
100 June 2002/Vol. 45, No. 6 COMMUNICATIONS OF THE ACM

T
he world of large-scale com-
puting dominated by main-
frames was relatively simple.
All applications and related
data were co-located, and
many thorny issues of distrib-
uted computing such as
remote data access, splitting

databases, and network latency were either nonexis-
tent or presented easier problems. Unfortunately,
mainframes or even clusters of mainframes did not
scale well. The client/server architecture (CSA) has
been introduced to overcome this difficulty.

Has CSA delivered as expected? The answer is
“Yes, but...” Ideally, CSA solutions scale better than
mainframe solutions, but this can be accomplished by
expending additional efforts required for architecting
and tuning CSA systems. An effective approach to
this task is building and exercising system workload
and performance models.

Here, we share our experience of reengineering and
tuning large CSA systems at Boeing. We consider sys-
tems that have been designed for tens of thousands of
users and run applications such as Baan, PeopleSoft,
and CATIA (a CAD system).

A system of this kind has to satisfy several require-
ments, including adequate computational perfor-
mance dictated by the company business processes
and scalability, that is, the ability to accept new users
and applications without severe performance degra-
dation or expensive system architectural redesigns.

By attempting to solve this problem for several
large applications, we have gained valuable experience
that has advanced our understanding of the method-
ologies and tools needed for accomplishing the goal.
Our experience may not be universal, but many other
large companies face problems similar to Boeing’s and
could benefit from the lessons we learned.

The key technical challenges we encountered
include:

• The workload predictions may be uncertain or
inaccurate. Unless the designed system has been at
least partly in production, the data needed for
modeling may be unavailable.

• In multiple vendor environments, the responsibil-
ity for the system integration and performance
tends to be ill-defined. By default it becomes the
customer’s responsibility.

• Very large systems (large number of software, hard-
ware components, huge amounts of data, and
numbers of users) are frequently outside the scope
of a vendor’s experience. They are tempted to
advocate linear extrapolations from smaller and
less complex systems. The correct determination of
system capacity and performance requires accurate
modeling that exhibits highly nonlinear behavior.

• In general, hardware solutions advance quickly and
are ahead of software that runs on new architec-
tures. An example of this gap is parallel comput-
ing, which can offer significant speedups and
scaleups on multiprocessor architectures. Often
this advantage cannot be realized if software is
singlethreaded.

One of the greatest difficulties of any analysis is
understanding the customer problem and turning it
into a formal problem statement. The problem must
be translated from customer terminology into a formal
statement amenable to mathematical analysis and pro-
gramming. The capacity and performance analysis
problem can be divided into two broad categories:
Design of a new system from requirements, and reengi-
neering and tuning a system already in production.

From a user’s perspective, the most common mea-
sure of performance is usually stated in a service-level

Capacity and Performance
of Distributed Ente

Analytic and simulation models enhance the reengineering
and tuning of large client/server distributed systems.

Ubiquitous computing is not only influencing our lives,
but our livelihoods. Indeed, traditional career choices and paths

will require fundamental attitude adjustments.

COMMUNICATIONS OF THE ACM June 2002/Vol. 45, No. 6 101

Analysis
rprise Systems

James A. Aries,
Subhankar Banerjee,

Marc S. Brittan, Eric Dillon,
Janusz S. Kowalik, and

John P. Lixvar

agreement that describes the level of performance
required by the user community. Common user-based
metrics include response time, percent uptime, and
other metrics.

From the system manager’s perspective, there are a
large number of performance metrics of overall system
health, such as CPU, network, disk utilization, cache
hits and misses, and context switches. These metrics
serve to measure both current system performance and
the maximum system workload that can be supported
while still meeting service requirements. The systems
manager is interested in both the day-to-day perfor-
mance of the system, as well as the ability of the system
to support growth in the user workload. The manager
must also know whether the system can support peri-
odic spikes in workload that can usually be managed
by workload scheduling if system capacity is known.

From the mathematical modeler’s perspective, the
service-level agreements act as hard constraints, with
CPU utilization, network utilization, and other met-
rics serving as measures of performance. The modeler
will typically vary a number of system parameters such
as network bandwidth, CPU speed, and workload in
an effort to improve system performance and assess
overall system capacity. For systems currently in use, a
typical starting point is to use some of the metrics
from production data mining and build a model that
mimics production behavior. This gives us a calibra-
tion point for future extrapolation. Once we are con-
fident we can reproduce the performance seen in
production, we may use the model in its predictive
mode by scaling the workload to find bottlenecks,
response times, capacities, and other parameters of
interest for the system. The overall mathematical
model can be broken down into a workload model, a
performance model, and a cost model.

In building a workload model, the first step is to
determine the system resources (CPU, network traffic,
server calls, and so on) required to support it. Each
server may in turn spawn requests to other servers
before the user’s job/query is resolved. To model the
system, we need to know the load per query on each

machine/resource, including remote calls generated by
one node to another node. For large systems, this is
typically stated in terms of probability distributions
where a user of a particular type generates a proba-
bilistic number of queries per unit time.

The performance model takes into account the
physical hardware, connectivity, architecture, software,
and workload model. This model is used to analyze the
current system performance and predict future perfor-
mance under varying workload and architecture
changes. An important part of modeling a large system
is determining whether it will scale well as additional
users, servers, and other hardware and software are
added to the existing system. The performance model
should be flexible enough to perform ad hoc studies,
such as moving workload assignments, adding new
servers, splitting databases, and changing connectivity.

The cost model may include total system and life
cycle costs, including hardware, maintenance costs,
and projected costs of future revisions to the system.
Cost is frequently modeled as a constraint (find a sys-
tem with the best performance characteristics subject
to a budget constraint), or as part of an objective func-
tion (find the lowest cost system that can meet service
level agreements).

Designing New Systems, Reengineering
Old Ones
We have the greatest opportunity to build perfor-
mance and scalability into a new system from the out-
set. Once we have more than 100,000 users online
with millions of lines of legacy code and database
information, we are limited in our ability to change
architecture or software. The cost of retraining the
user community and rewriting code can be prohibitive
after the system is in place.

For systems not yet built, there is the additional
complexity of estimating usage patterns and under-
standing server loads from programs not yet written.
Frequently, we must resort to benchmark studies from
vendors and historical studies from the literature to
predict resource requirements. We can then make load

estimates in the proposed user environment and make
proposals for system hardware and architecture.

It is a relatively low-cost task to perform a large suite
of computer simulations of a proposed system com-
pared with the cost of building a system and rebuilding
it if it cannot handle the workload. Adding new servers,
changing server computing power, or changing con-
nectivity is a straightforward programming task and
ensures the right hardware has been ordered.

We are more constrained when redesigning an exist-
ing system because there is an existing infrastructure
and user base that cannot be shut down during the
transition. Unlike a new system, the existing system can

be analyzed for usage patterns and other information
that characterizes system usage. For a new system we
only have projections of production system usage. For
an existing system, production data mining provides an
excellent starting point for our analysis.

When confronted with the task of reengineering and
tuning an existing system, we often have an additional
constraint—the reengineered system must be back-
ward compatible with the existing production system
and be capable of seamless integration with minimal
downtime. This, of course, implies we are usually con-
strained to operate within an architectural framework
close to the existing system. Radically different topolo-
gies, workload assignments, and software are usually
out of scope.

Workload Characterization, Performance
Testing, and Input Parameter Estimation
Capacity planning and performance analysis of a dis-
tributed system requires a flexible and representative
model of the workload. Such a model must represent
the essential workload complexity while remaining
simple enough to provide timely analysis results. In
most studies it is necessary to collect and analyze per-
formance data to develop a quantitative model of the
workload components. Thus, the collection and analy-
sis of performance data should be integrated into the
performance study plan. The data must be sufficient to
estimate the model parameters and the model must
reflect the essential behavior of the system for this
process to work. Data collection is a time-consuming
activity, and opportunities to collect usable data while
the system is under development can be infrequent. It
is common that the desired level of detail in a perfor-

mance model be reduced because the available data will
not support it. Thus, identification and collection of
the required data early in the lifetime of a study will
contribute greatly to the end result. The development
of a workload model primarily involves the following
four steps:

Workload characterization involves specifying the
nature of the tasks that will be performed on the sys-
tem. This requires a good understanding of the busi-
ness processes that will be used during the time period
of the performance study. User roles can then be
defined in terms of the business processes and decom-
posed into the computational transactions required to

complete them. The workload is then defined by spec-
ifying the frequency and mixture of the different user
roles. These user roles can be scripted to serve as a basis
for automated load testing and can also serve as the
basis for the workload model when the service
demands associated with each user are quantified
through measurement.

Workload model development. A quantifiable work-
load model requires that service demands associated
with the workload components be estimated. If the
model is transaction-based, it is necessary to estimate
the transaction arrival rates and the service demands
associated with the various transaction types or classes.
The service demands will typically include CPU, mem-
ory, interprocess communications, and I/O requests.

Observability of the service demands is often an
issue due to the extreme complexity of large-scale dis-
tributed systems. The service demands will be distrib-
uted over the various types of servers and
communication links comprising the elements of a
multitiered system. The workload is distributed over
many software and hardware components that com-
municate over diverse data links with differing mecha-
nisms. Large distributed database systems will service
transaction data requests with a small number of con-
tinuously running processes that will spawn many child
processes in response to service requests and will defer
some of their contribution to the service demand to
cache refreshes and other housekeeping tasks. Thus, the
direct isolation and measurement of transaction service
demands from a production or load test environment
is not always possible. It may be necessary to divide the
service demand into steady state or periodic compo-
nents reflecting the overhead and into other compo-

102 June 2002/Vol. 45, No. 6 COMMUNICATIONS OF THE ACM

One of the greatest difficulties of any analysis is understanding the
customer problem and turning it into a formal problem statement.

nents proportional to the number of users of a given
type. In practical situations it is necessary to combine
diverse results from many sources and observations to
calibrate a model reflecting the direct and deferred ser-
vice demands resulting from workload elements.

The number of transaction types can be unmanage-
ably large. This is often addressed by creating a class
model of the workload wherein transactions with sim-
ilar service demands and arrival patterns are clustered
together. A major objective of a performance study will
be to estimate the distribution of transaction response
times as the load increases. Properly classifying transac-
tions into classes is a key step in supporting this process.

Performance testing and data collection. It is necessary
to collect data to convert a workload defined in terms
of business processes into a model that can be quanti-
fied as service demands on a computer system. If data
is collected from a production environment, it is not
possible to control the environment. The data collec-
tion and analysis will then have to be designed to esti-
mate the service demands from a mix of work where
their effects cannot be directly measured. This may
require more indirect parameter estimation techniques
or elevating the level of detail input to the performance
model. If load testing is to be performed, this problem
is somewhat simplified because the definition of the
data collection and analysis should be an integral part
of the test design. Detailed planning is necessary to
define the test suites, develop scripts for automated
load testing, define the monitoring tools to be used,
define what data will be collected, and define how the
results will be stored and managed. Tools for data col-
lection include:

• Performance monitors installed on each server (and
typically supplied by the hardware vendor) are gen-
erally specific to the server architecture and operat-
ing system. Examples include Hewlett-Packard
MeasureWare, Sequent Performance Evaluation
Package, and Microsoft Perfmon. This software will
supply utilization of system components broken out
by process ID and a great many other details abut
the status of the system.

• Data logs supported internally by software compo-
nents of the architecture such as the transaction
monitor, the database system, and the application
software itself. These logs typically contain informa-
tion about the number and type of transactions by
time interval.

• Code instrumentation specifically inserted into
the application software to provide checkpoints.
This can be done by the software vendor, the sys-
tem integrator, or may be automatically supplied
as part of the emerging Application Response

Measurement (ARM) standard.
• Instrumentation supplied with automated load test-

ing software (for example, LoadRunner, PreVue
CS/X) will typically collect transaction response
time data and may provide additional information
about the distribution of response times over the
system components.

Input parameter estimation. Once performance mea-
surement data has been collected, the parameters of the
workload model need to be estimated. This consists of
fitting the model parameters to match the observed
behavior of the system. Regression analysis can be a
useful tool for fitting parameters based on multiple test
results, while a very simple model with one service class
may use simple queueing models to derive service times
based on the observed utilization and response times. A
more sophisticated model may break out components
of the load due to background processes, work rate pro-
portional processes, and deferred processes. Data then
must be collected in a manner that allows the model
parameters to be independently observed and esti-
mated. A good understanding of the design and behav-
ior of the system is necessary to construct such a model.
The usefulness of the model as a predictive tool will
depend on how well the parameters reflect the behav-
ioral characteristics of the system as well as the accuracy
of the parameter estimation.

Load Testing for Performance Analysis
Load testing (LT) is considered a good approach for
both performance and scalability analysis as well as col-
lecting data as input for performance models. There are
several competing COTS tools (LoadRunner and Per-
formance Studio, for example) available for LT. Our
approach is to combine the two methodologies,
namely, load testing with performance modeling to
analyze system performance and predict capacity. In
this approach, we would use an LT tool with a moder-
ate number of simulated users. We then use the test
data collected as input to the performance model to
study various what-if scenarios as well as predict knee-
of-the-curve or system performance under heavy load
conditions.

The client/server systems we encounter at Boeing
are very complex, and it is difficult to test the perfor-
mance and scalability of these systems. Whereas single-
user testing focuses primarily on functionality and the
user interface of a single application, load testing
focuses on the performance, scalability, and reliability
of an entire client/server system under various load sce-
narios. Traditional manual testing methods offer only a
partial solution to load testing. A client/server system
can be manually tested by constructing an environ-

COMMUNICATIONS OF THE ACM June 2002/Vol. 45, No. 6 103

ment where many users work
simultaneously on the system.
Each user works at a single
machine and submits input to

the system. This kind of testing has been used exten-
sively for functional testing of var-
ious Boeing enterprise systems.
However, the manual testing
method is not very reliable for per-
formance analysis and suffers from
numerous drawbacks. An LT tool
addresses the drawbacks of man-
ual testing with useful solutions. It
reduces the personnel require-
ments by replacing human users
with virtual users. These virtual
users emulate the behavior of real
users operating real applications.
Because numerous virtual users
can run on a single computer, it
reduces the hardware require-
ments. Because these tests are fully
automated, they can be easily
repeated.

A real user session can be cap-
tured automatically into a script using an LT tool.
This script can then be manually modified and para-
meterized to suit the needs of a test scenario as well
as to emulate many users who would be running a
similar script. Later, a scenario can be built out of
these scripts to represent a complex mix of transac-
tions. Scheduling of script execution within a sce-
nario can be achieved for various arrival rates with
different user types and mix of transactions. The
commercially available LT tools support various
client/server applications, including Database, Web,
Baan, Java, Tuxedo, PeopleSoft, and others. The
script generation happens on the client end where
the LT tool captures the protocols issued from the
client software. A three-tier client/server system is
illustrated in Figure 1.

The results of the LT data can be used to estimate
useful parameters as input to the performance models.
One benefit of using data from LT for performance
models is these tests can be performed in a controlled
environment and repeated with ease, producing reliable
input parameters for performance models.

Modeling Objectives
Modeling often becomes the solu-
tion of choice in assessing perfor-
mance and scalability when the
system of interest is unavailable
for benchmarking. However,
building a performance model in

the absence of such information is no easy task. Enter-
prise systems frequently consist of many components
arrayed in highly complex configurations: heteroge-
neous, geographically distributed servers linked
through many different network interconnects, COTS

applications based on propri-
etary middleware, databases of
enormous size, and so on.
Understanding the interactions
within such a system is the first,
and perhaps most difficult, step in building an effective
model (see Figure 2).

Defining clear and attainable objectives is the key to
a successful modeling project: Why is a performance
model being built? What specific issues do we hope to
address? Typical questions might include the number
of CPUs needed for a particular server under a speci-
fied workload, or the impact on transaction response
time when batch processing is added to the workload.

Objectives may differ depending on the stage of the
design process. When used during early design, an
enterprise system model can help build performance
into the system at a time when the costs of doing so are
minimized. The performance model may also be used
to study different implementation choices. For exam-
ple, should data be replicated at different sites to ensure
reasonable response time? Are local application servers

104 June 2002/Vol. 45, No. 6 COMMUNICATIONS OF THE ACM

Client Machine

Script Generation
Using LT Tool

Application Server Database Server

Figure 1. Script
generation using
load-testing tool.

AppServer
appBucket

App_Server

Intr_Server

Intr Server

Init Workstation1

DB_ServerDBServer

File_ServerFileServer

FileReadWrite

Enterprise server
subnet

Ent_subnet

Router1

Router3
36Mbits/sec
Frame Relay
Service

DataLink4SwitchedEthernet2

Router2

DataLink3

155Mbits/sec

DL

DL

Figure 2. Enterprise
system model
generated by

Strategizer, a product
of HyPerformix.

a good idea? How much network bandwidth is needed
to support the file server connection? During the
reengineering or tuning phase of the system, the objec-
tives may focus on identifying bottlenecks, or assessing
the impact of implementing new versions of software,
or perhaps even consolidating hardware in an over-
loaded system. Finally, in addition to all these perfor-
mance considerations, cost objectives must be factored
into the model results before a final recommendation is
made on system deployment.

Modeling is all about tradeoffs and compromises;
not every detail is needed to capture the essentials of
real system behavior. Furthermore, not all of the para-
meters identified in the workload definition may be
available to the modeler. Modeling objectives will drive
this tradeoff between model abstraction and model
accuracy—there is no need to model the entire com-
puting complex if we are only concerned about specific
subsystem performance. Likewise, a performance
model may be based on vendor specifications and
industry standard benchmarks too coarse to support
detailed investigations of individual system compo-
nents or workload elements. In such cases, the modeler
may have to aggregate transactions and consolidate
hardware components. These choices may affect the
accuracy and level of confidence attached to the model,
but quite often these compromises are well justified.

Building a valid and effective performance model is
a process of refinement where first-generation models
are successively replaced by models of increasing
fidelity. Only through this validation and calibration
process can we develop tools with predictive capability.
Once scaling rules have been determined and the
model begins to produce effective results, the analyst’s
work is still not complete. The models need to be
maintained to reflect subsequent hardware and soft-
ware updates, and they must be designed to anticipate
the inevitable series of what-if questions that generally
accompany the performance modeling exercise.

Modeling Tools Are Not Perfect
The success of a modeling project is a function of the
tools and approaches used. Ideally, a tool should com-
bine all essential input parameters into a model that
reflects the actual operation of the system. The tool
should then be able to produce statistics with metrics of
interest such as CPU utilization, or response time.

Two modeling approaches are typically available:
analytical models based on mathematical theory, or
computer-based simulation models [4].

Analytical models can provide a quick insight into
system behavior by applying the simple principles of
queueing theory [1]. However, in order to remain
mathematically tractable, these models only accommo-

date a small number of variables—a situation that usu-
ally forces the modeler to oversimplify the real system.

As a complement to analytical modeling, computer-
based simulations can potentially model the behavior of
every system component. Here again, a tradeoff is
needed to balance simulation time with the need for
precision. Because most of these tools are based on dis-
crete event simulation [2], generating too many events
in a highly detailed model can quickly bring any simu-
lation platform to its knees, giving rise to a situation
where the performance and scalability of the simulation
tool itself must be considered.

Many simulation tools fall into two main classes:
general-purpose simulation tools or languages, and
domain-specific simulation tools. A general-purpose
simulation tool is totally flexible and open. These tools
usually offer simulation extensions to programming
languages such as C, C++ [5], or Java [3]. Most of these
tools perform sequential simulations, which frequently
limit the size or number of model runs to be per-
formed. To overcome this restriction, parallel discrete
event simulation tools are now the subject of much
investigation. However, these techniques must confront
all the well-known problems of parallel programming
such as synchronization, load balancing, and scalability.

Domain-specific simulation tools offer many attrac-
tive advantages. Because these tools focus on specific
applications, they can offer predefined modules with
plug-and-play capability. Because these tools are easy to
use, people with limited expertise in the art of simula-
tion can build performance models. However, be fore-
warned that relying on these tools without
understanding their built-in assumptions and limita-
tions is one of the quickest ways to sink a performance-
modeling project.

References
1. Allen, A.O. Statistics and Queuing Theory With Computer Science Applications.

Academic Press.
2. Ball, P. Introduction to Discrete Event Simulation; www.strath.ac.uk/Depart-

ments/DMEM/MSRG/simulate.html.
3. Howell. F. and McNab, R. SIMJAVA: A discrete event simulation package

for Java with applications in computer systems modeling. In Proceedings of
the First International Conference on Web-Based Modeling and Simulation.
Society for Computer Simulation, San Diego, CA, Jan. 1998.

4. Law, A.M. and Kelton, W.D. Simulation Modeling & Analysis. McGraw-
Hill, New York.

5. Little, M.C. and McCue, D.L. Construction and Use of a Simulation Pack-
age in C++. Computing Science Technical Report. University of Newcastle
Upon Tyne 437, (July 1993).

James A. Aries, Subhankar Banerjee, Marc S. Brittan,
Eric Dillon, Janusz S. Kowalik, John P. Lixvar are
members of the Distributed Systems Performance and Scalability team
within the Math and Computing Technologies division of Boeing
Phantom Works, Seattle, WA.

© 2002 ACM 0002-0782/02/0600 $5.00

c

COMMUNICATIONS OF THE ACM June 2002/Vol. 45, No. 6 105

