

Stream demuxing
7%

PMV
2%

Convert2Pixel
2% Others

1%

MC
19%

IDCT
30%Block-level VLD

28%

Bitstream I/O
7%

Header parsing
6%

Stream demuxing
7%

PMV
2%

Convert2Pixel
2% Others

1%

Figure 3: MPEG-2, 720x480 decoding breakdown by time
on 2GHz Pentium® 4 processors

The behavior of the MPEG decoder can be highly
dependent on the characteristics of the video stream being
decoded. Figure 3 shows an exa mple of the CPU time
breakdown of our MPEG decoder for a typical DVD
resolution video sequence. VLD, IDCT, and MC are the
main components in the process. The decoder used in the
study is part of the Intel Media Processing Library (MPL)3,
which was developed by Intel Labs. The software was
analyzed using the Intel VTune Performance Analyzer on
an Intel® Pentium 4 processor with a 400 MHz system
bus, an 8 KB first-level data cache, a 256 KB second-level

3 More information about the MPL can be found at
http://www.intel.com/research/mrl/research/mpl/.
Additionally, the MPL MPEG-2 decoder is commercially
available as part of the Ligos* GoMotion* SDK.
VTune is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.
 Pentium is a registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries.

shared instruction/data cache, and 512 MB of main
memory. We run our applications on Windows ∗ XP.

Table 1 shows a high-level analysis of the MPEG-2
decoder. The first stage of the decoding pipeline, VLD/IQ,
is characterized by substantial data dependency, limiting
opportunities for instruction, data, and thread-level
parallelism. The kernel is entirely computation-bound, and
it shows excellent performance scaling over increasing
frequencies on the Pentium 4 processor. The next stage,
IDCT, is also completely computation-bound. The kernel
is dominated by MMX/SSE/SSE2 (Streaming SIMD
Extension) operations, with interspersed register-to-
register moves and stores; e.g., a sequence of movaps,
addps, and subps is a typical recurring theme,
corresponding to the well-known butterfly operation,
surrounded by associated prescaling/multiply operations.
Because 90% of the instructions are executed in the
MMX/SSE/SSE2 unit, the integer execution unit is idle
most of the time in the IDCT module4. The final stage of
the decoding pipeline, MC, is memory intensive compared
to the other modules in the pipeline. The front-side bus is
busy 30% of the time in this module. Although the out-of-
order execution core in the Pentium 4 processor can
tolerate some memory latencies, the module shows an
equal distribution of time between computation and
memory latency because there are too many memory
operations. All these modules are well-optimized, but still
cannot utilize 100% of the execution units available in the
microprocessors. While the Pentium 4 processor can
execute multiple uops in one cycle, the uops retired per
cycle (UPC) is only 0.74 in the MPL decoder.

MPEG encoders, similar to the decoder, consist of some
MMX/SSE/SSE2 intensive modules (e.g., motion
estimation, DCT) and some data-dependent modules (e.g.,
variable-length coding). All these modules are well
optimized, but a UPC of 1.05 again indicates that the

∗Other brands and names may be claimed as the property
of others.
4 See Figure 4 in [4], integer operations and floating-
point/MMX/SSE/SSE2 operations are executed in different
units.

Table 1: MPEG decoding kernel characterization on 2 GHz Pentium® 4 processors (9 Mb/s MPEG-2, 720x480)

Kernel IPC UPC MMX/SSE/SSE-2
per instructions

Cond.
Branch/ instr.

Mispred.
Cond./ Instr.

Mispred.
Cond./ Clock

L1 misses/
Instr.

FSB
activity

VLD 0.76 0.99 0.074 1/9 1/120 1/158 1/92 11.1%
IDCT 0.59 0.89 0.90 1/141 1/2585 1/4381 1/193 2.4%
MC 0.24 0.40 0.42 1/17 1/142 1/592 1/11 30. 3%

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1

Media Applications on Hyper-Threading Technology 4

encoder cannot fully utilize all the execution units
available in the microprocessor.

Video Watermarking
Another application that we studied is video watermark
detection [1]. Our watermark detector has two basic
stages: video decoding and image-domain watermark
detection. The application is optimized with MPL (as the
video decoder) and the Intel IPL (for the image
manipulations used during watermark detection) [5]. A
UPC of 1.01 also indicates that there is room for
improvement.

(b) Dynamic
scheduling

(a) Static
scheduling

picture
slices

Assigned
slices

Thread 1 Thread 2

Thread 1

Thread 2

(b) Dynamic
scheduling

(a) Static
scheduling

picture
slices

Assigned
slices

Thread 1 Thread 2

Thread 1

Thread 2

Figure 4: Two slice-based task partitioning schemes
between two threads: (a) half-and-half dispatching (static
scheduling); and (b) slice-by-slice scheduling (dynamic

scheduling)

TASK PARTITIONING AND SCHEDULING
In general, multimedia applications, such as video
encoding and decoding, exhibit not only data- and
instruction-level parallelism, but also the possibility for
substantial thread-level parallelism. Such workloads are
good candidates for speed-up on a number of different
multithreading architectures. This section discusses the
trade-offs of different software multithreading methods.

Data-Domain Decomposition–Slice-Based
Dispatching
As shown in Figure 4, a picture in a video bit stream can
be divided into slices of macroblocks. Each slice,
consisting of blocks of pixels, is a unit that can be
decoded independently. Here we compare two methods to
decode the pictures in parallel:

1. Half-and-half (aka static partitioning): In this
method, one thread is statically assigned the first
half of the picture, while another thread is

assigned the other half of the picture (as shown
in Figure 4 (a)). Assuming that the complexity of
the first half and second half is similar, these two
threads will finish the task at roughly the same
time. However, some areas of the picture may be
easier to decode than others . This may lead to
one thread being idle while the other thread is
still busy.

2. Slice-by-slice (aka dynamic partitioning): In this
method, slices are dispatched dynamically. A
new slice is assigned to a thread when the thread
has finished its previously assigned slice. In this
case, we don’t know which slices will be
assigned to which thread. Instead, the
assignment depends on the complexity of the
slices assigned. As a result, one thread may
decode a larger portion of the picture than the
other if its assignments are easier than those of
the other thread. The execution time difference
between two threads, in the worst case, is the
decoding time of the last slice.

In both cases, each thread performs Variable-Length
Decoding (VLD), Inverse Discrete Cosine Transform
(IDCT), and Motion Compensation (MC) in its share of the
pictures, macroblock by macroblock. While one thread is
working on MC (memory intensive), the other thread may
work on VLD or IDCT (less memory intensive). Although
the partitioning does not explicitly interleave
computations and memory references, on average, it better
balances the use of resources.

Functional Decomposition of Video
Watermark Detection
Besides data-domain decomposition, an application can
also be partitioned functionally into multiple threads. For
example, our video watermark detector consists of two
basic stages: video decoding and watermark detection.
Hence, we assign different threads to decode the video
and to detect the watermark, as shown in Figure 5.

One method is to use two threads: one for video decoding
and another for watermark detection, as shown in Figure 5
(b). However, this method does not have very good load
balance. This is because in our video watermark detector,
video decoding takes roughly one-third of the CPU time,
while watermark detection takes two-thirds of the CPU
time.

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Media Applications on Hyper-Threading Technology 5

Because watermark detection takes twice as much
computation time as video decoding, we use two threads
for watermark detection for better load balancing, as
shown in Figure 5 (c). While one thread decodes the
video sequence, two threads work on watermark detection.
The lines in the figure indicate the dependency between
functional blocks. We can see that at any moment, there
are at least two threads running in the three-threaded
mode. In contrast to the data-domain video decoding
decomposition described above, threads in this
implementation are assigned to different functions.

IMPLICATIONS OF SOFTWARE DESIGN
FOR HYPER-THREADING TECHNOLOGY
During the implementation of our applications on
processors with Hyper-Threading Technology, we had a
number of observations. In this section, we discuss some
general software techniques to help readers design their

applications better on systems with Hyper-Threading
Technology.

Frame t Frame t+1Frame t Frame t+1

(a)

Frame t Frame t+1

All local
cache hits

Frame t Frame t+1

All local
cache hits

(b)

Frame t Frame t+1

Some local
cache misses

Frame t Frame t+1

Some local
cache misses

(c)

Figure 6: Cache localities, during; (a) motion
compensation, in; (b) static partitioning, and in; (c)

dynamic partitioning

Using Hyper-Threading Technology, performance can be
lost when the loads are not balanced. Because two logical
processors share resources on one physical processor
with Hyper-Threading Technology, each logical processor
does not get all the resources a single processor would
get. When only a single thread of the application is
actively working and the other thread is waiting
(especially, spin-waiting), this portion of the application
could have less than 100% of the resources when
compared to a single processor, and it might run slower on
a processor with simultaneous multithreading capability
than on processors without simultaneous multithreading
capability. Thus, it is important to reduce the portion in
which only one thread is actively working. For better
performance, effective load balancing is crucial.

The foremost advantage of the dynamic scheduling
scheme (see Figure 4) is its good load balance between the
two threads. Because some areas of the picture may be
easier to decode than others, one thread under the static

Decode
Frame 1

W.M.
Detect

Frame 1

Decode
Frame 2

W.M.
Detect

Frame 2

Decode
Frame 1

W.M.
Detect

Frame 1

Decode
Frame 2

W.M.
Detect

Frame 2

Decode
Frame 1

W.M.
Detect

Frame 1

Decode
Frame 2

W.M.
Detect

Frame 2

Decode
Frame 3

W.M.
Detect

Frame 3

Decode
Frame 4

Decode
Frame 1

W.M.
Detect

Frame 1

Decode
Frame 2

W.M.
Detect

Frame 2

Decode
Frame 3

W.M.
Detect

Frame 3

Decode
Frame 4

(a) (b)

Decode
Frame 1

W.M.
Detect

Frame 1

Decode
Frame 2

W.M.
Detect

Frame 2
Decode
Frame 4

Decode
Frame 5

Decode
Frame 3

W.M.
Detect

Frame 3
W.M.
Detect

Frame 4

Decode
Frame 1

W.M.
Detect

Frame 1

Decode
Frame 2

W.M.
Detect

Frame 2
Decode
Frame 4

Decode
Frame 5

Decode
Frame 3

W.M.
Detect

Frame 3
W.M.
Detect

Frame 4

(c)

Figure 5: Three threading methods for video
watermark detection: (a) single-threaded mode; (b) two-

threaded mode; and (c) three-threaded mode

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1

Media Applications on Hyper-Threading Technology 6

partitioning scheme may be idle while another thread still
has a lot of work to do. In the dynamic partitioning
scheme, we have very good load balance. As we assign a
new slice to a thread only when it has finished its previous
slice, the execution time difference between the two
threads, in the worst case, is the decoding time of a slice.

Because two logical processors share one physical
processor, the effective sizes of the caches for each logical
processor are roughly one half of the original size. Thus,
it is important for multithreaded applications to target one
half of the caches for each application thread. For
example, when considering code size optimization,
excessive loop unrolling should be avoided.

While sharing caches may be a drawback for some
applications running on processors with Hyper-Threading
Technology, it can provide better cache locality between
the two logical processors for other applications. For
example, Wang et al. use one logical processor to prefetch
data into the shared caches to reduce a substantial
amount of the memory latency of the application in the
other logical processors [8]. We now illustrate the
advantage of sharing caches in our application.

On dual-processor systems, each processor has a private
cache. Thus, there may be a drawback to dynamic
partitioning in terms of cache locality. Figure 6 illustrates
the cache locality in multiple frames of video. During
motion compensation, the decoder uses part of the
previous picture, the referenced part of which is roughly
co-located in the previous reference frame, to reconstruct
the current frame. It is faster to decode the picture when
the co-located part of the picture is still in the cache. In
the case of a dual-processor system, each thread is
running on its own processor, each with its own cache. If
the co-located part of the picture in the previous frame is
decoded by the same thread, it is more likely that the local
cache will have the pictures that have just been decoded.
Since we dynamically assign slices to different threads, it
is more likely that the co-located portion of the previous
picture may not be in the local cache when each thread is
running on its own physical processor and cache, as
shown in Figure 6 (c). Thus, dynamic partitioning may
incur more bus transactions 5 . In contrast, the cache is
shared between logical processors on a processor with

5 On dual-processor systems, an alternative method of
keeping cache locality in dynamic scheduling is to
dispatch slices to one thread from top-down and slices to
the other thread from bottom-up. However, it is hard to
generalize the method for four-way or eight-way multi-
processor systems. In this paper, we did not show the
results of this method.

Hyper-Threading Technology, and thus, cache localities
are preserved. We obtain the best of both worlds with
dynamic scheduling: there is load balancing between the
threads, and there is the same effective cache locality as
for static scheduling on a dual-processor system.

RESULTS
This shows some performance numbers and analysis of
our applications on multithreading architectures. In
general, our results show that Hyper-Threading
Technology offers a cost-effective performance
improvement (7%-18%) for multithreading without
doubling hardware cost (see Figure 7) as in dual-processor
systems.

Our Hyper-Threading Technology system has an
experimental 1.7GHz Intel Pentium 4 processor with
Hyper-Threading Technology capability, which is a pre-
production prototype, running Windows ∗ XP. The
processor has a 512KB second-level cache, but no third-
level cache. To contrast the performance with single-
thread performance on the system experimentally in lab
setting, we disable the support of Hyper-Threading
Technology from the CPU, motherboard, BIOS, and the
operating system. Our dual-processor system has two
1.7GHz Intel Xeon processors, each of which has a
256KB second-level cache and a 1MB third-level cache,
running Windows XP. To measure single-thread
performance on the dual-processor system, we disable one
physical processor and run a single-thread version of the
application. The relative speed between Hyper-Threading
Technology systems and dual-processor systems is not
measured in our experiment.

To measure the performance of the encoder, we use five
720x480 YVU 4:2:0 benchmark sequences. To measure the
performance of the decoder, we use one 640x480, three
704x480, three 720x480, one 1280x720, and two 1920x1080
MPEG-2 sequences. Moreover, three 704x480 MPEG-2
sequences are used to measure the performance of the
video watermark detectors. The speed-ups are sequence
dependent, but within a small variation. We report only
the average numbers in Figure 7.

 Pentium is a registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries.
∗ Other brands and names may be claimed as the property
of others
Xeon is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Media Applications on Hyper-Threading Technology 7

Data-Domain Decomposition
This section describes the performance of the data-domain
decomposition of the video decoding described earlier.

First, Figure 7 (b) shows that it is better to use the
dynamic scheduling method than the static scheduling
method on a processor with Hyper-Threading
Technology, as it is very important to have a balanced
load. Because resources are shared between the logical
processors, the relative performance of each logical
processor can be less than 1.0 compared to an equivalent
processor without simultaneous multithreading capability.
When only one thread is busy, the overall throughput is
less than that of a single processor. To have the best
performance, it is important to have a balanced workload
between threads. Hence, the dynamic scheme is better
than static scheduling.

On the other hand, Figure 7 (b) shows that the static
scheduling method is better than the dynamic scheduling
method on a dual-processor system. It is faster to decode
the picture when the co-located parts of the pictures are
still in the cache. As mentioned earlier, although dynamic
scheduling has better load balance, co-located parts of the
pictures may not be decoded by the same processor when
using dynamic scheduling. This scheduling scheme
incurs more bus transactions, as shown in Table 2, with
the result that the overall speed using dynamic scheduling
is slower.

Compared to dual-processor systems, processors with
Hyper-Threading Technology have the advantage of
sharing the second-level cache between two logical
processors. Even when the same logical processor does
not decode the co-located part of the reference picture,
that part of the picture can still be read from the shared
second-level cache. Table 3 shows that the numbers of
bus activities are similar between static scheduling and
dynamic scheduling. In this case, the overall speed of
dynamic scheduling is faster because the workload is

1

1.
61

1 1.
12

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

Sp
ee

d-
up

Dual-
processor

Hyper-
Thread

Technology

Single-thread Multi-thread

(a)

1

1.
66

1.
61

1 1.
04

1.
07

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

Sp
ee

d-
up

Dual-
processor

Hyper-
Threading

Technology

Single-thread Static Dynamic

(b)

1

1.
33

1.
61

1 1.
08 1.

18

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

Sp
ee

d-
up

Dual-
processor

Hyper-
Threading

Technology

1 thread 2 threads 3 threads

(c)

Figure 7: Performance of; (a) our video encoder; (b) our
video decoder; and (c) our watermarking detection with

software configurations

Table 2: The numbers of front-side bus (FSB) data
activities per second between static scheduling and

dynamic scheduling on a dual-processor system

Event
Static
scheduling

Dynamic
scheduling

FSB_data_activity 8,604,511 12,486,051

Table 3: The numbers of FSB data activities per second
between static scheduling and dynamic scheduling on a

processor with Hyper-Threading Technology

Event
Static
scheduling

Dynamic
scheduling

FSB_data_activity 8,474,022 8,536,838

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1

Media Applications on Hyper-Threading Technology 8

better balanced.

Functional Decomposition
Here, we describe the performance of the video watermark
detection functional decomposition described earlier in
Figure 5. Figure 7 (c) shows the performance
comparisons. 2-thread denotes one video-decoding
thread and one watermark detection thread, and 3-thread
denotes one video-decoding thread and two watermarking
threads (see Figure 5 (c)). Similar to the results of the
video decoder, better performance is obtained with better
balanced workloads.

Overall Performance Characteristics
As mentioned earlier, different modules have been
interleaved in the application to utilize more execution
resources in the machine at a given time. Hence, it is hard
to break down the workload characteristics in individual
modules. Rather, it is better to consider the application as
a whole.

As shown in Table 4, although the numbers of
instructions retired and cache misses (e.g., trace and first-
level) increase in both applications after threading,
because of threading overhead and capacity misses in
each thread, the overall application performance still
increases. To verify that resource utilization is better
balanced on a processor with Hyper-Threading
Technology, we compare UPC for single-threaded and
multi-threaded applications. UPC increases from 1.05 to
1.33 in video encoding, from 0.78 to 0.85 in video
decoding, and from 1.01 to 1.21 in watermark detection,
confirming the more efficient resource utilization possible
with Hyper-Threading Technology. (These numbers
include the overhead of thread synchronization; however,
this overhead is relatively small, being on the order of

0.5% for watermark detection, approximately 3-4% for
video decoding, and 4-5% for video encoding.)

POWER CONSUMPTION ISSUES
In this paper, we have mainly discussed methods to
improve the application throughput on processors with
Hyper-Threading Technology. In addition to throughput,
power consumption is also an important performance
factor for the next generation of processors. This is
especially true for battery-run mobile systems, in which
the average power consumption for a given fixed
application is a crucial parameter to consider for the
evaluation of the overall performance of the system.

In this section, we show that Hyper-Threading
Technology can not only improve system throughput but
can also save energy for applications with fixed duties.
As an introduction to this new research topic, we give
some hints on how to design “power-aware” applications
on processors with Hyper-Threading Technology and we
show the first results of this ongoing work.

Watermark detection as fast as possible

0

10

20

30

40

50

60

0 5 10 15 20 25

Seconds

P
ow

er
 (w

at
ts

)

Hyper-Threading Technology Single-thread

Start
application Task finished

Watermark detection as fast as possible

0

10

20

30

40

50

60

0 5 10 15 20 25

Seconds

P
ow

er
 (w

at
ts

)

Hyper-Threading Technology Single-thread

Start
application Task finished

Table 4: The workload characteristics of our applications on single-threaded processors and processors with Hyper-
Threading Technology

 MPEG encoding MPEG decoding Video watermarking
Event Single-

thread
Hyper-

threading
Single-
thread

Hyper-
threading

Single-
thread

Hyper-
threading

Clockticks (Millions) 13,977 11,688 7,467 6,687 23,942 20,162
Instructions retired (Millions) 11,253 11,674 3,777 3,921 17,728 17,821
Uops retired (Millions) 14,735 15,539 5,489 5,667 24,120 24,333
MMX/SIMD uops retired (Millions) 6,226 6,220 1,119 1,120 5,334 5,341
IPC (instructions per clock) 0.80 1.00 0.51 0.59 0.74 0.88
UPC (uops per clock) 1.05 1.33 0.74 0.85 1.01 1.21
Trace cache misses (Millions) 20.8 29.0 13.3 24.1 7.6 13.3
First-level cache misses (Millions) 132 145 132 166 510 638
Bus utilization 8.5% 8.5% 14.7% 16.4% 14.2% 22.3%

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Media Applications on Hyper-Threading Technology 9

Figure 8: Measured power consumption of our
watermark detector on a processor with Hyper-Threading

Technology and a normal system at the same frequency
and voltage

In various situations, Hyper-Threading Technology
consumes additional power while improving the
performance, as shown in Figure 8. When idle, the
execution units in Intel Pentium 4 processors consume
less power because of clockgating [2]. Hyper-Threading
Technology makes the execution units busier, and thus,
they consume slightly more power. The graphs also show
that the task finishes earlier on a system with Hyper-
Threading Technology. Because the task finishes in fewer
cycles, the overall energy consumption is slightly less on
a system with Hyper-Threading Technology even with the
same voltage and frequency. This is because powering up
additional execution units for two simultaneous threads is
more economical than powering the whole pipeline with
fewer execution units to run serial threads.

In the case of real-time applications6, where we need only
a fixed amount of throughput, we can reduce the
frequency and the voltage. As Hyper-Threading
Technology increases the throughput, and we have more
spare cycles, we can further reduce the frequency and the
voltage. Because the active power consumption is
proportional to frequency*(voltage)2, we can have a cubic
effect on energy saving.

Nonetheless, a common thread scheduling pitfall in
multithreading real-time applications can reduce the
overall energy gain on the system with Hyper-Threading
Technology. Figure 9 (a) shows a common, but less than
optimal, multithreading method of the watermark detection
application–the watermark detector is active immediately
after the video frame is decoded. Due to a large cycle
period, there may be no overlapping between two threads
(see Figure 5 (b)). While Figure 9 (b) has the same cycle
period as Figure 9 (a), by delaying the starting time of the
second thread, we increase the overlapping period of two
threads. That is, we queue the tasks and dispatch
together to maximize the overlap. In this case, the halted
period in CPU is increased. Because powering up
additional execution units for two simultaneous threads is
more economical and the physical processor consumes
less power when it is halted (or when both logical

 Pentium is a registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries.
6 Real-time in this work means that applications need to
perform some tasks periodically, while throughput-
oriented applications just finish all the tasks as fast as
possible.

processors are halted), Figure 9 (b) consumes less energy.
(In our real-time watermark detector, the measured CPU
power is 22.8 watts vs. 23.6 watts7.) The key is to overlap
the busy cycles of one logical processor with those of the
other.

Decode
Frame 1

W.M.
Detect

Frame 1

Decode
Frame 2

W.M.
Detect

Frame 2

Decode
Frame 3

W.M.
Detect

Frame 3

Decode
Frame 4

C
yc

le
 p

er
io

d
Ti

m
e

Decode
Frame 1

W.M.
Detect

Frame 1

Decode
Frame 2

W.M.
Detect

Frame 2

Decode
Frame 3

W.M.
Detect

Frame 3

Decode
Frame 4

C
yc

le
 p

er
io

d
Ti

m
e

Decode
Frame 1

W.M.
Detect

Frame 1

Decode
Frame 2

W.M.
Detect

Frame 2

Decode
Frame 3

W.M.
Detect

Frame 3

Decode
Frame 4

Ti
m

e
C

yc
le

 p
er

io
d

O
ve

rla
p

pe
rio

d
N

on
-h

al
te

d
pe

rio
d

H
al

te
d

pe
rio

d

Decode
Frame 1

W.M.
Detect

Frame 1

Decode
Frame 2

W.M.
Detect

Frame 2

Decode
Frame 3

W.M.
Detect

Frame 3

Decode
Frame 4

Ti
m

e
C

yc
le

 p
er

io
d

O
ve

rla
p

pe
rio

d
N

on
-h

al
te

d
pe

rio
d

H
al

te
d

pe
rio

d

(a) (b)

Figure 9: Two different methods of multithreading real-
time applications. (a) uses more energy than (b)

CONCLUSION
In this paper we explained how typical media applications
can benefit from Hyper-Threading Technology. From the
increases in UPCs, we have observed that Hyper-
Threading Technology can increase the utilization of
processor resources by 15 to 27%, even for well-optimized
multimedia applications. The results given in this paper
also show that it is possible to benefit from Hyper-
Threading Technology to save power when executing a
fixed task.

Moreover, it has been shown that it is crucial to reach an
optimal load balancing for an efficient implementation on
Hyper-Threading Technology. This can usually be done
for media applications exploiting both data and functional
decompositions. Such partitioning, especially with a
dynamic scheduling scheme, benefits in most cases from
the fact that, unlike in symmetric multiprocessor systems,

7 Here, we use average power as the indicator for energy
saving. In real-time applications, power saving and
energy saving can be used interchangeably.

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1

Media Applications on Hyper-Threading Technology 10

threads share the cache in a processor with Hyper-
Threading Technology.

Finally, the results show that for complex media
applications running on Hyper-Threading Technology, in
which multiple threads typically interact together and
access memory concurrently, the thread synchronization
issues and the overall data and functional partitioning are
more important than the individual function
characteristics.

ACKNOWLEDGMENTS
We acknowledge the exceptional efforts of the people at
the Intel Nizhny Novgorod Lab in developing the
encoder/decoder used in this study, especially Valery
Kuriakin. Additionally, we thank Doug Carmean, Mike
Upton, Per Hammarlund, Russell Arnold, Shihjong Kuo,
George K. Chen, and Stephen Gunther for their help in
setting up our Hyper-Threading Technology hardware
and software environments and for valuable discussions
during this work.

REFERENCES
[1] E. Debes, M. Holliman, W. Macy, Y.-K. Chen, and M.

Yeung, “Computational Analysis and System
Implications of Video Watermarking Applications,” in
Proceedings of SPIE Conference on Security and
Watermarking of Multimedia Contents IV, Jan. 2002.

[2] S. Gunther, F. Binns, D. Carmean, and J. Hall,
“Managing the Impact of Increasing Microprocessor
Power Consumption,” Intel Technology Journal, Q1
2001.

[3] B. G. Haskell, A. Puri, and A. N. Netravali, Digital
Video: An Introduction to MPEG-2, MA: Kluwer,
1997.

[4] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean,
A. Kyker, and P. Roussel, “The Microarchitecture of
the Pentium® 4 Processor,” Intel Technology Journal,
Q1 2001.

[5] Intel Corp., Intel® Performance Library Suite,
(available on-line:
http://developer.intel.com/software/products/
perflib/index.htm)

[6] Intel Corp., Intel® Pentium® 4 Processor Optimization
Reference Manual, Order Number: 248966 (also
available on-line:
http://developer.intel.com/design/pentium4/manuals/2
4896604.pdf)

[7] D. Marr, et al., “Hyper-Threading Technology
Microarchitecture and Performance,” Intel Technology
Journal, Q1 2002.

[8] H. Wang, P. Wang, R. D. Weldon, S. Ettinger, H. Saito,
M. Girkar, S. Liao, and J. Shen, “Speculative

Precomputation: Exploring the Use of Multithreading
Technology for Latency,” Intel Technology Journal,
Q1 2002.

AUTHORS’ BIOGRAPHIES
Yen-Kuang Chen is a researcher in the Media Systems
Lab, Microprocessor Research, Intel Labs. His research
interests include video compression and processing,
architecture and algorithm design in multimedia
computing, video and graphics hardware design, and
performance evaluation. He received a Ph.D. in electrical
engineering from Princeton University. His e-mail is yen-
kuang.chen@intel.com.

Matthew J. Holliman is a researcher in the Media Systems
Lab, Microprocessor Research, Intel Labs. His research
interests include media and Internet technology, focusing
on content delivery and protection. His e-mail is
matthew.holliman@intel.com.

Eric Debes is a researcher in the Media Systems Lab,
Microprocessor Research, Intel Labs. His research
interests include media coding, processing,
communications and content protection as well as
microarchitecture design and parallelism in computer
architecture. He received an M.S. degree in electrical and
computer engineering from Supélec, France, an M.S.
degree in electrical engineering from the Technical
University Darmstadt, Germany and a Ph.D. degree from
the Swiss Federal Institute of Technology (EPFL),
Lausanne, Switzerland. His e-mail is Eric.Debes@intel.com.

Sergey Zheltov is a project manager in Microprocessor
Research, Intel Labs. His research interests include media
compression and processing, software and platforms
architecture, signal processing, high-order spectra. He
received a Diploma in radio-physical engineering and MS
degree in theoretical and mathematical physics from
Nizhny Novgorod State University. His e-mail is
Sergey.Zheltov@intel.com.

Alexander Knyazev is a software engineer in
Microprocessor Research, Intel Labs. His research
interests include video compression and processing,
multimedia software architecture, platforms architecture,
test, rough set and fuzzy logic theories. He received a
Master’s Degree of Applied Mathematics and Computer
Science from Nizhny Novgorod State University. His e-
mail is Alexander.Knyazev@intel.com.

Stanislav Bratanov is a software engineer in
Microprocessor Research, Intel Labs. His research
interests include multi-processor software platforms,
operating system environments, and platform-dependent
media data coding. He graduated from Nizhny Novgorod

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Media Applications on Hyper-Threading Technology 11

State University, Russia. His e-mail is
Stanislav.Bratanov@intel.com.

Roman Belenov is a software engineer in Microprocessor
Research, Intel Labs. His research interests include video
compression and processing, multimedia software
architecture and wireless networking. He received a
Diploma in physics from Nizhny Novgorod State
University. His e-mail is Roman.Belenov@intel.com

Ishmael Santos is a Hardware Engineer for Power and
Trace Technologies in Software Solutions Group, Intel
Corporation. His interests include computer architecture
with an emphasis on microprocessor power consumption
and performance. Ishmael received his B.S. in Electrical
Engineering and Computer Science from the University of
California, Los Angeles. His e-mail is
Ishmael.F.Santos@intel.com.

Copyright © Intel Corporation 2002. This publication was
downloaded from http://developer.intel.com/ .

Other names and brands may be claimed as the property of
others.

Legal notices at
http://developer.intel.com/sites/corporate/tradmarx.htm

