
46

Future systems on chips (SOCs) will
have tens or even hundreds of processing ele-
ments. It is not practical to organize these ele-
ments as a single processor with many
functional units, however, because it is diffi-
cult to extract large amounts of instruction-
level parallelism (ILP) from a single
instruction stream. Moreover, the physical
constraints of future SOCs—for example, the
relatively long distance between units on
opposite edges of the SOC—will reduce func-
tional unit utilization and slow communica-
tion between them, independent of the
interconnection topology.

As an alternative, I propose organizing the
elements as multiple processing resources
composed of a processor and its local mem-
ory. I then fit each resource to an area in
which the units can communicate internal-
ly within one clock cycle and exploit thread-
level parallelism (TLP), which is much easier
to extract than ILP. Recently proposed net-
work-on-a-chip (NOC) schemes aim to
solve future SOC architectural and design
productivity issues by providing a uniform
communication network connecting multi-
ple TLP resources and standardizing the
handling of various interresource commu-

nication needs.1–3 Other important motiva-
tions for the NOC schemes are

• reusability of existing intellectual prop-
erty blocks,

• physical-architectural-level design inte-
gration, and

• platform-based design methodology.

NOC researchers claim that using a current
Message Passing Interface (MPI) program-
ming model and a network (such as 2D mesh
or fat tree) for intercommunication instead of
a single bus guarantees scalability and ease of
use.1–3 The proposed NOCs will not be easy
to program, however, nor will they scale as pro-
cessing resources increase. This is due to lim-
ited interresource communication bandwidth,
access-pattern-dependent throughput, ineffi-
cient synchronization schemes, inability to
hide the latency of the internal network, and
poor parallel-computing models, requiring
programmers to explicitly handle synchro-
nization, data partitioning, and interresource
communication. We can avoid these problems
by using a more sophisticated parallel-pro-
gramming model and novel parallel architec-
ture that maximizes both ILP and TLP.

Martti Forsell
VTT Electronics

0272-1732/02/$17.00  2002 IEEE

A SCALABLE HIGH-PERFORMANCE
COMPUTING SOLUTION FOR

NETWORKS ON CHIPS
THE ECLIPSE NETWORK-ON-A-CHIP ARCHITECTURE USES A SOPHISTICATED

PARALLEL PROGRAMMING MODEL, REALIZED THROUGH MULTITHREADED

PROCESSORS, INTERLEAVED MEMORY MODULES, AND A HIGH-CAPACITY

INTERCONNECTION NETWORK TO SUPPORT SYSTEM-ON-A-CHIP DESIGNS.

Eclipse
The embedded chip-level integrated paral-

lel supercomputer (Eclipse) is a scalable, high-
performance computing architecture for
NOCs. An Eclipse consists of multithreaded
architecture with chaining (MTAC)4 proces-
sors with dedicated instruction memory mod-
ules, highly interleaved data memory modules,
and a high-capacity sparse mesh interconnec-
tion network (see Figure 1, next page). Because
Eclipse’s memory system is cacheless, it has no
cache coherency problems. An Eclipse’s struc-
ture is homogenous, simplifying design and
making it easier to integrate into a larger SOC.
Eclipse features a completely software-based
design methodology to support flexibility and
general-purpose operation.

Programming model
Eclipse provides an easy-to-program, exclu-

sive-read, exclusive-write (EREW) parallel
random-access machine (PRAM)-style4 pro-
gramming model with many physical threads.
The model offers a uniform shared-data mem-
ory with single superstep memory access laten-
cy and machine instruction-level synchronous
execution. Parallel access to an Eclipse shared
memory is limited, allowing at most one mem-
ory reference per superstep memory location.
(See the “Models in parallel computing” side-
bar on p. 49 for a description of the two main
parallel computing models—the PRAM model
and the message-passing model—and their key
programming differences.)

The PRAM programming model lets an
Eclipse serve as a single-instruction, multiple-
data (SIMD) machine, a multiple-instruction,
multiple-data (MIMD) machine, or as a com-
bination of several SIMD and MIMD
machines. A programmer can also partition
the Eclipse and assign multiple sequential and
parallel tasks to separate threads.

Execution in Eclipse occurs in supersteps,
which are transparent to the user. During a
superstep, each thread of each processor alter-
nately executes an instruction. Instructions
can include at most one shared memory ref-
erence subinstruction.

MTAC processors
MTAC is a very long instruction word

(VLIW) processor architecture specifically
designed to realize the PRAM model on phys-

ically distributed memory architectures.4 An
MTAC processor consists of a arithmetic-logic
units (ALUs), m memory units, a hash address
calculation unit, a compare unit, a sequencer,
and a distributed register file of r registers (see
Figure 1d). MTAC has a VLIW-style instruc-
tion set with fixed execution ordering of
subinstructions reflecting the chain-like orga-
nization of functional units; tools for using a
subinstruction result as an operand for the
next subinstruction in the chain; and a hard-
ware-assisted barrier synchronization mecha-
nism. An MTAC’s regular structure makes it
easy to superpipeline, so there is no need for
forwarding within a clock cycle.

MTAC supports overlapped execution of a
variable number of threads. MTAC imple-
ments multithreading as a deep, cyclic, haz-
ard-free interthread pipeline for hiding
memory system latency, maximizing execu-
tion overlap, and minimizing register access
delay. Switching between threads occurs in
zero time, because threads proceed in the
pipeline only during forward time.

The organization of functional units in
MTAC aims to exploit ILP during parallel
execution supersteps. Therefore, MTAC func-
tional units are connected as a chain, allow-
ing a unit to use the results of its predecessors
in the chain. MTAC features fixed ordering—
that is, functional units are ordered according
to the average ordering of instructions in a
basic block. Two-thirds of the ALUs form the
beginning of the chain. Next are the memo-
ry units and the remaining ALUs. The com-
pare unit and sequencer form the end of the
chain, because comparing and branching
always occur at the end of basic blocks.

Memory modules
Eclipse has two types of memory mod-

ules—data memory and instruction memory
modules—which are isolated from each other
to guarantee uninterrupted data and instruc-
tion streams to the MTAC processors. Both
module types use deep interleaving to elimi-
nate performance loss due to constantly
increasing speed differences between proces-
sors and DRAM-based memory banks.

A data memory module consists of B mem-
ory banks attached to Q-slot access queues for
incoming memory references and a common
queue for outgoing memory replies (see Fig-

47SEPTEMBER–OCTOBER 2002

48

NETWORKS ON CHIPS

IEEE MICRO

(a)

(b)

(c) (d)

(e) (f)

Registers (Pre M) ALUs (Post M) Sequencer
 S

Memory units Opcode
 O

Instruction
fetch

Instruction
decode

Operand
select

ALU
operation

ALU
operation

Result
bypass

Result
bypass

Result
bypass

Sequencer
operation

Thread
management

Hash
address

calculation

Memory
request

send

Memory
request
receive

IA-Out
I-In

D-Out
A-Out

D-In

East
West

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

Qin Qin

Qout

R1 … Rr–1 A0 … Aq–1 Aq … Aa–1 … M0 … Mm–1

Qin

Wr ModuleAddr WriteData
03157

Row Col
616567

Rd ModuleAddr
03157

Row Col
616567

Rd ReadData
03157

Row Col
616567

23
Row’ Col’

27
ID

14

ID
49

Syn
06567 14294459

Barrier 0Barrier 1Barrier 2Barrier 3

Message

North

MEM
bank

MEM
bank

MEM
bank

Queue Queue Queue

ArbiterArbiterArbiter

From southFrom processor

Outgoing
messages

Incoming
messages

Figure 1. Block diagrams of an Eclipse (a), a superswitch (b), a switch element (c), an MTAC processor (d), and a memory mod-
ule (e); and message formats for reads, writes, replies, and synchronizations (f).

ure 1e).5 For optimum throughput, B should
be at least the memory bank cycle time divid-
ed by the processor cycle time. Unlike ordi-
nary interleaved memories, Eclipse modules
use a randomly chosen linear hashing function
to map memory locations over a module’s
banks to minimize message congestion with-
in the module. The idea is to divide a fast
stream of processor-generated memory refer-
ences almost evenly into B slow streams, which
can be efficiently handled by B slow banks.

Two alternative designs for instruction
memory modules exist. The interleaved alter-

native is similar to data memory modules
except it combines references targeted for the
same location.6 It also requires arming con-
nected MTACs with a pipelined fetch unit,
which is similar structurally to an MTAC data
memory unit. The trivial alternative has a
bank for each MTAC thread and works with-
out a pipelined fetch unit.6 It is very efficient
in MIMD-style processing, but wastes a lot
of memory in SIMD-style processing because
it needs multiple copies of the program. The
interleaved alternative keeps only a single copy
of each instruction.

49SEPTEMBER–OCTOBER 2002

Models in parallel computing
A parallel computing model is a formal, abstract definition of a paral-

lel computer. It describes the basic components, their properties and avail-
able operations, and operation granularity and synchronization.
Researchers can use models to analyze an algorithm’s intrinsic execution
time or memory space while ignoring many implementation issues.

Models
There are two primary parallel computing models—the parallel random

access machine (PRAM) model and the message-passing (MP) model.
The main difference between these models is in how interaction between
processors is organized.

PRAM model
A PRAM is a fine-grained lock-step-synchronous model of parallel com-

putation.1 It consists of an unbounded set of processors connected to the
same clock and shared memory (see Figure A1). All operations, including
parallel memory accesses, execute in unit time. Each processor has an
ID register with a unique value. A number of memory access variants
exist—for example, exclusive write, exclusive read (EREW) and concur-
rent read, concurrent write. CRCW lets multiple processors access a mem-
ory location simultaneously; EREW does not.

Message-passing model
The message-passing model is widely used in parallel computation. A

machine using the MP model consists of a set of processors attached to
an interconnection network (see Figure A2). Processors communicate by
sending messages to each other via a network. Each processor has its own
local memory and implements synchronization through message passing.

Programming differences
High-level programs written for the PRAM model express interprocessor

communication, synchronization, and data partitioning differently from pro-
grams written for the MP model. In PRAM, a programmer can simply place
data requiring cooperation into the shared memory. In MP, data partition-
ing and movement must be handled by explicitly inserting partitioning direc-
tives as well as send and receive calls to ensure that the right data is in the

right place at the right time. Similarly, a PRAM programmer can rely on the
model’s synchronicity, while an MP programmer must insert explicit syn-
chronization primitives where synchronicity is required. In addition, PRAM
algorithmic theory is well known, and there exists a large base of ready-to-
use PRAM algorithms.2 MP algorithms are more difficult to write and their
efficiency depends heavily on the underlying MP architecture.

Common clock

Word-wise accessible shared memory

Read/write operations from/to shared memory

P1 P2 P3 P4

P1 P2 P3 P4

Message-passing
interconnection

network

Local
memory

Local
memory

Local
memory

Local
memory

(1)

(2)

Figure A. The PRAM (1) and MP (2) models.

continued on p. 50

Interconnection network
The Eclipse network is a high-bandwidth

acyclic variant of a 2D sparse mesh (see Figure
1a) with separate lines for messages from
processors to memories, and from memories
to processors; two-level switch organization;
simple routing; an efficient synchronization
mechanism; and randomized hashing of
memory locations over the memory modules.

Eclipse’s optimized resources—MTAC
processors and interleaved memory mod-
ules—can easily produce one message per
clock cycle. An ordinary 2D mesh network,
which some NOC proposals use,3 does not
have enough bandwidth for this heavy com-
munication. For the Eclipse communication
architecture, I selected a variant of 2D sparse
mesh, in which the number of switches is at
least the square of the number of processing
resources divided by four, with separate lines
for messages going from and returning to
processors and memories. This configuration
provides enough bandwidth for heavy random
communication, and the degree of switches
(that is, the number of lines connected to each

switch) and interconnection line length are
independent of the number of processing
resources. Moreover, routing in a mesh easily
yields to potentially small switches.

Each switch consists of eight switch ele-
ments (see Figure 1c). A switch element is a
simple device in which output queues and
arbiters route messages. An arbiter detects
messages targeted at a nearby queue and
checks whether the queue has room for them.
To exploit locality, I group the switches relat-
ed to each resource pair into superswitches
(see Figure 1b). This two-level structure lets
us send a message from a resource to any of
the superswitch switches in a single clock cycle
and pipelines switch operation naturally. Log-
arithmic diameter networks, such as hyper-
cubes and fat trees, provide lower latency;1,2

however, implementing them in the two
dimensions available on silicon requires
increasing the interconnection line length pro-
portionally as the number of switches increas-
es. This lowers the communication system’s
clock rate—an undesirable effect in high-per-
formance systems like Eclipse.

50

NETWORKS ON CHIPS

IEEE MICRO

Consider calculating a prefix sum of a table of integers in parallel using
the algorithm in Figure B. Figure C shows the PRAM and MP implemen-
tations of the algorithm. In the PRAM program (Figure C1), we can con-
veniently express parallelism using a FOR index: = 1 TO N PARDO

<statement>, which executes the statement as N parallel threads so each
thread index will have a unique value belonging to range 1..N. In the MP
program (Figure C2), explicit SEND, RECEIVE, PARTITION, and
SYNCHRONIZE primitives express the required actions.

Figure C. The PRAM (1) and MP (2) programs implementing
the prefix sum algorithm.

References
1. S. Fortune and J. Wyllie, “Parallelism in Random Access

Machines,” Proc. 10th ACM STOC, ACM Press, New York,
1978, pp. 114-118.

2. J. Keller, C. Kessler, and J. Träff, Practical PRAM Programming,
John Wiley & Sons, New York, 2000.

FOR K: = 0 TO �log N� – 1 DO
FOR J: = 2K+1 TO N PARDO Table[J]: = Table[J – 2K] +
Table[J];

(1)
PARTITION Table[1..N] TO Processors[1..N];
FOR K: = 0 TO �log N� – 1 DO

IF ID ≤ N – 2K THEN SEND (ID + 2K, Table[ID]);
SYNCHRONIZE(1…N);
IF ID > 2K THEN RECEIVE(ID – 2K, A);
IF ID > 2K THEN Table[ID]: = Table[ID] + A;
SYNCHRONIZE(1…N);

(2)

+ + + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

+ + + + + + + + + + + +

2 9 10 19 25 29 37 40 44 38 43 36 36 34 29 33

2 9 8 10 1015 10 12 11 9 7 7 8 8 8 5

2 9 10 19 23 20 27 21 21 18 16 15 15 16 13 18

+ + + + + + + +

2 9 10 19 25 29 37 40 4746 53 55 61 63 66 73

2 7 1 9 6 4 8 3 6 1 6 2 6 2 3 7

Figure B. A parallel algorithm calculating the prefix sum of
a table of integers.

continued from p. 49

Eclipse uses slackness of parallel execution to hide the
network and memory module access latency: one
processor executes other threads while a thread access-
es memory via the network. This works without cache
memories or coherency problems. A randomly cho-
sen linear hashing function distributes memory loca-
tions around the modules. Investigations and
experiments have shown that this kind of hashing can
prevent message congestion and hot spots, such that
an underlying message-passing machine can time-
processor optimally simulate the ideal shared memo-
ry of the PRAM model with very high probability.7–9

Eclipse emulates the EREW PRAM model shared
memory by sending memory requests (reads and
writes) and synchronization messages from the proces-
sors to the memory modules and vice versa (Figure 1f
shows Eclipse message formats). Eclipse routes mes-
sages using the simple greedy algorithm with two
intermediate targets. The first intermediate target is a
randomly chosen switch in a superswitch related to
the sending resource. Next, Eclipse routes the mes-
sage greedily (go to the right row and then go to the
right column) to the second intermediate target,
which is a randomly chosen switch in the superswitch
related to the target resource. Finally, Eclipse routes
the message from the second intermediate target to
the target resource. Communication deadlocks are not
possible because the network is acyclic.

Eclipse uses an advanced synchronization wave tech-
nique. When a processor has sent all messages belong-
ing to a single superstep, it sends a synchronization
message. Synchronization messages from various
sources push the read/write messages, spreading to all
possible message paths. When a switch receives a syn-
chronization message from one of its inputs, it waits
until it has received synchronization messages from all
inputs, then forwards the synchronization wave to all of
its outputs. The synchronization wave might not bypass
any actual messages (and vice versa). When a synchro-
nization wave sweeps over a network, all switches, mod-
ules, and processors receive exactly one synchronization
message via each input link and send exactly one syn-
chronization message via each output link.

Eclipse also uses synchronization wave to imple-
ment multiple simultaneous barrier synchronizations.
An MTAC processor determines the number of par-
ticipating threads in each barrier synchronization dur-
ing each superstep. It assigns numbers to appropriate
fields in the synchronization wave message that it
sends at the end of the superstep. As the synchroniza-
tion messages in the network proceed, switch elements
selectively add the numbers in these fields and send
the sums forward. By observing the barrier field num-

bers in returning synchronization waves, the proces-
sor can determine when all participating threads have
arrived at the synchronization point and allow them
to continue execution.

Evaluation
I used detailed analytical performance models and

various simulations to evaluate Eclipse.

Analytical performance models
I evaluated Eclipse’s performance by analytically

modeling the execution time of a parametric bench-
mark program. To compare Eclipse to a generic NOC
architecture, I also defined a baseline NOC architec-
ture, executed a program using the same parameter
values on both architectures, and compared the exe-
cution times, assuming both architectures are imple-
mented using the same silicon area.

The Eclipse architecture used Peclipse Tmtac-threaded,
F-functional unit MTAC processors; Seclipse=P 2

eclipse/16
switches; and a baseline NOC based on a 2D mesh
network with Q-slot switch buffers and PbaselineARM 9-
style processors with data and instruction caches, a
local memory bank, and a resource network interface.

I tested the Bench Tp-threaded benchmark program,
which I divide into nonoverlapping code portions so
that in each portion the distribution (and density) of
dependencies between instructions is constant. Assume
we can separate these portions into two categories—
independent and dependent parallel. A portion is inde-
pendent parallel if no data dependencies (such as
matrix operations) between threads in the portion exist.
A portion is dependent parallel if every read instruc-
tion potentially depends on write instructions previ-
ously performed by the other threads in the
portion—prefix operations and sort, for example.
Assume Bench consists of O operations, of which FdpO
belong to dependent parallel portions, and FipO belong
to independent parallel portions, and Fdp + Fip = 1.
Table 1 (next page) summarizes Bench’s other para-
meters. Observe that we can use Bench to model a very
large set of computational problems by varying the
parameter values.

Assume the baseline NOC clock cycle is Dcycle and
the memory bank cycle time is Dmem. The clock cycle
for MTAC processors using the same technology and
Ls-stage superpipelining is then

(Dcycle + (Ls − 1) (Dfw + Dld))/Ls + Dbf

as a function of Dcycle, where Dfw is the forwarding
delay, Dld is the latch delay, and Dbf is the balancing
term that rounds the pipeline segment execution time

51SEPTEMBER–OCTOBER 2002

up to the next gate delay multiple. Assume
also that each Bench operation translates to
both a single MTAC subinstruction and a sin-
gle ARM 9 instruction.

Practical studies9 show that the average
number of clock cycles needed for two-way
communication or synchronization, denoted
here by Csync, in a 2D mesh is 4Ch√S , where Ch

is the average number of processor clock cycles
per hop and S is the number of switches. In
this case, the average nonlocal memory refer-
ence takes

clock cycles in Eclipse. The baseline NOC can
use the same equation by assigning Ls= 1.

To realize the PRAM model, Eclipse exe-
cutes all instructions in a single clock cycle and
provides true scalability, if we consider thread-
ing utilization. Earlier evaluations show that
an MTAC processor also provides perfor-
mance scalability with respect to the number
of functional units if there are fewer than 19.4

Then, Bench’s execution time in Eclipse is

where Uf is the utilization of functional units
and Ut is the utilization of multithreading, as
defined by the equation

I assume that the baseline NOC can exe-
cute independent parallel portions locally,
although this might require moving large
amounts of data between portions to obtain
the optimal data partitioning for local exe-
cution. The ARM 9 pipeline’s inefficiency
means that cache misses, which occur with
probability PmPcm and cause delays of Ccm

cycles, affect local execution. Reads, whose
results are immediately used as operands,
cause a single clock-cycle delay in the exe-
cution of both code portions. Similarly,
branches and reads needing aligning or
shifting cause two-cycle delays. The proba-
bilities for these occurrences are PrdPriu, Pb,
and PrdPalg, respectively. Thus, I obtain that
Bench’s execution time in the baseline
NOC is at least

U

T T

C Tt

p mtac

mem mtac

=
()

()
min ,

max ,
.

T

O
D L D D

L
D

P U FUeclipse

cycle s fw ld

s
bf

eclipse t f

=

+ −() +()
+











1

,

C C S
D

D

L

D D

L
D

mem h
mem

cycle

s

fw ld

s
bf

= +
+

−()
+()

















+













































4

1

52

NETWORKS ON CHIPS

IEEE MICRO

Table 1. Parameters used in the Bench program and their values.

Parameter Definition Value

Fdp Fraction of operations belonging to dependent parallel portions 0…1
Fip Fraction of operations belonging to independent parallel portions 0…1
O Number of operations 1012

Palg Probability that a read is unaligned or requires shifting 0.2
Pb Probability that an instruction is a branch 0.2
Pcm Probability that a memory reference misses cache 0.25
Pm Probability that an operation is a memory reference 0.3
Prd Probability that an instruction is read 0.2
Priu Probability that the result of a read is immediately used by the next instruction 0.4
Tp Number of threads 106

Uf Utilization of functional units (this also depends on the architecture) 0.6
Dcycle Baseline NOC clock cycle time 1,000 ps
Dfw Forwarding delay 100 ps
Dld Latch delay 100 ps
F Number of functional units in MTAC 8
Tmtac Number of threads in MTAC 512

To balance the comparison, I assume that
an Eclipse resource pair and a baseline NOC
resource take equally large amounts of silicon
area. By counting the number of intercon-
nection lines, I estimate that a switch in
Eclipse takes four times the area of a switch in
the baseline NOC. If a resource is K2 times
larger than a baseline NOC switch, the num-
ber of resources in the baseline NOC
expressed as the function of the number of
resources in the Eclipse is

I compared the Eclipse architecture to the
baseline NOC architecture by calculating
Bench’s execution time as a function of the
memory bank cycle time Dmem, the area con-
stant K, the number of clock cycles per hop
Ch, the level of superpipelining Ls, the num-
ber of resources in Eclipse Peclipse, and the frac-
tion of dependent parallel portions Fdp using
the values shown in Table 1. These parame-
ters represent properties of current compo-
nents and technology. I based the parameters
on Semiconductor Industry Association tech-
nology roadmaps and quantitative research
experiments on switches,1 basic reduced-
instruction-set computers (RISCs), and
MTAC processors.4 Figure 2 (next page)
shows the results of this comparison.

The comparison shows that Eclipse pro-
vides up to two decades better performance
than the baseline NOC. As expected, Eclipse’s
performance seems relatively independent of
memory speed, switch delay, and fraction of
dependent parallel portions. Increasing the
level of superpipelining or the number of
processors enhances Eclipse’s performance,
while only increasing the number of proces-
sors enhances the baseline NOC.

Simulations
I performed preliminary system-level sim-

ulations and more thorough subsystem-level
simulations, which I report in more detail
elsewhere.4–6

First, I evaluated the potential ILP exploita-
tion capability of various MTAC processor con-
figurations with an ideal memory system.4 The
results were good: An MTAC with four func-
tional units runs a suite of simple integer bench-
marks 2.7 times faster than a basic five-stage
pipelined RISC processor with four functional
units. A six-unit, 10-unit, and 18-unit MTAC
processor performed 4.1, 8.1, and 16.6 times
faster than the four-unit RISC processor, respec-
tively. The functional unit chaining improved
the exploitation of raw ILP to the level where
the achieved speedup corresponds to the num-
ber of functional units in a processor if the
number of functional units is fewer than 19.

Second, I evaluated various data and instruc-
tion memory module organizations using mem-
ory reference patterns extracted from real parallel
programs and the specint92 suite.5,6 Eclipse’s data
memory module architecture performed well,
providing overheads as low as 6 percent. An
exception was in random pattern tests, where
interference with the hashing function caused
the overhead to climb to 55 percent, even assum-
ing a huge off-chip memory latency of 90 clock
cycles and 16-slot queues. The trivial alternative
of the instruction memory module architecture
performed ideally, but suffered from 7.5-fold
memory consumption in the MIMD case; the
interleaved alternative featured overheads of 0.2
percent and 21 percent, again assuming huge
off-chip latencies of 60 and 120 clock cycles,
respectively, and 16-slot queues. Thus, Eclipse’s
memory module organizations gave the best
practical results, hiding the speed difference
between processors and memory banks effi-
ciently even with relatively short queues.

Third, I conducted a set of experiments to
ensure Eclipse’s practical overall performance.
I measured execution time and average uti-
lization of functional units for five common-
ly used parallel-computing primitives, both
in an Eclipse and in a theoretical EREW
PRAM machine, assuming similar configura-
tions and the same instruction set. Figure 2
(next page) shows the experimental results as
execution time, cost of EREW PRAM simu-
lation, and utilization of functional units. As

P P K

P

K

baseline eclipse

eclipse

=
+

+





















1
1

4

1
1

2

T O D F P P C P

P P P

F P C C P

P P P P

baseline cycle ip m cm cm b

rd riu alg

dp m mem sync b

rd riu alg baseline

= + +((
+ +())
+ + +() +(
+ +()))

1 2

2

1 2

2 /

53SEPTEMBER–OCTOBER 2002

54

NETWORKS ON CHIPS

IEEE MICRO

1E+11

1E+12

1E+13

1E+14

1E+15

1E+16

E
xe

cu
tio

n
tim

e
(p

s)

1E+11

1E+12

1E+13

1E+14

1E+15

1E+16
E

xe
cu

tio
n

tim
e

(p
s)

0,0E+00

1,0E+07

2,0E+07

3,0E+07

4,0E+07

5,0E+07

6,0E+07

Number of processors

E
xe

cu
tio

n
tim

e
(c

lo
ck

 c
yc

le
s)

Eclipse add
Eclipse block
Eclipse max
Eclipse presum
Eclipse spread
PRAM add
PRAM block
PRAM max
PRAM presum
PRAM spread

10

0

20

30

40

50

60

70

80

90

100

U
til

iz
at

io
n

of
 fu

nc
tio

na
l u

ni
ts

1,000 2,000 4,000 8,00016,000 32,000 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Memory system delay (ps)

Level of superpipelining

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

C
os

t o
f P

R
A

M
 s

im
ul

at
io

n

Area constant K Hops per switch

1684 32 64 128 256

Number of processors in Eclipse

0 0,2 0,4 0,6 0,8 1

Fraction of dependent parallel portions

4 16 64

(g)
Number of processors
4 16 64

(h)

(d) (e)

Number of processors
4 16 64

(i)

(f)

(a) (b) (c)

Add
Block
Max
Presum
Spread

1E+11

1E+12

1E+13

1E+14

1E+15

1E+16

E
xe

cu
tio

n
tim

e
(p

s)

1 2 3 4 5 6 7 8

Baseline
Eclipse

Baseline
Eclipse

Figure 2. Results of the comparison of an Eclipse and a baseline NOC. The parameter values (except those shown on x-
axes) are Dmem=16,000 picoseconds, K = 3.7, Ch = 1, Ls = 2, Peclipse = 64, and Fdp = 0.5 (a – f). Simulation results for 4, 16, and
64-processor Eclipse and PRAM as the execution time (g), the cost of PRAM simulation (h), and the utilization of functional
units (i), assuming that Dmem/Dcycle = 16, Ch = 1, Tmtac = 512.

expected, execution time scaled almost ideal-
ly. The 16-processor Eclipse was 4.5 times
faster than the four-processor Eclipse, and the
64-processor Eclipse was 15.3 times faster
than the four-processor Eclipse.

The average cost of PRAM simulation was
1.22. In general, because I used a constant
value for Tmtac rather than values scaled from
the latency, the cost increased slightly as the
number of processors increased. The cost in
the four-processor case was, however, higher
than in the 16-processor case, because a small-
er number of communication lines is more
sensitive to uneven linear hashing functions.
The simulation cost was much lower than
2.20, the cost of the baseline NOC simulat-
ing the sequential computing model—the
random access machine. I can reduce the cost
of PRAM simulation in Eclipse by increasing
the number of hardware threads or switches
per processor. The average utilization of func-
tional units was 58.2 percent, which is in line
with the earlier ILP measurements4 and is
again much better than typical ARM 9 uti-
lizations, which lie around 25 percent.

Eclipse clearly provides a novel approach
to SOC design, avoiding the pitfalls of

other recently proposed NOC schemes. Most
of the functionality that traditionally required
dedicated logic should be implemented as
parallel software, providing flexibility and ease
of use. Furthermore, the proposed architec-
ture promises to bring easy-to-use, truly scal-
able high-performance computing to
chip-level designs.

Future work includes more thorough simu-
lations, minimum clock cycle and area estima-
tions, a compiler environment, and a
prototype. I will also investigate architectures
for implementing concurrent-read, concurrent-
write (CRCW) PRAM on-chip to allow future
SOCs to trade even more hardware for paral-
lel software. An MTAC processor already pro-
vides this functionality. MICRO

Acknowledgments
This work was supported by the Teknolo-

gian edistämiskeskus (the National Technol-
ogy Agency of Finland), Verket för
Innovationssystem (the Swedish Agency for
Innovation Systems), Nokia, Ericsson, VTT
Electronics, and Spirea.

References
1. P. Guerrier and A. Greinier, “A Generic

Architecture for On-Chip Packet-Switched
Interconnections,” Proc. Design, Automation,
and Test in Europe (DATE), IEEE CS Press,
Los Alamitos, Calif., 2000, pp. 250-256.

2. L. Benini and G. De Micheli, “Networks on
Chips: A New SoC Paradigm,” Computer,
vol. 35, no. 1, Jan. 2002, pp. 70-78.

3. S. Kumar et al., “A Network on Chip
Architecture and Design Methodology,”
Proc. IEEE Computer Soc. Ann. Symp. VLSI
(ISVLSI), IEEE CS Press, Los Alamitos, Calif.,
2002, pp. 117-124.

4. M. Forsell, “MTAC: A Multithreaded VLIW
Architecture for PRAM Simulation,” J.
Universal Computer Science, vol. 3, no. 9,
1997, pp. 1037-1055.

5. M. Forsell and V. Leppänen, “Memory
Module Structures for Shared Memory
Simulation,” Proc. Int’l Conf. Advances in
Infrastructure for Electronic Business,
Science, and Education on the Internet,
Scuola Superiore G. Reiss Romoli (SSGRR),
L’Aquila, Italy, 2002, pp. 1-12.

6. M. Forsell, “Cacheless Instruction Fetch
Mechanism for Multithreaded Processors,”
World Scientific and Eng. Academy and Soc.
(WSEAS) Trans. Comm., vol. 1, no. 1, 2002,
pp. 150–155.

7. J. Keller, C. Kessler, and J. Träff, Practical
PRAM Programming, John Wiley & Sons,
New York, 2000.

8. M. Dietzfelbinger et al., “Dynamic Perfect
Hashing: Upper and Lower Bounds,” SIAM J.
Computing, vol. 23, no. 4, 1994, pp. 738-761.

9. V. Leppänen, “Studies on the Realization of
PRAM,” diss. 3, Turku Centre for Computer
Science, Univ. of Turku, Finland, 1996.

Martti Forsell is a senior research scientist at
VTT Electronics, Oulu, Finland. His research
interests include processor and computer
architectures, parallel computing, perfor-
mance analysis, and compiler technology.
Forsell has a PhD in computer science from
the University of Joensuu, Finland.

Direct questions and comments about this
article to Martti Forsell, VTT Electronics, Box
1100, FIN-90571 Oulu, Finland; Martti.
Forsell@VTT.Fi.

55SEPTEMBER–OCTOBER 2002

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

