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ABSTRACT 

This paper characterizes selected workloads of multimedia 
applications on current superscalar architectures, and then 
it characterizes the same workloads on Intel Hyper-
Threading Technology.  The workloads, including video 
encoding, decoding, and watermark detection, are 
optimized for the Intel® Pentium® 4 processor.  One of the 
workloads is even commercially available and it performs 
best on the Pentium 4 processor.  Nonetheless, due to the 
inherently sequential constitution of the algorithms, most 
of the modules in these well-optimized workloads cannot 
fully utilize all the execution units available in the 
microprocessor.  Some of the modules are memory-
bounded, while some are computation-bounded. 
Therefore, Hyper-Threading Technology is a promising 
architecture feature that allows more CPU resources to be 
used at a given moment. 

Our goal, in this paper, is to better explain the performance 
improvements that are possible in multimedia applications 
using Hyper-Threading Technology.  Our initial studies 
show that there are many unexplored issues in algorithms 
and applications for Hyper-Threading Technology.  In 
particular, there are many techniques to develop better 
software for multithreading systems.  We demonstrate 
different task partition/scheduling schemes and discuss 
their trade-offs so that a reader can understand how to 

                                                                 
Intel and Pentium are registered trademarks of Intel 
Corporation or its subsidiaries in the United States and 
other countries. 

develop efficient applications on processors with Hyper-
Threading Technology.  

INTRODUCTION  
To date, computational power has typically increased over 
time because of the evolution from simple pipelined 
designs to the complex speculation and out-of-order 
execution of many of today’s deeply-pipelined superscalar 
designs.  While processors are now much faster than they 
used to be, the rapidly growing complexity of such 
designs also makes achieving significant additional gains 
more difficult.  Consequently, processors/systems that 
can run multiple software threads have received increasing 
attention as a means of boosting overall performance.  In 
this paper, we first characterize the workloads of video 
decoding, encoding, and watermarking on current 
superscalar architectures, and then we characterize the 
same workloads using the recently-announced Hyper-
Threading Technology.  Our goal is to provide a better 
understanding of performance improvements in multimedia 
applications on processors with Hyper-Threading 
Technology.  

Figure 1 shows a high-level view of Hyper-Threading 
Technology and compares it to a dual-processor system.  
In the first implementation of Hyper-Threading 
Technology, one physical processor exposes two logical 
processors .  Similar to a dual-core or dual-processor 
system, a processor with Hyper-Threading Technology 
appears to an application as two processors .  Two 
applications or threads can be executed in parallel.  The 
major difference between systems that use Hyper-
Threading Technology and dual-processor systems is the 
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different amounts of duplicated resources.  In today’s 
Hyper-Threading Technology, only a small set of the 
microarchitecture state is duplicated1, while the front-end 
logic, execution units, out-of-order retirement engine, and 
memory hierarchy are shared.  Thus, compared to 
processors without Hyper-Threading Technology, the die-
size is increased by less than 5% [7].  While sharing some 
resources may increase the latency of some single-
threaded applications, the overall throughput is higher for 
multi-threaded or multi-process applications. 
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Figure 1: High-level diagram of (a) a processor with 
Hyper-Threading Technology and (b) a dual-processor 

system 

This paper is organized as follows.  First, we provide a 
brief review of the basic principles behind most current 
video codecs, describing the overall application behavior 
of video decoding/encoding/watermarking and the 
implications of the key kernels for current and emerging 
architectures.  Then, we show the multi-threaded software 
architectures of our applications, including data-domain 
and functional decomposition.  Additionally, we describe 
some potential pitfalls when developing software on 
processors with Hyper-Threading Technology and our 

                                                                 
1 Nearly all the architectural state is duplicated, however. 

techniques to avoid them.  Finally, we provide some 
performance numbers and our observations. 

MULTIMEDIA WORKLOADS 
This section describes the workload characterization of 
selected multimedia applications on current superscalar 
architectures.  Although the workloads are well optimized 
for Pentium® 4 processors, due to the inherent 
constitution of the algorithms, most of the modules in 
these workloads cannot fully utilize all the execution 
resources available in the microprocessor.  The particular 
workloads we target are video decoding, encoding, and 
watermark detection2, which are key components in both 
current and many future applications and are 
representative of many media workloads.  

MPEG Decoder and Encoder 
The Moving Pictures Expert Group (MPEG) is a standards 
group founded in 1988.  Since its inception, the group has 
defined a number of popular audio and video compression 
standards, including MPEG-1, MPEG-2, and MPEG-4 [3].  
The standards incorporate three major compression 
techniques: (1) predictive coding; (2) transform-based 
coding; and (3) entropy coding.  To implement these, the 
MPEG encoding pipeline consists of motion estimation, 
Discrete Cosine Transform (DCT), quantization, and 
variable-length coding.  The MPEG decoding pipeline 
consists of the counterpart operations of Variable-Length 
Decoding (VLD), Inverse Quantization (IQ), Inverse 
Discrete Cosine Transform (IDCT), and Motion 
Compensation (MC), as shown in Figure 2. 
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Figure 2: Block diagram of  an MPEG decoder 

                                                                 
2 A digital video watermark, which is invisible and hard to 
alter by others, is information embedded in the video 
content.  A watermark can be made by slightly changing 
the video content according to a secret pattern.  For 
example, when just a few out of the millions of pixels in a 
picture are adjusted, the change is imperceptible to the 
human eye.  A decoder can detect and retrieve the 
watermark by using the key that was used to create the 
watermark.  
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Figure 3: MPEG-2, 720x480 decoding breakdown by time 
on 2GHz Pentium® 4 processors 

The behavior of the MPEG decoder can be highly 
dependent on the characteristics of the video stream being 
decoded.  Figure 3 shows an exa mple of the CPU time 
breakdown of our MPEG decoder for a typical DVD 
resolution video sequence.  VLD, IDCT, and MC are the 
main components in the process.  The decoder used in the 
study is part of the Intel Media Processing Library (MPL)3,  
which was developed by Intel Labs.  The software was 
analyzed using the Intel VTune Performance Analyzer on 
an Intel® Pentium 4 processor with a 400 MHz system 
bus, an 8 KB first-level data cache, a 256 KB second-level 
                                                                 
3 More information about the MPL can be found at 
http://www.intel.com/research/mrl/research/mpl/. 
Additionally, the MPL MPEG-2 decoder is commercially 
available as part of the Ligos* GoMotion* SDK. 
VTune is a trademark of Intel Corporation or its 
subsidiaries in the United States and other countries. 
 Pentium is a registered trademark of Intel Corporation or 
its subsidiaries in the United States and other countries. 

shared instruction/data cache, and 512 MB of main 
memory.  We run our applications on Windows ∗ XP.    

Table 1 shows a high-level analysis of the MPEG-2 
decoder.  The first stage of the decoding pipeline, VLD/IQ, 
is characterized by substantial data dependency, limiting 
opportunities for instruction, data, and thread-level 
parallelism.  The kernel is entirely computation-bound, and 
it shows excellent performance scaling over increasing 
frequencies on the Pentium 4 processor.  The next stage, 
IDCT, is also completely computation-bound.  The kernel 
is dominated by MMX/SSE/SSE2 (Streaming SIMD 
Extension) operations, with interspersed register-to-
register moves and stores; e.g., a sequence of movaps, 
addps, and subps is a typical recurring theme, 
corresponding to the well-known butterfly operation, 
surrounded by associated prescaling/multiply operations.  
Because 90% of the instructions are executed in the 
MMX/SSE/SSE2 unit, the integer execution unit is idle 
most of the time in the IDCT module4.  The final stage of 
the decoding pipeline, MC, is memory intensive compared 
to the other modules in the pipeline.  The front-side bus is 
busy 30% of the time in this module.  Although the out-of-
order execution core in the Pentium 4 processor can 
tolerate some memory latencies, the module shows an 
equal distribution of time between computation and 
memory latency because there are too many memory 
operations.  All these modules are well-optimized, but still 
cannot utilize 100% of the execution units available in the 
microprocessors.  While the Pentium 4 processor can 
execute multiple uops in one cycle, the uops retired per 
cycle (UPC) is only 0.74 in the MPL decoder. 

MPEG encoders, similar to the decoder, consist of some 
MMX/SSE/SSE2 intensive modules (e.g., motion 
estimation, DCT) and some data-dependent modules (e.g., 
variable-length coding).  All these modules are well 
optimized, but a UPC of 1.05 again indicates that the 

                                                                 
∗Other brands and names may be claimed as the property 
of others. 
4  See Figure 4 in [4], integer operations and floating-
point/MMX/SSE/SSE2 operations are executed in different 
units. 

Table 1: MPEG decoding kernel characterization on 2 GHz Pentium® 4 processors (9 Mb/s MPEG-2, 720x480) 

Kernel IPC UPC MMX/SSE/SSE-2 
per instructions 

Cond. 
Branch/ instr. 

Mispred. 
Cond./ Instr. 

Mispred. 
Cond./ Clock 

L1 misses/ 
Instr. 

FSB 
activity 

VLD 0.76 0.99 0.074 1/9 1/120 1/158 1/92 11.1% 
IDCT 0.59 0.89 0.90 1/141 1/2585 1/4381 1/193 2.4% 
MC 0.24 0.40 0.42 1/17 1/142 1/592 1/11 30. 3% 
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encoder cannot fully utilize all the execution units 
available in the microprocessor.  

Video Watermarking 
Another application that we studied is video watermark 
detection [1]. Our watermark detector has two basic 
stages: video decoding and image-domain watermark 
detection.  The application is optimized with MPL (as the 
video decoder) and the Intel IPL (for the image 
manipulations used during watermark detection) [5]. A 
UPC of 1.01 also indicates that there is room for 
improvement.  
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Figure 4: Two slice-based task partitioning schemes 
between two threads: (a) half-and-half dispatching (static 
scheduling); and (b) slice-by-slice scheduling (dynamic 

scheduling) 

TASK PARTITIONING AND SCHEDULING 
In general, multimedia applications, such as video 
encoding and decoding, exhibit not only data- and 
instruction-level parallelism, but also the possibility for 
substantial thread-level parallelism.  Such workloads are 
good candidates for speed-up on a number of different 
multithreading architectures.  This section discusses the 
trade-offs of different software multithreading methods. 

Data-Domain Decomposition–Slice-Based 
Dispatching 
As shown in Figure 4, a picture in a video bit stream can 
be divided into slices of macroblocks.  Each slice, 
consisting of blocks of pixels, is a unit that can be 
decoded independently.  Here we compare two methods to 
decode the pictures in parallel: 

1. Half-and-half (aka static partitioning):  In this 
method, one thread is statically assigned the first 
half of the picture, while another thread is 

assigned the other half of the picture (as shown 
in Figure 4 (a)).  Assuming that the complexity of 
the first half and second half is similar, these two 
threads will finish the task at roughly the same 
time.  However, some areas of the picture may be 
easier to decode than others .  This may lead to 
one thread being idle while the other thread is 
still busy. 

2. Slice-by-slice (aka dynamic partitioning):  In this 
method, slices are dispatched dynamically. A 
new slice is assigned to a thread when the thread 
has finished its previously assigned slice. In this 
case, we don’t know which slices will be 
assigned to which thread.  Instead, the 
assignment depends on the complexity of the 
slices assigned.  As a result, one thread may 
decode a larger portion of the picture than the 
other if its assignments are easier than those of 
the other thread.  The execution time difference 
between two threads, in the worst case, is the 
decoding time of the last slice.  

In both cases, each thread performs Variable-Length 
Decoding (VLD), Inverse Discrete Cosine Transform 
(IDCT), and Motion Compensation (MC) in its share of the 
pictures, macroblock by macroblock.  While one thread is 
working on MC (memory intensive), the other thread may 
work on VLD or IDCT (less memory intensive).  Although 
the partitioning does not explicitly interleave 
computations and memory references, on average, it better 
balances the use of resources. 

Functional Decomposition of Video 
Watermark Detection 
Besides data-domain decomposition, an application can 
also be partitioned functionally into multiple threads.  For 
example, our video watermark detector consists of two 
basic stages: video decoding and watermark detection.  
Hence, we assign different threads to decode the video 
and to detect the watermark, as shown in Figure 5. 

One method is to use two threads: one for video decoding 
and another for watermark detection, as shown in Figure 5 
(b).  However, this method does not have very good load 
balance.  This is because in our video watermark detector, 
video decoding takes roughly one-third of the CPU time, 
while watermark detection takes two-thirds of the CPU 
time.   
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Because watermark detection takes twice as much 
computation time as video decoding, we use two threads 
for watermark detection for better load balancing, as 
shown in Figure 5 (c).  While one thread decodes the 
video sequence, two threads work on watermark detection.  
The lines in the figure indicate the dependency between 
functional blocks.  We can see that at any moment, there 
are at least two threads running in the three-threaded 
mode.  In contrast to the data-domain video decoding 
decomposition described above, threads in this 
implementation are assigned to different functions. 

IMPLICATIONS OF SOFTWARE DESIGN 
FOR HYPER-THREADING TECHNOLOGY  
During the implementation of our applications on 
processors with Hyper-Threading Technology, we had a 
number of observations.  In this section, we discuss some 
general software techniques to help readers design their 

applications better on systems with Hyper-Threading 
Technology.  
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Figure 6: Cache localities, during; (a) motion 
compensation, in; (b) static partitioning, and in; (c) 

dynamic partitioning 

Using Hyper-Threading Technology, performance can be 
lost when the loads are not balanced.  Because two logical 
processors share resources on one physical processor 
with Hyper-Threading Technology, each logical processor 
does not get all the resources a single processor would 
get.  When only a single thread of the application is 
actively working and the other thread is waiting 
(especially, spin-waiting), this portion of the application 
could have less than 100% of the resources when 
compared to a single processor, and it might run slower on 
a processor with simultaneous multithreading capability 
than on processors without simultaneous multithreading 
capability.  Thus, it is important to reduce the portion in 
which only one thread is actively working.  For better 
performance, effective load balancing is crucial.   

The foremost advantage of the dynamic scheduling 
scheme (see Figure 4) is its good load balance between the 
two threads.  Because some areas of the picture may be 
easier to decode than others, one thread under the static 
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Figure 5: Three threading methods for video 
watermark detection: (a) single-threaded mode; (b) two-

threaded mode; and (c) three-threaded mode 
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partitioning scheme may be idle while another thread still 
has a lot of work to do.  In the dynamic partitioning 
scheme, we have very good load balance.  As we assign a 
new slice to a thread only when it has finished its previous 
slice, the execution time difference between the two 
threads, in the worst case, is the decoding time of a slice. 

Because two logical processors share one physical 
processor, the effective sizes of the caches for each logical 
processor are roughly one half of the original size.  Thus, 
it is important for multithreaded applications to target one 
half of the caches for each application thread.  For 
example, when considering code size optimization, 
excessive loop unrolling should be avoided.   

While sharing caches may be a drawback for some 
applications running on processors with Hyper-Threading 
Technology, it can provide better cache locality between 
the two logical processors for other applications.  For 
example, Wang et al. use one logical processor to prefetch 
data into the shared caches to reduce a substantial 
amount of the memory latency of the application in the 
other logical processors [8].  We now illustrate the 
advantage of sharing caches in our application. 

On dual-processor systems, each processor has a private 
cache.  Thus, there may be a drawback to dynamic 
partitioning in terms of cache locality.  Figure 6 illustrates 
the cache locality in multiple frames of video. During 
motion compensation, the decoder uses part of the 
previous picture, the referenced part of which is roughly 
co-located in the previous reference frame, to reconstruct 
the current frame.  It is faster to decode the picture when 
the co-located part of the picture is still in the cache.  In 
the case of a dual-processor system, each thread is 
running on its own processor, each with its own cache.  If 
the co-located part of the picture in the previous frame is 
decoded by the same thread, it is more likely that the local 
cache will have the pictures that have just been decoded.  
Since we dynamically assign slices to different threads, it 
is more likely that the co-located portion of the previous 
picture may not be in the local cache when each thread is 
running on its own physical processor and cache, as 
shown in Figure 6 (c).  Thus, dynamic partitioning may 
incur more bus transactions 5 . In contrast, the cache is 
shared between logical processors on a processor with 

                                                                 
5  On dual-processor systems, an alternative method of 
keeping cache locality in dynamic scheduling is to 
dispatch slices to one thread from top-down and slices to 
the other thread from bottom-up.  However, it is hard to 
generalize the method for four-way or eight-way multi-
processor systems.  In this paper, we did not show the 
results of this method. 

Hyper-Threading Technology, and thus, cache localities 
are preserved.  We obtain the best of both worlds with 
dynamic scheduling: there is load balancing between the 
threads, and there is the same effective cache locality as 
for static scheduling on a dual-processor system.  

RESULTS 
This shows some performance numbers and analysis of 
our applications on multithreading architectures. In 
general, our results show that Hyper-Threading 
Technology offers a cost-effective performance 
improvement (7%-18%) for multithreading without 
doubling hardware cost (see Figure 7) as in dual-processor 
systems. 

Our Hyper-Threading Technology system has an 
experimental 1.7GHz Intel Pentium 4 processor with 
Hyper-Threading Technology capability, which is a pre-
production prototype, running Windows ∗ XP.  The 
processor has a 512KB second-level cache, but no third-
level cache.  To contrast the performance with single-
thread performance on the system experimentally in lab 
setting, we disable the support of Hyper-Threading 
Technology from the CPU, motherboard, BIOS, and the 
operating system.  Our dual-processor system has two 
1.7GHz Intel Xeon processors, each of which has a 
256KB second-level cache and a 1MB third-level cache, 
running Windows XP.  To measure single-thread 
performance on the dual-processor system, we disable one 
physical processor and run a single-thread version of the 
application.  The relative speed between Hyper-Threading 
Technology systems and dual-processor systems is not 
measured in our experiment. 

To measure the performance of the encoder, we use five 
720x480 YVU 4:2:0 benchmark sequences.  To measure the 
performance of the decoder, we use one 640x480, three 
704x480, three 720x480, one 1280x720, and two 1920x1080 
MPEG-2 sequences.  Moreover, three 704x480 MPEG-2 
sequences are used to measure the performance of the 
video watermark detectors.  The speed-ups are sequence 
dependent, but within a small variation.  We report only 
the average numbers in Figure 7. 

                                                                 
 Pentium is a registered trademark of Intel Corporation or 
its subsidiaries in the United States and other countries. 
∗ Other brands and names may be claimed as the property 
of others 
Xeon is a trademark of Intel Corporation or its 
subsidiaries in the United States and other countries. 
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Data-Domain Decomposition 
This section describes the performance of the data-domain 
decomposition of the video decoding described earlier.  

First, Figure 7 (b) shows that it is better to use the 
dynamic scheduling method than the static scheduling 
method on a processor with Hyper-Threading 
Technology, as it is very important to have a balanced 
load.  Because resources are shared between the logical 
processors, the relative performance of each logical 
processor can be less than 1.0 compared to an equivalent 
processor without simultaneous multithreading capability.  
When only one thread is busy, the overall throughput is 
less than that of a single processor.  To have the best 
performance, it is important to have a balanced workload 
between threads.  Hence, the dynamic scheme is better 
than static scheduling.  

On the other hand, Figure 7 (b) shows that the static 
scheduling method is better than the dynamic scheduling 
method on a dual-processor system.  It is faster to decode 
the picture when the co-located parts of the pictures are 
still in the cache.  As mentioned earlier, although dynamic 
scheduling has better load balance, co-located parts of the 
pictures may not be decoded by the same processor when 
using dynamic scheduling.  This scheduling scheme 
incurs more bus transactions, as shown in Table 2, with 
the result that the overall speed using dynamic scheduling 
is slower. 

Compared to dual-processor systems, processors with 
Hyper-Threading Technology have the advantage of 
sharing the second-level cache between two logical 
processors.  Even when the same logical processor does 
not decode the co-located part of the reference picture, 
that part of the picture can still be read from the shared 
second-level cache.  Table 3 shows that the numbers of 
bus activities are similar between static scheduling and 
dynamic scheduling.  In this case, the overall speed of 
dynamic scheduling is faster because the workload is 
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Figure 7: Performance of; (a) our video encoder; (b) our 
video decoder; and (c) our watermarking detection with 

software configurations 

Table 2: The numbers of front-side bus (FSB) data 
activities per second between static scheduling and 

dynamic scheduling on a dual-processor system 

Event 
Static 
scheduling 

Dynamic 
scheduling 

FSB_data_activity 8,604,511 12,486,051 

Table 3: The numbers of FSB data activities per second 
between static scheduling and dynamic scheduling on a 

processor with Hyper-Threading Technology 

Event 
Static 
scheduling 

Dynamic 
scheduling 

FSB_data_activity 8,474,022 8,536,838 
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better balanced. 

Functional Decomposition 
Here, we describe the performance of the video watermark 
detection functional decomposition described earlier in 
Figure 5.  Figure 7 (c) shows the performance 
comparisons.  2-thread denotes one video-decoding 
thread and one watermark detection thread, and 3-thread 
denotes one video-decoding thread and two watermarking 
threads (see Figure 5 (c)).  Similar to the results of the 
video decoder, better performance is obtained with better 
balanced workloads.   

Overall Performance Characteristics 
As mentioned earlier, different modules have been 
interleaved in the application to utilize more execution 
resources in the machine at a given time.  Hence, it is hard 
to break down the workload characteristics in individual 
modules.  Rather, it is better to consider the application as 
a whole. 

As shown in Table 4, although the numbers of 
instructions retired and cache misses (e.g., trace and first-
level) increase in both applications after threading, 
because of threading overhead and capacity misses in 
each thread, the overall application performance still 
increases.  To verify that resource utilization is better 
balanced on a processor with Hyper-Threading 
Technology, we compare UPC for single-threaded and 
multi-threaded applications.  UPC increases from 1.05 to 
1.33 in video encoding, from 0.78 to 0.85 in video 
decoding, and from 1.01 to 1.21 in watermark detection, 
confirming the more efficient resource utilization possible 
with Hyper-Threading Technology.  (These numbers 
include the overhead of thread synchronization; however, 
this overhead is relatively small, being on the order of 

0.5% for watermark detection, approximately 3-4% for 
video decoding, and 4-5% for video encoding.) 

POWER CONSUMPTION ISSUES 
In this paper, we have mainly discussed methods to 
improve the application throughput on processors with 
Hyper-Threading Technology.  In addition to throughput, 
power consumption is also an important performance 
factor for the next generation of processors.  This is 
especially true for battery-run mobile systems, in which 
the average power consumption for a given fixed 
application is a crucial parameter to consider for the 
evaluation of the overall performance of the system.  

In this section, we show that Hyper-Threading 
Technology can not only improve system throughput but 
can also save energy for applications with fixed duties.  
As an introduction to this new research topic, we give 
some hints on how to design “power-aware” applications 
on processors with Hyper-Threading Technology and we 
show the first results of this ongoing work.  
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Table 4: The workload characteristics of our applications on single-threaded processors and processors with Hyper-
Threading Technology 

 MPEG encoding MPEG decoding Video watermarking 
Event Single-

thread 
Hyper-

threading 
Single-
thread 

Hyper-
threading  

Single-
thread 

Hyper-
threading 

Clockticks (Millions) 13,977 11,688 7,467 6,687 23,942 20,162 
Instructions retired (Millions) 11,253 11,674 3,777 3,921 17,728 17,821 
Uops retired (Millions) 14,735 15,539 5,489 5,667 24,120 24,333 
MMX/SIMD uops retired (Millions) 6,226 6,220 1,119 1,120 5,334 5,341 
IPC (instructions per clock) 0.80 1.00 0.51 0.59 0.74 0.88 
UPC (uops per clock) 1.05 1.33 0.74 0.85 1.01 1.21 
Trace cache misses (Millions) 20.8 29.0 13.3 24.1 7.6 13.3 
First-level cache misses (Millions) 132 145 132 166 510 638 
Bus utilization 8.5% 8.5% 14.7% 16.4% 14.2% 22.3% 
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Figure 8: Measured power consumption of our 
watermark detector on a processor with Hyper-Threading 

Technology and a normal system at the same frequency 
and voltage      

In various situations, Hyper-Threading Technology 
consumes additional power while improving the 
performance, as shown in Figure 8.  When idle, the 
execution units in Intel Pentium 4 processors consume 
less power because of clockgating [2].  Hyper-Threading 
Technology makes the execution units busier, and thus, 
they consume slightly more power.  The graphs also show 
that the task finishes earlier on a system with Hyper-
Threading Technology.  Because the task finishes in fewer 
cycles, the overall energy consumption is slightly less on 
a system with Hyper-Threading Technology even with the 
same voltage and frequency.  This is because powering up 
additional execution units for two simultaneous threads is 
more economical than powering the whole pipeline with 
fewer execution units to run serial threads. 

In the case of real-time applications6, where we need only 
a fixed amount of throughput, we can reduce the 
frequency and the voltage.  As Hyper-Threading 
Technology increases the throughput, and we have more 
spare cycles, we can further reduce the frequency and the 
voltage.  Because the active power consumption is 
proportional to frequency*(voltage)2, we can have a cubic 
effect on energy saving.  

Nonetheless, a common thread scheduling pitfall in 
multithreading real-time applications can reduce the 
overall energy gain on the system with Hyper-Threading 
Technology.  Figure 9 (a) shows a common, but less than 
optimal, multithreading method of the watermark detection 
application–the watermark detector is active immediately 
after the video frame is decoded.  Due to a large cycle 
period, there may be no overlapping between two threads 
(see Figure 5 (b)).  While Figure 9 (b) has the same cycle 
period as Figure 9 (a), by delaying the starting time of the 
second thread, we increase the overlapping period of two 
threads.  That is, we queue the tasks and dispatch 
together to maximize the overlap.  In this case, the halted 
period in CPU is increased.  Because powering up 
additional execution units for two simultaneous threads is 
more economical and the physical processor consumes 
less power when it is halted (or when both logical 
                                                                 
 Pentium is a registered trademark of Intel Corporation or 
its subsidiaries in the United States and other countries.  
6 Real-time in this work means that applications need to 
perform some tasks periodically, while throughput-
oriented applications just finish all the tasks as fast as 
possible.    

processors are halted), Figure 9 (b) consumes less energy.  
(In our real-time watermark detector, the measured CPU 
power is 22.8 watts vs. 23.6 watts7.)  The key is to overlap 
the busy cycles of one logical processor with those of the 
other. 

  

Decode
Frame 1

W.M.
Detect

Frame 1

Decode
Frame 2

W.M.
Detect

Frame 2

Decode
Frame 3

W.M.
Detect

Frame 3

Decode
Frame 4

C
yc

le
 p

er
io

d
Ti

m
e

Decode
Frame 1

W.M.
Detect

Frame 1

Decode
Frame 2

W.M.
Detect

Frame 2

Decode
Frame 3

W.M.
Detect

Frame 3

Decode
Frame 4

C
yc

le
 p

er
io

d
Ti

m
e

Decode
Frame 1

W.M.
Detect

Frame 1

Decode
Frame 2

W.M.
Detect

Frame 2

Decode
Frame 3

W.M.
Detect

Frame 3

Decode
Frame 4

Ti
m

e
C

yc
le

 p
er

io
d

O
ve

rla
p

pe
rio

d
N

on
-h

al
te

d
pe

rio
d

H
al

te
d

pe
rio

d

Decode
Frame 1

W.M.
Detect

Frame 1

Decode
Frame 2

W.M.
Detect

Frame 2

Decode
Frame 3

W.M.
Detect

Frame 3

Decode
Frame 4

Ti
m

e
C

yc
le

 p
er

io
d

O
ve

rla
p

pe
rio

d
N

on
-h

al
te

d
pe

rio
d

H
al

te
d

pe
rio

d

 

(a)   (b) 

Figure 9: Two different methods of multithreading real-
time applications. (a) uses more energy than (b) 

CONCLUSION 
In this paper we explained how typical media applications 
can benefit from Hyper-Threading Technology.  From the 
increases in UPCs, we have observed that Hyper-
Threading Technology can increase the utilization of 
processor resources by 15 to 27%, even for well-optimized 
multimedia applications.  The results given in this paper 
also show that it is possible to benefit from Hyper-
Threading Technology to save power when executing a 
fixed task. 

Moreover, it has been shown that it is crucial to reach an 
optimal load balancing for an efficient implementation on 
Hyper-Threading Technology.  This can usually be done 
for media applications exploiting both data and functional 
decompositions.  Such partitioning, especially with a 
dynamic scheduling scheme, benefits in most cases from 
the fact that, unlike in symmetric multiprocessor systems, 

                                                                 
7 Here, we use average power as the indicator for energy 
saving.  In real-time applications, power saving and 
energy saving can be used interchangeably. 
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threads share the cache in a processor with Hyper-
Threading Technology.  

Finally, the results show that for complex media 
applications running on Hyper-Threading Technology, in 
which multiple threads typically interact together and 
access memory concurrently, the thread synchronization 
issues and the overall data and functional partitioning are 
more important than the individual function 
characteristics. 
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