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Soft computing—genetic algo-
rithms, fuzzy sets, chaos theory, expert sys-
tems, and artificial neural networks—provides
a simple way to solve complex problems.
ANNs, in particular, have stimulated many
theoretical studies and experiments.1

Researchers have proposed several architec-
tures,2 but the most popular is multilayer per-
ceptron. MLP networks implement a
correspondence between input and output
vectors through an assigned function with
many parameters (weights). Computing these
weights is an optimization problem that an
analytical approach usually cannot solve. An
MLP network can model the unknown func-
tion by reducing the optimization problem to
a nonlinear problem of dimension equal to
the number of ANN parameters.3

In practical applications where the train-
ing data set is large, execution times on seri-
al machines can be extremely long. Therefore,
researchers have initiated several projects to
explore parallel architectures for simulating
ANNs. These activities involve implementa-
tions on general-purpose parallel computers
and neurocomputers (hardware dedicated to
ANN simulations). Examples include ANN
simulations on MAS-Par MP-1, Hypercube

and Connection machines, and other super-
computers.4-6 Other groups have designed
and built parallel systems based on field-pro-
grammable gate arrays, transputers, or digital
signal processors (DSPs).7-9 Several compa-
nies have proposed custom-designed VLSI
circuits that act like ANN accelerators—for
example, CNAPS (Coprocessing Node
Architecture for Parallel Systems) from Adap-
tive Solutions, My-Neupower from Hitachi,
and Synapse-1 from Siemens.10-12 Researchers
have also focused on developing faster
algorithms.13

In the past few years, the Microcomputer
Laboratory at the University of Pavia has
begun researching hardware solutions for
heavy computing problems. This activity
involves ANNs used in typical real-time
industrial applications, such as signal filtering
or compression, recognition, and control. We
have implemented these ANNs on either
workstations or architectures that integrate
existing microcomputers and microproces-
sors. Here, we compare the performance of
three such solutions for two real-time indus-
trial applications and identify the most
promising way to train and test an MLP neur-
al network.
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ANNs and MLP networks
Implementing an ANN is possible using a

massively parallel processor that has learning
tools for collecting knowledge from experi-
ence. In our simulations, we used an MLP
network—a multilayer ANN comprising an
input layer of sensor units, one or more hid-
den layers of intermediary nodes, and an out-
put layer of computation nodes. The signal
propagates along this network from the input
to the output.

An MLP has the following properties:

• Each neuron model presents a smooth,
nonlinear output.

• Hidden layers between the input and
output layers help the network learn
complex problems by progressively iden-
tifying meaningful aspects from the input
data set.

• The large number of synaptic connec-
tions determines the high degree of con-
nectivity; a change in a connection
influences the entire population of
synapses and their weights.

MLP networks can solve complex problems
through a supervised learning process based
on back propagation. BP consists of two dis-
tinct elaboration phases: one forward and one
backward. The forward step applies an input
vector (pattern) to the network, and its effect
propagates through the layers, yielding a set
of values at the output layer as the network’s
response. The network compares this response
to a set of intended target values. The back-
ward step then corrects the synaptic weights
by considering the errors between the real and
expected outputs.

In a practical application of the BP algo-
rithm, the learning process involves consecu-
tive presentations of a training set to the
network; the training set has a variable, ran-
dom sequence of input patterns. We call one
presentation of the entire training set an epoch.
Learning proceeds, epoch by epoch, until the
network’s synaptic weights and threshold lev-
els stabilize, and the squared error over the
entire set converges to some minimum value.
BP usually presents a training set to the net-
work to evaluate the synaptic weights. The
network considers as many training examples
as possible to achieve good generalization. A

network generalizes well when it produces a
correct output pattern for a new (unused)
input data set. Thus, the learning process is
essentially a curve-fitting or nonlinear-I/O-
mapping problem.

Comparison of three approaches
Scientists typically use one of three imple-

mentations to run real-time ANN applica-
tions:

• a PC with software tools for analysis and
simulation—in this case, a PC equipped
with a 400-MHz Intel Pentium II proces-
sor with 128 Mbytes of RAM running
MathWorks Matlab; 

• a digital signal multiprocessor—in this
case, the TMS320C80 from Texas
Instruments; or

• a special-purpose neural-network proces-
sor—in this case, a NeuriCam Totem
PCI board with two NC3001 processors.

The last two approaches have an advantage
because they can implement high-communi-
cation-bound problems that have intrinsic
parallelism straight onto the hardware. Such
intrinsic parallelism is typical of applications
amenable to neural-network solutions. We did
not consider parallel supercomputers in these
experiments, because their cost and dimen-
sions make them unsuitable for real-time
industrial applications.

We compared the performance of these
three solutions using two applications. Results
show that, for both applications, the special-
purpose processor is the most promising solu-
tion. With relatively few neurons, this
ANN-dedicated hardware chip outperformed
the other two implementations. Moreover,
results show that, due to their complex pro-
grammability and quick obsolescence rate,
parallel general-purpose chips are not suitable
for these applications.

PC running software tools
A commonly available software tool, Mat-

lab (from The Mathworks) has a built-in set
of functions and a graphical user interface for
the design, implementation, visualization, and
simulation of neural networks. In our exper-
iments, we use the basic package (version 5.1)
and an add-on—Neural Network Toolbox,
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version 2.0—to program, train, and simulate
an ANN for a biomedical-data fitting prob-
lem. The ANN was a specific element of a
mathematical model developed in Simulink
2.1 (another Matlab add-on), which repre-
sented the signal processing for generating eye
movements, given the movement of the head.

Digital signal multiprocessor
The TMS320C80, depicted in Figure 1,

has one master and four DSP parallel proces-
sors. The chip also has 50 Kbytes of SRAM
and a direct memory access (DMA) transfer
controller (TC) to interface with up to 4
Gbytes of external memory or to control data
transfer between two regions of internal mem-
ory. The master processor is a 32-bit RISC
processor with a floating-point unit. The par-
allel processors are 32-bit DSPs, featuring
hardware solutions and software libraries to
speed up image processing or applications
with manipulations of data structured in bit
fields. The TMS320C80 can reach a peak per-
formance of 2 billion operations per second.

The master processor has several pipelines,
including those for instruction execution,
floating-point multiplication, and floating-

point addition. Using these pipelines, the
master processor can execute a single-preci-
sion multiplication or double-precision sum
in one clock cycle. Special parallel instructions
let the master processor reach a 100-Mflops
peak performance. The master processor also
has two 4-Kbyte instruction caches and one
4-Kbyte data cache.

The parallel processors provide most of the
TMS320C80’s computing power because each
can use a 64-bit instruction word specifying dif-
ferent parallel instructions, independently con-
trolling the data unit and the two address units.
Thus, the processing hardware is directly acces-
sible, avoiding the need for an internal micro-
code unit to translate instructions into
corresponding event sequences. Every parallel
processor devotes 2 Kbytes of RAM to storing
interrupt vectors and TC parameters. These
parallel processors also share their 8-Kbyte data
RAM blocks with one another, the master
processor, and the TC. In contrast, the master
processor’s memory is accessible only to the mas-
ter processor itself and the TC. Each parallel
processor also has a 2-Kbyte instruction cache.

The TMS320C80 also contains a video con-
troller unit to interface with an image acquisi-
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tion system or to simultaneously control two
frame systems. Processors communicate via a
high-speed crossbar network, allowing multiple
simultaneous accesses to RAM memory. The
crossbar network automatically connects a
processor to each addressed RAM, with a max-
imum bandwidth of 2.4 Gbytes/s. The soft-
ware development environment includes a
compilation and execution package, and a par-
allel debugger. The latter provides users with a
direct interface with the hardware via

• a parallel-debugging manager,

• a command shell that communicates
with single debugging processes running
on each processor, and

• a Windows-based user interface with dif-
ferent display modes.

The overall TMS320C80 system rests on a
board inside a PC and can run under differ-
ent systems (Windows, Linux, and so on).

Special-purpose processor
The NeuriCam Totem PCI board, depict-

ed in Figure 2, is a neural accelerator for addi-
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tion to PCs and workstations as a coproces-
sor. This coprocessor interacts with the main
processor in the host system through standard
buses. Software tools, including interface
libraries and a graphical development system,
are available for most popular computer plat-
forms (Windows 98 and NT, DOS, Linux,
and Unix).

The Totem PCI board uses two NC3001

ICs. Each NC3001 has several processors
(artificial neurons) operating concurrently;
their connections mimic the human brain’s
operation. The NC 3001’s performance
comes from two important factors: dedicated
hardware that implements the neural network
and a very efficient training algorithm. The
chip is a parallel VLSI computing device with
simple fixed-point processing units and an on-
chip weight memory optimized for comput-
ing MLP-based neural networks, for
implementation of the reactive tabu search
(RTS) learning algorithm, which avoids the
local-minima problem faced by pure-BP
approaches and can execute quickly on fixed-
point units.14 RTS requires no transfer func-
tion derivatives and is suited for VLSI
implementation. For a detailed explanation,
see the “Reactive tabu search” sidebar.

The main characteristics of the NC3001
include the following:

• A pipelined data stream and single-
instruction, multiple-data (SIMD) archi-
tecture executes multiply-accumulate
(MAC) operations on 32 processing
units (neurons) in parallel and within a
single clock cycle.

• Thirty-two fixed-point MAC units oper-
ate in parallel and as part of a three-stage
pipeline.

• Limited word width—16-bit data, 8-bit
weights, and 32-bit results—ensures an
economical layout. RTS optimizes word
widths for learning. The broadcast bus’ 16-
bit width can represent signals from trans-
ducers and intermediate results between
layers. The 8-bit memory word width can
handle many classification tasks. The out-
put channel’s 32-bit word width permits
high accumulation capacity.

• Designers organized the 64-Kbit inter-
nal dynamic RAM as 32 blocks of 2K ×
8 bits for weight storage that is strictly
coupled with neurons. Alternatively,
rather than assigning memory to a single
neuron, the internal system software can
partition it among several neurons to
implement multilayer networks with a
single chip.

• A 40-MHz clock enables 1.2 billion
MAC operations per second. In less than
2 µs, the chip can evaluate a multilayer
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Reactive tabu search
The tabu search (TS) is an efficient technique for combinatorial optimization. It combines

a hill-climbing search strategy using a set of elementary moves (changing one bit at a time
in the binary representation of each weight and then evaluating the value of a proper cost
function) with a heuristic approach. The latter prevents local minima from blocking the search.
TS forbids, for a fixed number of iterations, the use of the inverses of recently used moves.
The length of the prohibition period is the tabu list size; the forbidden moves essentially
enter a tabu list in typical first-in, first-out order. Of course, the choice of the tabu list’s size
is critical and can significantly affect the search’s performance and effectiveness.

To overcome this problem, the reactive tabu search (RTS) algorithm adapts the fixed list’s
size to the characteristics of the optimization problem. The algorithm records all the config-
urations considered during the search and checks them for repetitions—thus introducing an
adaptable reaction approach along with a diversification method. The adaptable reaction
approach increases the list size when local minima cause repetitions in all regions of the
search space. The diversification method responds to evidence that the search is trapped in
a limited portion of the configuration space without the appearance of the typical periodic
behavior caused by a local minimum. Those in the dynamic-systems field would use chaot-
ic attractor to describe this situation.

For ANNs, RTS transforms the minimization of the error between the real and expected
network outputs into a combinatorial optimization problem easily parallelizable on a multi-
processor system. RTS represents the synaptic weights like bit strings through Gray codes,
and represents set µI of elementary movements by changing one bit at a time—that is, the
ith string bit. These movements define a local search trajectory along the points of a hyper-
cube into which each step is accepted or rejected depending on whether or not it minimizes
cost function E. This cost function is the sum of the squared differences between the net-
work’s present and desired outputs.

With the codification chosen, achieving the values n + 1 and n – 1 near n requires chang-
ing only one bit of the code expressing n. Exploring the search trajectory thus corresponds
to considering n’s neighboring points. This would not be possible if the representation were
binary; for example, 1000 follows 0111, but more than one basic move is necessary to per-
form the transformation. Now the search can easily explore all the neighboring points to find
better values of the cost function. Therefore, a search based on this representation can repro-
duce a binary form of steepest descent faster than back propagation (BP), because it does
not have to calculate derivatives and involves only feed-forward steps executed repeatedly
until the cost function settles to an asymptotic value.

For more information on RTS, please see the article by Battiti and Tecchiolli.1

Reference
1. R. Battiti and G. Tecchiolli, “Training Neural Nets with the Reactive Tabu

Search,” IEEE Trans. Neural Networks, vol. 6, no. 5, Sept. 1995, pp. 1185-1200.



perceptron with a 16 × 16 × 1 topology.
Higher performance is possible by con-
necting up to four chips per network level
to implement neurons with up to 256
inputs.

• Support circuitry enables external look-
up tables (LUTs) to implement activa-
tion functions.

Each neuron contains a MAC unit and an
output register to allow straightforward imple-
mentation of multilayer networks. The glob-
al bandwidth required to feed the weights to
the MAC operations during training is near-
ly N I/O operations per accumulation cycle
(N is the number of neurons), potentially
causing a serious I/O bottleneck by using
external memory with such highly parallel
architectures. The NC3001 solves this prob-
lem by using localized internal memory to
store weights. This enables a high bandwidth
between MAC operations and memory at the
expense of increased silicon area. Other sys-
tem circuits, such as the host processor, han-
dle the infrequent calculation of weight
changes during the learning phase.

Application 1: Classification of 2D 
space points

Consider a simple classification problem
solved through a neural-network approach.
Figure 3 shows a region of the xy plane with
geometric figures A, B, and C. Figures A and
B each represent 25 percent of the entire
region, and C represents 10 percent. D is 40
percent of the region, and represents the por-
tion not encompassed within A, B, or C.

The problem involves selecting a point in the
plane (the input) and deciding to which figure
within the region it belongs. We began by select-
ing random pairs of real numbers, correspond-
ing to coordinates x and y of points within the
region. To each pair of coordinate values we also
added a third value, a tag, to indicate the geo-
metric figure associated with the coordinates.
We built two sets of points: one for training and
one for testing the trained network.

Training and generalization setup
We presented the training input patterns

(x-y pairs) to the network in random order
for successive epochs. After each iteration,
we evaluated the network’s output and back-

propagated the error through the network by
updating the weights. At the end of each
epoch, a calculation of the average squared
error served as an indicator of whether to
continue the learning process. Once train-
ing ended, we verified the generalization abil-
ity of the network by considering how it
classified patterns not used in the previous
phase.

The implemented ANN had an input layer
with two inputs (the coordinates of the points
to be classified), a hidden layer with 16 neu-
rons, and an output layer with four neurons
(one for each geometric figure in the x-y
space). The exact output was a simple 1 for
the neuron (indicated by the tag) and three 0s
for the others; however, the classification is
acceptable when the neuron with the highest
output is the one indicated by the tag. The
activation function was a nonlinear sigmoid
curve. 

We used the generalized delta rule to
upgrade the weights by changing learning rate
η and momentum α. A small η yields a slow
convergence but identifies a deeper minimum
than the one corresponding to a large η.
Moreover, whereas a small η and large α yields
a high convergence speed, having η and α
approach 0 improves the algorithm’s stability.
Thus, we chose η = 0.775 and α = 0.45. The
chosen error threshold was 0.2.

We used 1,500 to 10,000 patterns for train-
ing, reserving the remaining 400 to 5,000 pat-
terns for the generalization phase.
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Figure 3. Portions of 2D space considered
in a simple classification problem.



Training results
We trained the ANN with different sets of

patterns and stopped the learning process when
the average squared error appeared to be flat,
showing good classification capability. We found
this flattening to be the primary indicator of
acceptable classification performance, regardless
of the value of the average squared error itself.
This observation proves that a smaller average
squared error does not always correspond to
improved performance. Table 1 shows the per-
centage of points that the network correctly clas-
sified during the training phase, the execution
times of the various implementations, and the
corresponding root-mean-square (RMS) errors.
The numbers in parentheses, under RMS error,
represent the maximum range of values assumed
by the output neurons. So, for example, an RMS
error of 0.24 (absolute value) with respect to an
output range of 1 corresponds to a probability of
a bad network response of 24 percent. Likewise,
if the RMS error is 7,000 with an output range
of 20,000, the probability of a bad response is
nearly 30 percent.

In porting the ANN application onto the
TMS320C80 processor, we implemented a
master/slave topology. The on-chip RISC
processor acts as the master processor and trig-
gers the training and generalization phases.
The parallel processors are the slaves, sharing
neurons and weights among themselves. The
master processor synchronizes the activity of
the four parallel processors. Using this topol-
ogy required two modifications to improve
performance:

• Transformation of floating-point operations
into integer ones. Because the parallel
processors don’t have floating-point
units, we transformed floating-point

operations into integer ones. This step
accounts for an 80 percent reduction in
computation time. 

• Tabulation of the sigmoid activation func-
tion on prefixed points. To obtain values
of the function for nontabulated points,
we tabulated the sigmoid activation func-
tion on prefixed points; the values of the
function referring to nontabulated points
could then be obtained through interpo-
lation when requested. This reduced
computation time by another 20 percent.

Speedup and efficiency
We calculated the speedup of the original

program’s parallelization by comparing the ser-
ial program’s execution time on a single paral-
lel processor with that of its parallel version
executed on four parallel processors. The
speedup was nearly 1.9, with a parallelization
efficiency—the ratio between this effective
speedup and the theoretical one represented by
the number of processors (four, in this case)—
of 47.5 percent. The overall execution times,
however, were much longer than those achieved
on the master processor. Converting the vari-
ables and tabulating the activation function
provided a significant speedup, accelerating
both the serial and parallel programs by a fac-
tor of 6.25. Nevertheless, the program’s new
parallel integer version achieved a paralleliza-
tion efficiency close to 40 percent, which is rea-
sonable because tabulating the activation
function and transforming floating-point oper-
ations into integer ones diminished the paral-
lel processors’ overall computational load. This
low efficiency is probably due to the commu-
nication overhead, which dominates the com-
putation time because the application is small.

On the other hand, the limited on-chip
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Table 1. Comparison of different implementations during the training phase. The number of 

epochs or iterations listed are those needed to achieve the RMS error shown.

No. of  No. of  

training epochs or Patterns correctly classified (percentage) 

Implementation patterns iterations Time (s) RMS error A B C D

TMS320C80 1,500 200 1,806 0.20 85.2 87.1 80.6 80.9
PC with Matlab 2,000 3,000 683 0.24 (1.0) 90.0 98.9 66.1 82.1
PC with Matlab 10,000 3,000 3,231 0.16 (1.0) 91.0 98.0 66.0 84.0
Totem board 2,000 5,000 196 7,000 (20,000) 94.4 98.8 82.5 85.4
Totem board 10,000 5,000 929 7,000 (20,000) 96.9 98.7 80.7 88.2



memory restricts the number
of applications that can be
directly implemented on the
device. Thus, larger ANNs
would require a wider address-
able external memory, despite
the accompanying decrease in
performance. In any case, exe-
cution times are very long
compared with those of the
Totem implementation.

Finally, we implemented the same problem
on both the PC with Matlab tools and the
Totem PCI board. We ran 3,000 epochs on the
PC, whereas the Totem board took only 5,000
RTS iterations to reach the same RMS error.
Although the number of RTS iterations was
higher, our results show that Totem performed
5,000 RTS iterations in a shorter time (by a
factor of about 3.5) than 3,000 BP epochs.

Generalization results
Table 2 presents the percentage of correctly

classified points of the plane for the Matlab
and Totem implementations. The data shows
comparable performance for both implemen-
tations. Therefore, combining the results in
Tables 1 and 2, we see that Totem achieved a
similar level of correct classifications but with
a 3.5-times shorter training phase.

The results from this first application point
to the Totem PCI board with special-purpose
processors as the most promising candidate
for ANN processing. The Matlab implemen-
tation’s performance was comparable, but the
digital signal multiprocessor was clearly not
the best choice, at least for problems of this
size. For this reason, we focused only on the
Totem board and Matlab implementations for
the second application—a problem implying
a heavier computational load.

Application 2: Generation of vestibular
nystagmus

For the next application, we implemented
a typical biomedical-data fitting problem:
reproducing the generation of vestibular nys-
tagmus, a reflexive eye movement important
to scientists because it represents the standard
approach for the clinical evaluation of a
patient’s vestibular system. Nystagmus is an
oculomotor response comprising alternating
slow and quick phases, which occur when the

head undergoes sustained rotation, as well as
during the sustained movements of a visual
scene—for example, when a person looks
through the window of a moving vehicle.
Vestibular nystagmus is typically elicited by
sinusoidal head rotation in darkness through
a signal originating solely from the vestibular
apparatus—a small structure in the inner ear’s
bony labyrinth that tells the brain how the
head is moving. Thus, vestibular nystagmus
is interesting because it occurs in the absence
of optical stimuli, providing information on
the functionality of vestibular organs.

Most sensorimotor functions develop at
least partially as a result of adaptive and learn-
ing processes. These processes can occur dur-
ing the development of an animal species or
during a particular animal’s lifetime.
Researchers have demonstrated the role of
such processes in the development of simple
and well-studied neuromotor systems, such
as the oculomotor system, the part of the cen-
tral nervous system responsible for control-
ling eye movements. Researchers have also
reported various examples of long- and short-
term adaptive and learning behaviors—eye
tracking of a target,15 vestibular adaptation to
artificially altered conditions of visual-vestibu-
lar interaction,16 and so forth. Besides these
well-known processes, other mechanisms in
the oculomotor system show learning and
adaptive abilities taking place both during the
evolutionary development of the human
species and during an individual’s lifetime.
One such learning behavior occurs during
generation of vestibular nystagmus.

Explanation of vestibular nystagmus
Vestibular nystagmus consists of slow and

quick phases. Slow phases, generated by the
vestibulo-ocular reflex, compensate for head
rotation. Fast phases countercompensate for the
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Table 2. Comparison of the recognition capability of Totem and 

PC with Matlab, during the generalization phase.

No. of

generalization Patterns correctly classified (percentage)

Architecture patterns A B C D

PC with Matlab 3,000 91.1 98.2 63.8 84.8
Totem 700 91.3 95.2 87.3 81.9
Totem 3,000 93.9 96.5 77.9 84.6



slow-phase movements and have saccadic ori-
gin. Saccades are the fastest eye movements that
the oculomotor system produces. A person uses
them to gaze quickly at an object. Active head
rotations can evoke a similar pattern of eye
movements in darkness, suggesting that vestibu-
lar nystagmus represents a specific strategy of
eye-head coordination during natural behavior.
Schmid and Zambarbieri proposed a mathe-
matical model of vestibular nystagmus, postu-
lating a direct “vestibulo-saccadic pathway
(sequence of neural connections)” that conveys
head rotation information from the peripheral
vestibular system to the saccade-generating
mechanism in the brain stem.17 Ohki, Shimazu,
and Suzuki found physiological evidence sup-
porting the existence of such a pathway.18

When someone moves his head in darkness,
his central nervous system activates an eye-

head coordination strategy that yields vestibu-
lar nystagmus. This strategy exploits the head
movement information to drive eye rotation
so that the gaze anticipates and amplifies the
head movement, thus allowing exploration of
a greater portion of the scene.19 You can appre-
ciate such a strategy if you examine the traces
of the gaze reconstructed by summing head
position in space and eye position in the orbit,
as Figure 4 shows. The gaze proceeds by alter-
nating periods of fixation and rapid shifts.
During the former, the central nervous sys-
tem acquires visual information from the
observed portion of the scene. During the lat-
ter, the visual axis corresponding to the sac-
cadic component of vestibular nystagmus
shifts rapidly. This strategy allows the subject
to visually explore the dark surroundings to
look for a possible object of interest.

We can reproduce this eye-head coordina-
tion strategy by introducing a model like that
shown in Figure 5, into which we substitute
an ANN for the vestibular saccadic pathway
(VSP) block. This ANN consists of a two-
layer perceptron—two input neurons, three
nonlinear hidden neurons, and one output
neuron. The VSP block receives both head
angular velocity and displacement as input,
and provides the desired eye position in the
orbit as output.20 The head velocity and dis-
placement signals available to the VSP are
those estimated by the peripheral vestibular
system. Hence, the signals fed to the ANN
correspond to the recorded head movement
signals passed through a block modeling the
dynamics of the semicircular canals (part of
the vestibular apparatus). Within such a
model, we trained the network to produce a
continuous eye position signal, interpolating
the eye position in the orbit at the end of each
quick nystagmus phase. This eye position sig-
nal then goes to the saccadic mechanism.

Training setup
Although the training procedure adopted

here is not physiologically likely, we can
hypothesize a biological mechanism similar
to that implemented by the ANN. In the
model, we reconstructed the eye position sig-
nal from experimentally recorded signals and
then fed to the network.19 It is likely, instead,
that the central nervous system progressively
adjusts the synaptic weights in the VSP to pro-
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duce a reference signal, responding to explo-
ration efficiency criteria. These criteria could
be either maximization of the explored scene
or optimization of the number of fixations
and their locations.

We implemented the ANN on both the PC
with Matlab tools and the Totem board. The
training phase involved 1,500 input pat-
terns—with head position and velocity as
input, and eye position as output—previous-
ly acquired in the same lighting conditions
and from the same subjects. 

Results
For the PC with Matlab, we ran 200

epochs, with an RMS error tolerance fixed at
5 percent between expected and real neuron
output. This activation function evolves like
the hyperbolic tangent, and Matlab functions
automatically adjust the learning rate and the
momentum constant.

In contrast, the Totem board required 2,000
RTS iterations to achieve nearly the same RMS
error as the PC with Matlab. We chose the sig-
moid curve as the activation function for this
implementation. As Figure 6 shows, the model
in Figure 5 works well, although its performance
depends on the input patterns. Figure 7 reports
the modeling error in the eye position (expressed
in degrees). The Matlab and Totem outputs are
from the generalization phase run for different
test sets and after the same training. As Figure
7 shows, the errors are very close for the two
architectures: 14.49° ± 3.16° for Matlab, 13.73°
± 2.79° for Totem. However, Totem performs
better in 71 percent of the simulated trials.

The small differences in the two plots in Fig-
ure 7 could be due to contradictory patterns
affected by biological noise that can drive the
RTS algorithm off track more rapidly than the
BP algorithm. Moreover, although the report-
ed errors seem high, they pertain to the entire
model and not only the ANN. In fact, if we
consider only the outputs coming from the
neural integrator, the difference between the
two implementations is basically the same, but
the absolute error decreases to about 5° or 6°.

Table 3 reports execution times on the dif-
ferent machines. The Totem-implemented
ANN reaches the same RMS error 2.7 times
faster than the Matlab implementation. Thus,
even for this second application problem,
Totem achieves similar levels of performance

but with a far shorter training time. Totem’s
faster performance enables training the net-
work using larger training sets, which should
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Table 3. Execution times of the PC

with Matlab and Totem

implementations for the 

vestibular nystagmus problem.

No. of input        Execution time (s)      

patterns PC with Matlab Totem

7,500 400 150
1,500 85 31

360 33.5 12
300 27 10
225 21 8



improve generalization performance. As Fig-
ure 8 shows, execution times scale linearly
with the number of patterns—a key charac-
teristic, for instance, when facing large-scale
problems. Hence, Totem should be able to
preserve the speedup advantage it has over the
other two implementations.

Of the three approaches tested, results
indicate that Totem is the most promis-

ing. This board, composed of special-purpose
processors, demonstrated good recognition
capability along with excellent computing
times in executing the RTS algorithm, which
turns out to be more affordable than BP in
the absolute minimum search of a cost func-
tion. Thus, the NC3001 chips in the Totem
board are also suitable as a quick accelerator
working with standard CPUs—particularly
in industrial applications, where the process-
ing power of the onboard microprocessor is
not high, and an implementation must quick-
ly evaluate complex models.

In our comparison, we didn’t consider
hand-coded ANN implementations. Indeed,
we developed a C version of the first problem
(2D classification), achieving a correct answer
on average in 83 percent of the cases with exe-
cution times twice as long as those for the
Totem board. This aspect, along with the long
code development times, drove us to abandon
the hand-coded ANN approach. Scientists
usually don’t like to lose time in codification
details, but instead prefer to use ANN tools
for investigation.

Because Totem performed about three
times faster than the Intel 400-MHz proces-

sor, a battery of eight or 16 NC3001 chips
could considerably improve computing
power. This would allow parallel implemen-
tations of bigger networks that could handle
more challenging problems. This is the path
that NeuriCam is following with a few
research groups. Together, they are imple-
menting clusters of PCs, each equipped with
one or more NC3001 chips on board, main-
ly for image-processing applications. And the
NC3001’s capabilities should increase as
designers continually upgrade it to higher
clock frequencies. In fact, a 60-MHz release is
available that can further speed up the elabo-
ration. The NC3001 also offers an easy-to-
use Windows interface. This interface helps
scientists avoid spending excessive time on
detailed coding or error debugging, and
speeds up neural network optimization. Final-
ly, each Totem board currently costs about
$1,000, including software. This price also
makes it an economical choice for imple-
menting ANN-based parallel systems. MICRO
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