
46

The interconnection network and
its associated software libraries are critical
components for high-performance cluster
computers and supercomputers, Web-server
farms, and network-attached storage. Such
components will greatly impact the design,
architecture, and use of future systems.

Key solutions in high-speed interconnects
include Gigabit Ethernet,1 GigaNet,2 the Scal-
able Coherent Interface (SCI),3 Myrinet,4 and
the Gigabyte System Network (Hippi-6400).5

These interconnects differ from one another
in their architecture, programmability, scala-
bility, performance, and ability to integrate
into large-scale systems. While Gigabit Eth-
ernet resides at the low end of the performance
spectrum, it provides a low-cost solution.
GigaNet, SCI, Myrinet, and the Gigabyte Sys-
tem Network provide programmability and
performance by adding communication
processors on the network interface cards and
implementing different types of user-level
communication protocols.

The Quadrics network (QsNet) surpasses
these interconnects in functionality with an
approach that integrates a node’s local virtual

memory into a globally shared, virtual-mem-
ory space; provides a programmable processor
in the network interface that allows the imple-
mentation of intelligent communication pro-
tocols; and delivers integrated network fault
detection and fault tolerance. Consequently,
QsNet already possesses many of the salient
aspects of InfiniBand,6 an evolving standard
that also gives an integrated approach to high-
performance communication.

QsNet
QsNet consists of two hardware building

blocks: a programmable network interface
called Elan and a high-bandwidth, low-
latency communication switch called Elite.7

Elite switches can be interconnected in a fat-
tree topology.8 With respect to software,
QsNet provides several layers of communica-
tion libraries that trade off between perfor-
mance and ease of use. QsNet combines these
hardware and software components to imple-
ment efficient and protected access to a glob-
al virtual memory via remote direct memory
access (DMA) operations. It also enhances
network fault tolerance via link-level and end-

Fabrizio Petrini
Wu-chun Feng
Adolfy Hoisie
Salvador Coll

Eitan Frachtenberg
Los Alamos National

Laboratory

THE QUADRICS NETWORK EXTENDS THE NATIVE OPERATING SYSTEM IN

PROCESSING NODES WITH A NETWORK OPERATING SYSTEM AND

SPECIALIZED HARDWARE SUPPORT IN THE NETWORK INTERFACE. DOING SO

INTEGRATES INDIVIDUAL NODE’S ADDRESS SPACES INTO A SINGLE, GLOBAL,

VIRTUAL-ADDRESS SPACE AND PROVIDES NETWORK FAULT TOLERANCE.

0272-1732/02/$17.00  2002 IEEE

THE QUADRICS NETWORK:
HIGH-PERFORMANCE

CLUSTERING TECHNOLOGY

to-end protocols that detect faults and auto-
matically retransmit packets.

Elan network interface
The Elan network interface (we refer to the

Elan3 version of Elan in this article) connects
the Quadrics network to a processing node
containing one or more CPUs. In addition to
generating and accepting packets to and from
the network, Elan provides substantial local
processing power to implement high-level,
message-passing protocols such as the
Message-Passing Interface (MPI). The inter-

nal functional structure of Elan, shown in Fig-
ure 1, centers around two primary processing
engines: the microcode processor and the
thread processor.

The 32-bit microcode processor supports
four hardware threads. Each thread can
independently issue pipelined memory
requests to the memory system. Up to eight
requests can be outstanding at any given
time. Scheduling for the microcode proces-
sor permits a thread to wake up, schedule a
new memory access based on the result of a
previous memory access, and go back to

47JANUARY–FEBRUARY 2002

SDRAM
interface

Microcode
processor

Direct memory
access engine Inputter

FIFO
queue

0

FIFO
queue

1

Memory
management unit

and translation
look-aside buffer

Table
walk

engine

Clock and
statistics
registers

Four-way
set-associative cache

PCI interface

Thread
processor

100 MHz
Data bus

66 MHz

64

64

72

64

28

10
10

200 MHz

32

Link
multiplexer

Figure 1. Elan functional units.

sleep in as few as two system clock cycles.
The four microcode threads are for

• the inputter, which handles input trans-
actions from the network;

• the DMA engine, which generates DMA
packets to write to the network, priori-
tizes outstanding DMAs, and time-slices
large DMAs to prevent adverse blocking
of small DMAs;

• processor scheduling, which prioritizes
and controls the thread processor’s sched-
uling and descheduling; and

• the command processing, which handles
requested operations (commands) from
the host processor at the user level.

The thread processor is a 32-bit RISC
processor that helps implement higher-level
messaging libraries without explicit interven-
tion from the main CPU. To better support
the implementation of high-level message-
passing libraries without the main CPU’s
explicit intervention, QsNet augments the
instruction set with extra instructions. These
extra instructions help construct network
packets, manipulate events, efficiently sched-
ule threads, and block save and restore a
thread’s state when scheduling.

The memory management unit (MMU)
translates 32-bit virtual addresses into either
28-bit local SDRAM physical addresses or 48-
bit peripheral component interconnect (PCI)
physical addresses. To translate these address-
es, the MMU contains a 16-entry, fully asso-
ciative, translation look-aside buffer, and a
small data path and state machine to perform
table walks to fill the translation look-aside
buffer and save trap information when the
MMU experiences a fault.

Elan contains routing tables that translate
every virtual processor number into a
sequence of tags that determine the network
route. The system software can load several
routing tables to provide different routing
strategies.

Elan has an 8-Kbyte memory cache (orga-
nized as four sets of 2 Kbytes) and a 64-Mbyte
SDRAM. The cache line size is 32 bytes. The
cache performs pipelined fills from SDRAM
and can issue multiple cache fills and write
backs for different units while still servicing
accesses for units that hit on the cache. The

SDRAM interface is 64 bits in length with
eight check bits added to provide error-
correcting code. The memory interface also
contains 32-byte write and read buffers.

The link logic transmits and receives data
from the network and generates 9 bits and a
clock signal on each half of the clock cycle.
Each link provides buffer space for two virtu-
al channels with a 128-entry, 16-bit FIFO
RAM for flow control.

Elite switch
Elite provides

• eight bidirectional links supporting two
virtual channels in each direction,

• an internal 16 × 8 full crossbar switch
(the crossbar has two input ports for each
input link to accommodate two virtual
channels),

• a nominal transmission bandwidth of
400 Mbytes/s in each link direction and
a flow-through latency of 35 ns,

• packet error detection and recovery with
cyclic-redundancy-check-protected rout-
ing and data transactions,

• two priority levels combined with an
aging mechanism to ensure fair delivery
of packets in the same priority level,

• hardware support for broadcasts, and
• adaptive routing.

QsNet connects Elite switches in a quaternary
fat-tree topology, which belongs to the more
general class of k-ary n-trees.9 A quaternary
fat tree of dimension n is composed of 4n pro-
cessing nodes and n × 4n−1 switches intercon-
nected as a delta network; it can be recursively
built by connecting four quaternary fat trees
of dimension n − 1. Figure 2 shows quater-
nary fat trees of dimensions 1, 2, and 3.

Packet routing. Elite networks are source rout-
ed. The Elan network interface, which resides
in the network node, attaches route informa-
tion to the packet header before injecting the
packet into the network. The route informa-
tion is a sequence of Elite link tags. As the
packet moves inside the network, each Elite
switch removes the first route tag from the
header and forwards the packet to the next
Elite switch in the route or to the final desti-
nation. The routing tag can identify either a

48

CLUSTERING TECHNOLOGY

IEEE MICRO

single output link or a group of links.
The Elan interface pipelines each packet

transmission into the network using wormhole
flow control. At the link level, the Elan inter-
face partitions each packet into smaller 16-bit
units called flow control digits or flits.10 Every
packet closes with an end-of-packet token, but
the source Elan normally only sends the end-of-
packet token after receipt of a packet acknowl-
edgment token. This process implies that every
packet transmission creates a virtual circuit
between source and destination.

Network nodes can send packets to multi-
ple destinations using the network’s broadcast
capability.11 For successful broadcast packet
delivery, the source node must receive a posi-
tive acknowledgment from all the broadcast
group recipients. All Elan interfaces connect-
ed to the network can receive the broadcast
packet but, if desired, the sender can limit the
broadcast set to a subset of physically con-
tiguous Elans.

Global virtual memory
Elan can transfer information directly

between the address spaces of groups of coop-
erating processes while maintaining hardware
protection between these process groups. This
capability—called virtual operation—is a sophis-
ticated extension to the conventional virtual
memory mechanism that is based on two con-
cepts: Elan virtual memory and Elan context.

Elan virtual memory. Elan contains an MMU
to translate the virtual memory addresses
issued by the various on-chip functional units
(thread processor, DMA engine, and so on)
into physical addresses. These physical mem-
ory addresses can refer to either Elan local
memory (SDRAM) or the node’s main mem-
ory. To support main memory accesses, the
configuration tables for the Elan MMU are
synchronized with the main processor’s MMU
tables so that Elan can access its virtual address
space. The system software is responsible for
MMU table synchronization and is invisible
to programmers.

The Elan MMU can translate between vir-
tual addresses in the main processor format
(for example, a 64-bit word, big-endian archi-
tecture, such as that of the AlphaServer) and
virtual addresses written in the Elan format (a
32-bit word, little-endian architecture). A

processor with a 32-bit architecture (for exam-
ple, an Intel Pentium) requires only one-to-
one mapping.

Figure 3 (next page) shows a 64-bit proces-
sor mapping. The 64-bit addresses starting at
0x1FF0C808000 are mapped to the Elan’s
32-bit addresses starting at 0xC808000.
This means that the main processor can
directly access virtual addresses in the range
0x1FF0C808000 to 0x1FFFFFFFFFF, and
Elan can access the same memory with
addresses in the 0xC808000 to 0xFFFFFFFF

49JANUARY–FEBRUARY 2002

(a)

(b)

(c)

Figure 2. Quaternary n-trees of dimensions 1 (a), 2 (b),
and 3 (c).

range. In our example, the user can allocate
main memory using malloc, and the
process heap can grow outside the region
directly accessible by the Elan, which is delim-
ited by 0x1FFFFFFFFFF. To avoid this prob-
lem, both the main and Elan memory can be
allocated using a consistent memory alloca-
tion mechanism.

As shown in Figure 3, the MMU tables can
map a common region of virtual memory
called the memory allocator heap. The alloca-
tor maps, on demand, physical pages—of
either main or Elan memory—into this virtu-
al address range. Thus, using allocation func-
tions provided by the Elan library, the user can
allocate portions of virtual memory either from
main or Elan memory, and the main processor
and Elan MMUs can be kept consistent.

For efficiency, programmers
can locate some objects—for
example, communication
buffers or DMA descriptors—
on the Elan memory. This
way, Elan can process them
independently of the main
processor.

Elan context. In a conven-
tional virtual-memory sys-
tem, each user process has an
assigned process identifica-
tion number that selects the
MMU table set and, there-
fore, the physical address
spaces accessible to the user
process. QsNet extends this
concept so that the user ad-
dress spaces in a parallel pro-
gram can intersect. Elan
replaces the process identifi-
cation number value with a
context value. User processes
can directly access an export-
ed segment of remote mem-
ory using a context value and
a virtual address. Further-
more, the context value also
determines which remote pro-
cesses can access the address
space via the Elan network
and where those processes
reside. If the user process is
multithreaded, the threads

will share the same context just as they share
the same main-memory address space. If the
node has multiple physical CPUs, then differ-
ent CPUs can execute the individual threads.
However, the threads will still share the same
context.

Network fault detection and fault tolerance
QsNet implements network fault detection

and tolerance in hardware. (It is important to
note that this fault detection and tolerance
occurs between two communicating Elans).
Under normal operation, the source Elan
transmits a packet (that is, route information
for source routing followed by one or more
transactions). When the receiver in the desti-
nation Elan receives a transaction with an
ACK Now flag, it means that this transaction

50

CLUSTERING TECHNOLOGY

IEEE MICRO

Main memory
ELAN SDRAM

Memory-
allocator heap

System
8000

C808000

System

Memoy-
allocator heap

Heap
Heap

BSS (block
started by symbol)

Data

Text

Stack

Main processor
virtual address space

BSS (block
started by symbol)

Data

Text

Stack

Elan virtual
address space

200 Mbytes

FFFFFFFF
1FFFFFFFFFF

1FF0C808000

100008000

10C808000

200 Mbytes

Figure 3. Virtual address translation. The dotted lines in the figure signify that a segment of
memory from one address space maps onto an equally sized segment of memory in anoth-
er address space.

is the last one for the packet. The destination
Elan then sends a packet acknowledgment
token back to the source Elan. Only when the
source Elan receives the packet acknowledg-
ment token does it send an end-of-packet
token to indicate the packet transfer’s com-
pletion. The fundamental rule of Elan net-
work operation is that for every packet sent
down a link, an Elan interface returns a single
packet-acknowledgment token. The network
will not reuse the link until the destination
Elan sends such a token.

If an Elan detects an error during a packet
transmission over QsNet, it immediately sends
an error message without waiting for a packet-
acknowledgment token. If an Elite detects an
error, it automatically transmits an error mes-
sage back to the source and the destination.
During this process, the source and destina-
tion Elans and the Elites between them isolate
the faulty link and/or switch via per-hop fault
detection;7 the source receives notification
about the faulty component and can retry the
packet transmission a default number of times.
If this is unsuccessful, the source can appro-
priately reconfigure its routing tables to avoid
the faulty component.

Programming libraries
Figure 4 shows the different programming

libraries for the Elan network interface. These
libraries trade off speed with machine indepen-
dence and programmability. The Elan3lib pro-
vides the lowest-level, user space programming
interface to the Elan3. At this level, processes in

a parallel job can communicate through an
abstraction of distributed, virtual, shared mem-
ory. Each process in a parallel job is allocated a
virtual process identification (VPID) number
and can map a portion of its address space into
an Elan. These address spaces, taken in combi-
nation, constitute a distributed, virtual, shared
memory. A combination of a VPID and a vir-
tual address can provide an address for remote
memory (that is, memory on another process-
ing node belonging to a process). The system
software and the Elan hardware use VPID to
locate the Elan context when they perform a
remote communication. Since Elan has its own
MMU, a process can select which part of its
address space should be visible across the net-
work, determine specific access rights (for exam-
ple, write or read only), and select the set of
potential communication partners.

Elanlib is a higher-level interface that releases
the programmer from the revision-dependent
details of Elan and extends Elan3lib with point-
to-point, tagged message-passing primitives
(called tagged message ports or Tports). Stan-
dard communication libraries such as that of
the MPI-2 standard12 or Cray Shmem are
implemented on top of Elanlib.

Elan3lib
The Elan3lib library supports a program-

ming environment where groups of cooper-
ating processes can transfer data directly, while
protecting process groups from each other in
hardware. The communication takes place at
the user level, with no copy, bypassing the

51JANUARY–FEBRUARY 2002

Elan kernel communicationsSystem callsKernel space

User space

Tagged
message port

(Tport)

Message Passing
Interface 2.0

(MPI-2)
Shmem

Elan3lib

Elanlib

User applications

Figure 4. Elan programming libraries.

operating system. The main features of
Elan3lib are the memory mapping and allo-
cation scheme (described previously), event
notification, and remote DMA transfers.

Events provide a general-purpose mecha-
nism for processes to synchronize their actions.
Threads running on Elan and processes run-
ning on the main processor can use this mech-
anism. Processes, threads, packets, and so on
can access events both locally and remotely. In
this way, intranetwork synchronization of
processes is possible, and events can indicate
the end of a communication operation, such
as the completion of a remote DMA. QsNet
stores events in Elan memory to guarantee
atomic execution of the synchronization prim-
itives. (The current PCI bus implementations
cannot guarantee atomic execution, so it is not
possible to store events in main memory.)
Processes can wait for an event to by triggered
by blocking, busy-waiting, or polling. In addi-
tion, processes can tag an event as block copy.
The block-copy mechanism works as follows:
A process can initialize a block of data in Elan
memory to hold a predefined value. An equiv-
alent-sized block is located in main memory,
and both blocks are in the user’s virtual address
space. When the specified event is set—for
example when a DMA transfer has complet-
ed—a block copy takes place. That is, the hard-
ware in the Elan—the DMA engine—copies
the block in Elan memory to the block in main
memory. The user process polls the block in
main memory to check its value (by, for exam-
ple, bringing a copy of the corresponding mem-
ory block into the level-two cache) without
polling for this information across the PCI bus.
When the value is the same as that initialized in
the source block, the process knows that the
specified event has occurred.

The Elan supports remote DMA transfers
across the network, without any copying,
buffering, or operating system intervention.
The process that initiates the DMA fills out a
DMA descriptor, which is typically allocated
on the Elan memory for efficiency. The DMA
descriptor contains source and destination
process VPIDs, the amount of data, source
and destination addresses, two event locations
(one for the source and the other for the des-
tination process), and other information that
enhances fault tolerance. Figure 5 outlines the
typical steps of remote DMA. The command

processor referred to in the figure is an Elan
microcode thread that processes user com-
mands; it is not a specific microprocessor.

Elanlib and Tports
Elanlib is a machine-independent library

that integrates the main features of Elan3lib
with Tports. Tports provide basic mechanisms
for point-to-point message passing. Senders can
label each message with a tag, sender identity,
and message size. This information is known
as the envelope. Receivers can receive their mes-
sages selectively, filtering them according to the
sender’s identity and/or a tag on the envelope.
The Tports layer handles communication via
shared memory for processes on the same node.
The Tports programming interface is very sim-
ilar to that of MPI.

Tports implement message sends (and
receives) with two distinct function calls: a non-
blocking send that posts and performs the mes-
sage communication, and a blocking send that
waits until the matching start send is complet-
ed, allowing implementation of different fla-
vors of higher-level communication primitives.

Tports can deliver messages synchronously
and asynchronously. They transfer synchronous
messages from sender to receiver with no inter-
mediate system buffering; the message does not
leave the sender until the receiver requests it.
QsNet copies asynchronous messages directly
to the receiver’s buffers if the receiver has
requested them. If the receiver has not request-
ed them, it copies asynchronous messages into
a system buffer at the destination.

Experiments
We tested QsNet’s main features on an

experimental cluster with 16 dual-processor,
symmetric multiprocessors (SMPs) equipped
with 733-MHz Pentium IIIs. Each SMP uses
a motherboard based on the Serverworks HE
chipset with a 1-Gbyte SDRAM and two 64-
bit, 66-MHz PCI slots (one of which is used
by the Elan PCI card QM-400). The inter-
connection network is a quaternary fat tree of
dimension two, composed of eight 8-port
Elite switches integrated on the same board.
We used the Linux 2.4.0-test7 operating sys-
tem during this evaluation.

To expose the basic performance of QsNet,
we wrote our benchmarks at the Elan3lib
level. We also briefly analyzed the overhead

52

CLUSTERING TECHNOLOGY

IEEE MICRO

introduced by Elanlib and an implementa-
tion of MPI-2 (based on a port of MPI-CH
onto Elanlib).

To identify different bottlenecks, we placed
the communication buffers for our unidirec-
tional and bidirectional ping tests either in main

53JANUARY–FEBRUARY 2002

User
process

Direct
memory
access
engine

Inputter

Table
walk

engine

Memory
management

unit

Command
processor

User
process

Source

Direct
memory
access
engine

Inputter

Table
walk

engine

Memory
management

unit

Command
processor

Destination

DMA
descriptor

Event

Event

Event

Event

Elan SDRAM

Elan SDRAM

(1)

(2)

(6)

(9)

(11)

(12)

(13)

(8)

(7)
(5)

(3) (4)

(10)

Figure 5. Execution of a remote DMA. The sending process initializes the DMA descriptor in the Elan memo-
ry (1) and communicates the address of the DMA descriptor to the command processor (2). The command
processor checks the correctness of the DMA descriptor (3) and adds it to the DMA queue (4). The DMA
engine performs the remote DMA transaction (5). Upon transaction completion, the remote inputter notifies
the DMA engine (6), which sends an acknowledgment to the source Elan’s inputter (7). The inputters or the
hardware in the Elan can notify source (8, 9, 10) and destination (11, 12, 13) events, if needed.

or Elan memory. The communication alterna-
tives between memories include main to main,
Elan to Elan, Elan to main, and main to Elan.

Unidirectional ping
Figure 6a shows the results for the unidi-

rectional ping. The asymptotic bandwidth for

all communication libraries
and buffer mappings lies in a
narrow range from 307
Mbytes/s for MPI to 335
Mbytes/s for Elan3lib. The
results also show a small
performance asymmetry be-
tween read and write per-
formance on the PCI bus.
With Elan3lib, the read and
write bandwidths are 321 and
317 Mbytes/s. The system
reaches a peak bandwidth of
335 Mbytes/s when we place
both source and destination
buffers in Elan memory.

We can logically organize
the graphs in Figure 6a into
three groups: those relative to
Elan3lib with the source buffer
in Elan memory, Elan3lib with
the source buffer in main
memory, and Tports and MPI.
In the first group, the latency
is low for small and medium-
sized messages. This basic
latency increases in the second
group because of the extra
delay to cross the source PCI
bus. Finally, both Tports and
MPI use the thread processor
to perform tag matching, and
this further increases the over-
head.

Figure 6b shows the laten-
cy of messages in the range 0
to 4 Kbytes. With Elan3lib,
the latency for 0-byte mes-
sages is only 1.9 µs and is
almost constant at 2.4 µs for
messages up to 64 bytes,
because the Elan interface can
pack these messages as a sin-
gle write block transaction.
The latency at the Tports and
MPI levels increases to 4.4

and 5.0 µs. At the Elan3lib level, latency is
mostly at the hardware level, whereas with
Tports, system software runs as a thread in the
Elan to match the message tags. This intro-
duces the extra overhead responsible for the
higher latency value. The noise at 256 bytes,
shown in Figure 6b, is due to the message

54

CLUSTERING TECHNOLOGY

IEEE MICRO

0

50

100

150

200

250

300

350

1 4 16 64 256 1 K 4 K 16 K 64 K 256 K 1 M 4 M

B
an

dw
id

th
 (

M
by

te
s

/s
)

Message size (bytes)

Unidirectional ping bandwidth

MPI
Tport, Elan to Elan
Tport, main to Elan
Tport, Elan to main
Tport, main to main
Elan3, Elan to Elan
Elan3, main to Elan
Elan3, Elan to main
Elan3, main to main

(a)

(b)

0

2

4

6

8

10

12

14

16

18

0 1 4 16 64 256 1 K 4 K

La
te

nc
y

(
 s

)
µ

Message size (bytes)

Unidirectional ping latency

MPI
Tport, main to main
Elan3, main to main

Figure 6. Unidirectional pings: bandwidth (a) and latency (b).

transmission policy. Elan
inlines messages smaller than
288 bytes together with the
message envelope so that they
are immediately available
when a receiver requests
them. It always sends larger
messages synchronously, and
only after the receiver has
posted a matching request.

Bidirectional ping
Figure 7a shows that full

network bidirectionality can-
not be achieved in practice.
The maximum unidirection-
al value, obtained as half of
the measured bidirectional
traffic, is approximately 280
Mbytes/s, whereas, in the uni-
directional case, it was 335
Mbytes/s. This gap in band-
width exposes bottlenecks in
the network and in the net-
work interface. DMA engine
interleaving with the input-
ter, the sharing of the Elan’s
internal data bus, and link-
level interference in the Elite
network cause this perfor-
mance degradation. Counter-
intuitively, this 280 Mbytes/s
value occurs when the source
buffer is in main memory and
the destination buffer is in
Elan memory, rather than
when both buffers are in Elan
memory. In this case, the Elan
memory is the bottleneck.
The bidirectional bandwidth
for main memory to main
memory traffic is 160 Mbytes/s
for all libraries. Figure 7b shows
how bidirectional traffic affects
latency with Elan3lib, Tports,
and MPI.

Hotspot
A hotspot is a single memory location that

processors access repeatedly. To measure
QsNet’s vulnerability to such hotspots, we
read from and write to the same memory loca-
tion from an increasing number of processors

(one per SMP). Figure 8 (next page) plots
bandwidth for increasing numbers of SMPs.
The upper curve of this figure shows the
aggregate global bandwidth for all processes.
The curves are remarkably flat, reaching 314
and 307 Mbytes/s for read and write hotspots.
The lower curves show the per-SMP band-

55JANUARY–FEBRUARY 2002

0

50

100

150

200

250

300

1 4 16 64 256 1 K 4 K 16 K 64 K 256 K 1 M 4 M

B
an

dw
id

th
 (

M
by

te
s/

s)

Message size (bytes)

Bidirectional ping bandwidth

MPI
Tport, Elan to Elan
Tport, main to Elan
Tport, Elan to main
Tport, main to main
Elan3, Elan to Elan
Elan3, main to Elan
Elan3, Elan to main
Elan3, main to main

(a)

(b)

MPI
Tport, main to main
Elan3, main to main

0

5

10

15

20

25

30

0 1 4 16 64 256 1 K 4 K

La
te

nc
y

(µ
 s

)

Message size (bytes)

Bidirectional ping latency

Figure 7. Bidirectional pings:bandwidth (a) and latency (b).

width. The scalability of this type of memo-
ry operation is very good, up to the available
number of processors in our cluster.

Our analysis shows that in all components
of the performance space we analyzed,

the network and its libraries deliver excellent
performance to users. Future work includes
scalability analysis for larger configurations,
performance testing of a larger subset of col-
lective communication patterns, and perfor-
mance analysis for scientific applications. MICRO

Acknowledgments
We thank the Quadrics team—David

Addison, Jon Beecroft, Robin Crook, Moray
McLaren, David Hewson, Duncan Roweth,
and John Taylor—for their generous support.
This work was supported by the US Depart-
ment of Energy through Los Alamos Nation-
al Laboratory contract W-7405-ENG-36.

References
1. R. Seifert, Gigabit Ethernet: Technology and

Applications for High Speed LANs, Addison
Wesley, Reading, Mass., 1998.

2. W. Vogels et al., “Tree-Saturation Control in
the AC3 Velocity Cluster,” Hot Interconnects
8, Aug. 2000; http://www.cs.cornell.edu/

vogels/clusters/ac3/hoti_files/frame.htm
(current Dec. 2001).

3. H. Hellwagner, “The SCI Standard and
Applications of SCI,” SCI: Scalable Coherent
Interface, Lecture Notes in Computer
Science, vol. 1291, H. Hellwagner and A.
Reinfeld, eds., Springer-Verlag, Heidelberg,
Germany, 1999, pp. 95-116.

4. N.J. Boden et al., “Myrinet: A Gigabit-per-
Second Local Area Network,” IEEE Micro,
vol. 15, no. 1, Jan. 1995, pp. 29-36.

5. D. Tolmie et al., “HiPPI-800 to HiPPI-6400: A
Changing of the Guard and Gateway to the
Future,” Proc. 6th Int’l Conf. Parallel
Interconnects (PI), IEEE CS Press, Los
Alamitos, Calif., 1999, pp. 194-201.

6. D. Cassiday, “InfiniBand Architecture
Tutorial,” Hot Chips 12, Aug. 2000; http://
www.cs.cf.ac.uk/Igds/distagen/infiniband.
pdf (current Dec. 2001).

7. Elan Programming Manual, Quadrics Super-
computers World Ltd., Bristol, England, UK,
Jan. 1999; http://www.cineca.it/manuali/
QSW/docs/html/ElanProgMan/ElanProgMan.
html.

8. C.E. Leiserson, “Fat-Trees: Universal Net-
works for Hardware Efficient Super-
computing,” IEEE Trans. Computers, vol.
C-34, no. 10, Oct. 1985, pp. 892-901.

56

CLUSTERING TECHNOLOGY

IEEE MICRO

0

50

100

150

200

250

300

350

2 3 4 5 6 7 8

B
an

dw
id

th
 (

M
by

te
s/

s)

Number of symmetric multiprocessors

Global read
Global write
Per-SMP read
Per-SMP write

Figure 8. Bandwidth variation for read and write hotspots.

9. F. Petrini and M. Vanneschi, “Performance
Analysis of Wormhole Routed k-ary n-Trees,”
Int’l J. Foundations Computer Science, vol.
9, no. 2, June 1998, pp. 157-177.

10. W.J. Dally and C.L. Seitz, “Deadlock-Free
Message Routing in Multiprocessor
Interconnection Networks,” IEEE Trans.
Computers, vol. C-36, no. 5, May 1987, pp.
547-553.

11. F. Petrini et al., “Hardware- and Software-
Based Collective Communication on the
Quadrics Network,” Proc. IEEE Int’l Symp.
Network Computing and Applications (NCA),
IEEE Press, Piscataway, N.J., 2001, pp. 24-
35.

12. W. Gropp et al., MPI—The Complete
Reference, Volume 2, The MPI Extensions,
MIT Press, Cambridge, Mass., 1998.

Fabrizio Petrini is a member of the Modeling,
Algorithms, and Informatics Group (CCS-3)
of the Los Alamos National Laboratory. His
research interests include high-performance
interconnection networks and network inter-
faces, job scheduling algorithms, simulation
of parallel architectures, and operating systems.
Petrini received a Laurea and a PhD in com-
puter science, from the University of Pisa, Italy.
He is a recipient of the European Communi-
ty Marie Curie Research Fellowship. He is a
member of the IEEE Computer Society.

Wu-chun Feng is a technical staff member
and team leader of Research and Develop-
ment in Advanced Network Technology
(Radiant) at Los Alamos National Laborato-
ry. His research interests include high-perfor-
mance networking, network protocols and
architecture, and cybersecurity. Feng has a BS
in computer engineering and music and an
MS in computer engineering from Penn State
University and a PhD in computer science
from the University of Illinois at Urbana-
Champaign. He is a member of the IEEE and
the ACM.

Adolfy Hoisie is a staff scientist and the Leader
of the Modeling, Algorithms and Informatics
Group in the Computer and Computational
Sciences Division at the Los Alamos National
Laboratory. His research interests include per-
formance analysis and modeling, distributed
computing, and parallel computer architec-
tures. He is a member of the IEEE.

Salvador Coll is a faculty member in electronic
engineering at the Technical University of
Valencia, Spain. His research interests include
multicomputer systems and interconnection
networks, with a special interest in routing
algorithms and collective communications.
Coll has a BS in electronic engineering and an
MS in computer science from the Technical
University of Valencia. He is member of the
Spanish Academy of Engineering.

Eitan Frachtenberg is a research assistant at Los
Alamos National Laboratory and a graduate
student at Hebrew University of Jerusalem,
Israel. His research interests include operating
systems, networks, and data compression.
Frachtenberg has an MS in computer science
and mathematics from the Hebrew University
of Jerusalem. He is a member of the IEEE.

Direct questions and comments about this
article to Fabrizio Petrini, Computer and Com-
putational Sciences Division, Modeling, Algo-
rithms, and Informatics (CCS-3), MS B256,
Los Alamos National Laboratory, Los Alamos,
NM 87545; fabrizio@lanl.gov. For additional
information and related publications on the
Quadrics network, please visit http://
www.c3.lanl.gov/~fabrizio/quadrics.html.

For further information on this or any other
computing topic, visit our Digital Library at
http://computer.org/publications/dlib.

57JANUARY–FEBRUARY 2002

