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ABSTRACT

The goal of CMU’s Network-Attached Secure Disks (NASD)
project is to define the next era of storage system interfaces
and architectures. To encourage industry standardization of
a compliant storage device/subsystem interface, we are
working closely with the National Storage Industry Consor-
tium’s working group on network-attached storage. Our
experimental demonstration of the NASD interface’s value is
device and filesystem prototype software that delivers the
scalability inherent in a NASD storage architecture. To
engage the academic community and to provide a reference
implementation for industry development, CMU is releasing
its Linux and Digital UNIX ports of this software. In this
paper, we overview the NASD scalable storage architecture
and the code-base we are releasing for Linux.

1.  INTRODUCTION

Demands for storage throughput continue to grow due to
ever larger clusters sharing storage, rapidly increasing client
performance, richer data types such as video, and data-inten-
sive applications such as data mining. For storage
subsystems to deliver scalable throughput, that is, linearly
increasing application bandwidth and accesses per second
with increasing numbers of storage devices and client
processors, the data must be striped over many disks and
network links [Patterson88], and name lookup and access
rights checking must be decentralized [Hartman93,
Anderson96]. With current technology, most office, engi-
neering, and data processing shops have sufficient numbers
of disks and scalable switched networking, but they access
storage through storage controller and distributed fileserver
bottlenecks. These bottlenecks arise because a single
“server” computer copies data between the storage (periph-
eral) network and the client (local area) network while
adding functions such as concurrency control and metadata
consistency. 

Our prior work proposed a new scalable-bandwidth storage
architecture, Network-Attached Secure Disks (NASD)
[Gibson97a, Gibson97b, Gobioff97, Gibson98, Amiri99,
Nagle99]. Fundamentally, NASD minimizes server-based
data movement by separating management and filesystem
semantics from store-and-forward copying and elevating
commodity storage’s interface to a richer object-based
model (SCSI4 perhaps). 

As with earlier generations of SCSI, the NASD interface is
simple, efficient and flexible enough to support a wide range
of filesystem semantics across multiple generations of tech-
nology. Of course, advancing storage interfaces and archi-
tecture requires industry collaboration and standardization.
Fortunately, the storage industry is aggressively seeking to
evolve their marketplace [Quantum99, Seagate99]. To
promote network-attached storage, CMU is working closely
with the National Storage Industry Consortium’s (NSIC)
working group on network-attached storage devices
(www.nsic.org/nasd). Over the past three years, NSIC has
hosted about a dozen public workshops where academics
and practitioners exchange perspectives on next generation
storage. Currently, the core NSIC working group is engaged
in developing an ANSI standards proposal for a new storage
interface. 

Until recently, CMU publications have been sufficient for
collaboration in the NSIC effort. Now, to more widely
disseminate our work, CMU is providing, for public use, a
reference implementation of NASD for the Linux 2.2 and
Digital UNIX 3.2 environments. Our reference implementa-
tion includes NASD device code (running on a workstation
or PC masquerading as a subsystem or disk drive), an NFS-
like distributed file system designed to use NASD
subsystems or devices, and NASD-inspired striping middle-
ware to provide scalable bandwidth to large striped files. The
rest of this extended abstract describes this prototype soft-
ware and summarizes prior research predictions for its
performance.

2.  BACKGROUND AND RELATED WORK

Figure 1 illustrates the principal network-attached storage
architectures. The simplest implementation runs on a standa-
lone server with attached disks (SAD), as shown in
Figure 1a. Data makes two network trips on its way to the
client, making the server a potential bottleneck; particularly
since a server usually manages a large numbers of disks to
amortize cost. Companies such as Network Appliance have
improved the performance of SAD implementations, specifi-
cally the number of clients supported, by using special pur-
pose server hardware and highly optimized software (SID)
[Hitz94]. 
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If a storage system is (re)organized to “DMA” data directly
to clients sharing the client network (NetSCSI), rather than
copy it through its server (Figure 1b), the number of net-
work transits for data is reduced from two to one. This orga-
nization has been examined extensively and is in use in the
HPSS implementation of the Mass Storage Reference
Model [Drapeau94, Long94, Watson95]. 

The third architecture in our taxonomy is the NASD archi-
tecture (Figure 1c). NASD embeds disk management func-
tions into the device, presenting storage through a variable-
length object interface. In this organization, file managers
allow clients to directly access specific storage objects
repeatedly by granting a cachable capability. Hence, all data
and most control information travels across the network
once and there is no expensive store-and-forward computer.
A quantitative analysis of each architecture can be found in
[Gibson97a].

3.  NETWORK-ATTACHED SECURE DISKS

NASD enables cost-effective throughput scaling. NASD
presents a flat name space of variable-length objects that is
both simple enough to be implemented efficiently and flexi-
ble enough for a wide variety of applications. Because the
highest levels of distributed filesystem functionality—glo-
bal naming, access control, concurrency control, and cache
coherency—vary significantly, we do not advocate that stor-
age devices subsume the file server entirely. Instead, poli-
cies defining the high-level file system should be managed
by a file manager and NASD devices should implement
simple storage primitives efficiently and operate as indepen-
dently of the file manager as possible.

NASD’s object interface allows data layout management be
handled by the disk or storage subsystem. In addition,
NASD partitions are variable-sized groupings of objects,
not physical regions of disk media, enabling the total parti-
tion space to be managed easily in a manner similar to vir-
tual volumes or virtual disks [Lee96]. Object-based storage
also supports quality-of-service at the device, transparent
performance optimizations, and drive supported data shar-
ing [Anderson98]. Most importantly, an in-drive object
store can securely employ storage metadata on behalf of a
client without that client needing to consult a file manager
on each access. The alternative, exporting storage metadata
to clients and enabling client access to arbitrary disk blocks,
is worse than insecure, it is accident-prone and puts the
entire storage system at risk.

3.1  NASD Interface 

Our prototype NASD device software offers a simple, capa-
bility-based, object-store interface [Gibson97b], based
loosely on the inode interface of the UNIX filesystem
[McKusick84]. Our NASD interface contains less than 20
commands including reading and writing object data; read-
ing and writing object attributes; creating and removing
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Figure 1: Taxonomy for reaching storage through a network.
Figure (a) shows the architecture of storage attached to clients
through a separate or a specially integrated server. Clients ask
the server for data (1), which forwards the request to storage (2).
Storage answers to the server (3), which forwards data to the
client (4). Figure (b) shows a system in which the server’s
forwarded request is a DMA command returning data directly to
the client (3). On completion of each DMA, status is returned to
the server (4), collected and forwarded to the client (5). This
SCSI-over-the-network scheme, NetSCSI, provides scalable
bandwidth for large request workloads only. Figure (c) shows
our Network-Attached Secure Disks architecture. Only on a first
access does a client contact the server for access checks (1). The
server grants reusable rights, or capabilities (2). Under normal
conditions clients present requests directly to storage (3) which
can verify capabilities and directly reply (4). Because lookup,
rights verification and small accesses can occur without server
intervention, NASD scales bandwidth and accesses per second.
A variation on NASD, USC/ISI’s Derived Virtual Devices,
replaces a capability with a server-installed secure connection
with object definition state in each drive [VanMeter98]

a) Server-Attached Disk (SAD) or Server-Integrated Disk (SID)

b) Network SCSI (NetSCSI)

c) Network-Attached Secure Disks (NASD)
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objects; creating, resizing, and removing (soft) partitions;
constructing a copy-on-write version of an object; and set-
ting a security key. 

Resizeable partitions allow capacity quotas to be managed
by a drive administrator. Object attributes describe times-
tamps and sizes, and facilitate capacity reservation and
object linkages for clustering [deJonge93]. A logical version
number attribute on an object may be changed by a file
manager to immediately revoke a capability (either tempo-
rarily or permanently). Finally, an uninterpreted block of
attribute space is available to the file manager to record its
own long-term, per-object state such as filesystem access
control lists or mode bits.

NASD security is based on cryptographic capabilities
[Gobioff97]. Figure 2 shows the security related fields in
each NASD request message. Figure 3 summarizes the
NASD security protocol. Clients obtain capabilities from a
file manager using a secure and private protocol external to
NASD. A capability consists of a public portion, CapArg,
and a private key, CapKey. The CapArg portion specifies
what rights are being granted for which object. The CapKey
portion is a cryptographic key generated by the file manager
using a keyed message digest (MAC) [Bellare96] of
CapArg and a secret key shared only with the target drive. A
client sends CapArg along with each request, and generates
a CapKey-keyed digest of the request parameters and
CapArg. Because the drive knows its secret keys and
receives CapArg with each request, it can compute the cli-
ent’s CapKey. Using the calculated CapKey, the drive can
verify the client-supplied message digest. If any field of the
CapArg or the request has been changed, including the
object’s version number, the digest comparison will fail, the
NASD will reject the request, and the client must return to
the file manager for a new capability.

These mechanisms ensure the integrity of requests in the
presence of attacks (both by a rogue client or by an eaves-
dropping “man in the middle” third party) and simple acci-
dents. Protecting the integrity and/or privacy of the data
involves potentially very expensive cryptographic opera-
tions on all data transferred. Software implementations
operating at disk rates are not available with the computa-

tional resources we expect on a disk, but schemes based on
multiple DES function blocks in hardware can be imple-
mented in a few tens of thousands of gates and operate
faster than disk data rates [Knudsen96]. For the measure-
ments reported in this paper, we disabled these security
computations because our prototype did not and does not
yet support such hardware.

4.  FILESYSTEMS FOR NASD

Scalability in file managers has traditionally meant that as
the total storage capacity increases with new clients’ data,
the total throughput also increases and response time does
not. To demonstrate traditional scaling in a NASD system,
we have constructed a distributed filesystem with NFS-like
semantics [Sandberg85] and tailored it specifically for
NASD. The NASD architecture, however, is also designed
to scale a single file’s achievable bandwidth with increasing
storage capacity. To show scalable bandwidth with NASD
we have also constructed library-based user-level parallel
access to a striped file.

4.1  NFS in a NASD environment
In a NASD-adapted filesystem, files and directories are
stored in NASD objects. The mapping of files and directo-
ries to objects depends upon the filesystem. For our NFS-
like filesystem, each file and each directory occupies
exactly one NASD object, and offsets in files are the same
as offsets in objects. This allows common file attributes
(e.g. file length and last modify time) to correspond directly
to NASD-maintained object attributes. The remainder of the

Figure 2: Packet diagram of the major security components of an
individual NASD request. 
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file attributes (e.g. owner and mode bits) are stored in the
uninterpreted section of the object’s attributes. Because the
filesystem makes policy decisions based on these file
attributes, the client may not directly modify object meta-
data; commands that may impact policy decisions such as
quota or access rights must go through the file manager.

The combination of a stateless server, weak cache consis-
tency, and few filesystem management mechanisms make
porting NFS to a NASD environment straightforward. Data-
moving operations (read, write) and attribute reads
(getattr) are sent directly to the NASD drive while all
other requests are handled by the file manager. Capabilities
are piggybacked on the file manager’s response to lookup
operations. File attributes are either computed from NASD
object attributes (e.g. modify times and object size) or
stored in the uninterpreted filesystem-specific attribute (e.g.
mode and uid/gid). In a break from NFS, directories are
parsed in the client. This allows pathname lookup to avoid
accessing the file manager, provided the client has appropri-
ate capabilities.

Figure 4 shows a simple analysis of the amount of file
server work entailed by an NFS workload in a traditional
server-attached disk system, in a network SCSI system and
in the above NASD system. Offloading data access and
attribute and directory reads may reduce file manager work
by over an order of magnitude in a NASD system.

4.2  Parallel Access to Striped Files
To fully exploit the potential bandwidth in a NASD system,
higher-level filesystems should make large, parallel requests
to files striped across multiple NASD drives. As illustrated
in Figure 5, our layered approach allows the NASD-NFS
filesystem to manage a simple “logical” object store pro-
vided by our storage management system, Cheops. Cheops
exports the same object interface as the underlying NASD

devices, and maintains the mapping of each NASD-NFS
object to the set of objects on the individual devices that
implement that NASD-NFS object. Our prototype system
implements a Cheops client library that translates applica-
tion requests and manages both levels of capabilities across
multiple NASD drives. A separate Cheops storage manager
(possibly co-located with the file manager) manages map-
pings for striped objects. 

To evaluate performance for I/O-intensive parallel applica-
tions, we implemented a simple parallel filesystem, NASD
PFS, which offers the SIO low-level parallel filesystem
interface [Corbett96] on top of NASD-NFS files that are
striped using user-level Cheops middleware. Figure 6 shows
the bandwidth scaling of the most I/O bound of the phases
(the generation of 1-itemsets) of a parallel data mining
application that discovers association rules in sales transac-
tions [Agrawal94] processing a 300 MB sales transaction
file. A single NASD provides 6.2 MB/s per drive and our
array scales linearly up to 45 MB/s with 8 NASD drives
while a much faster NFS server limits the application to half
this performance.

4.3  Continuous Media from NASD
Although not central to scalable file system throughput,
continuous media service, such as video, is clearly a
requirement for next generation storage systems. NASD’s
object interface, with its higher level understanding of the
data in an object, is naturally extended with type-specific
behaviors. To demonstrate this, we have extended our
NASD drive prototype with an MPEG-2 streaming video
playback system. Moreover, because of our emphasis on
scalable throughput, we designed a NASD video service
that stripes video data over NASD drives. The video mid-
dleware is logically equivalent to Cheops high-bandwidth
storage management middleware, but is not yet integrated
with Cheops.

NFS
Operation

Count in top 
2% by work 
(thousands)

SAD NetSCSI NASD

Cycles
(billions)

%
Cycles

(billions)
%*

Cycles
(billions)

%*

Attr Read 792.7 26.4 11.8% 26.4 11.8% 0.0 0.0%
Attr Write 10.0 0.6 0.3% 0.6 0.3% 0.6 0.3%
Block Read 803.2 70.4 31.6% 26.8 12.0% 0.0 0.0%
Block Write 228.4 43.2 19.4% 7.6 3.4% 0.0 0.0%
Dir Read 1577.2 79.1 35.5% 79.1 35.5% 0.0 0.0%
Dir RW 28.7 2.3 1.0% 2.3 1.0% 2.3 1.0%
Delete Write 7.0 0.9 0.4% 0.9 0.4% 0.9 0.4%
Open 95.2 0.0 0.0% 0.0 0.0% 12.2 5.5%
Total 3542.4 223.1 100.0% 143.9 64.5% 16.1 7.2%

Figure 4: Offloading work from an NFS file manager to NASD drives enables each file manager to support many more drives and clients
[Gibson97a]. In this 1996 analysis, a traditional NFS implementation was instrumented and cycle counts recorded for each NFS
operation type. The product of these numbers and NFS operation frequencies extracted from the busiest 2% of an NFS trace taken by UC
Berkeley estimates the work a traditional NFS server would do when its customers are most critical (column labelled SAD). The columns
labelled NetSCSI and NASD model the expected workload on a file manager employing NetSCSI and NASD drives when presented
with the same (small access) workload, reported as a percentage of the total work done in the SAD case (*).
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5.  CONCLUSIONS

The Network-Attached Secure Disks (NASD) project is
defining new, more scalable storage interfaces characterized
by four properties. First, direct storage-device-to-client
transfers. Second, secure interfaces (e.g. via cryptography).
Third, asynchronous oversight, whereby file managers pro-
vide clients with capabilities that allow them to issue autho-
rized commands directly to devices. Fourth, an interface
that provides variable-length objects with separate
attributes, rather than fixed-length blocks, to enable self-
management and avoid the need to trust client operating
systems.

In this paper we have reviewed the NASD architecture. We
report: 1) how NASD scales the number of clients that a file
manager supports by offloading metadata lookup and access
checking to storage devices; and 2) how NASD scales sin-
gle file bandwidth by striping data and distributing cachable
mapping information to clients that enables direct and paral-
lel accesses to a file’s component objects.

This paper’s larger purpose is to introduce NASD to file and
storage system researchers and practitioners interested in
the CMU NASD public code. We intend to release this code
soon after the June 1999 Extreme Linux workshop. It
includes Linux (X86) and Digital UNIX (Alpha) ports of
NASD device code, a file manager and client module for a
NASD-customized NFS-like filesystem, and pseudo-NASD
middleware allowing clients to locate and directly access
components of striped files without compromising data
integrity.

6.  AVAILABILITY
Code will soon be available on the Extreme NASD web
pages, http://www.pdl.cs.cmu.edu/extreme/. 

Figure 5: A NASD-optimized parallel access filesystem. NASD PFS is used in conjunction with MPI for parallel applications in a cluster
of workstations. The filesystem manages objects which are not directly backed by data. Instead, they are backed by a storage manager,
Cheops, which redirects clients to the underlying component NASD objects. Our parallel filesystem extends a simple NASD-NFS
filesystem interface with the SIO low-level interface [Corbett96] and inherits a name service, directory hierarchy, and access controls
from the filesystem.
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the performance when all clients read from a single file striped
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configuration causes poor read-ahead performance inside the
NFS server, so we also report the NFS-parallel case in which
each client reads, through the one server, from a private replica
of the file located on an client-devoted disk. This configuration
performs better than the single, shared file case, but still
achieves only 22.5 MB/s at best. 
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We have implemented and are releasing a prototype of the
NASD drive software (including security), a file manager
and client for our prototype filesystem, which we call
EDRFS, and a prototype of the Cheops storage manager.
Some configuration and management tools for the NASD
drive and EDRFS filesystem are also included.

The prototype code as a whole is easily ported. At this time
the drive and file manager all run as user processes on
Linux, Digital UNIX 3.2G, IRIX, and Solaris. In addition,
the Digital UNIX port can run the drive and file manager
inside the kernel.

On Linux, both the drive and EDRFS file manager can be
executed as either a user process or as a loadable kernel
module (LKM). Other modules are mostly implemented as
user processes, although the EDRFS client is available only
as a LKM. 

Because NASD is intended to directly manage drive hard-
ware, our NASD object system implements its own internal
object access, cache, and disk space management modules
and interacts minimally with its host operating system.

For communication, our prototype uses either a customized
TCP-based RPC (SRPC) or DCE RPC over UDP/IP. The
DCE implementation of these networking services is quite
heavyweight, and is not available inside the Linux kernel.
The appropriate protocol suite and implementation is cur-
rently an issue of active research [Anderson98,
VanMeter98, Nagle99].
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