
The Raw microprocessor consumes
122 million transistors; executes 16 different
load, store, integer, or floating-point instruc-
tions every cycle; controls 25 Gbytes/s of
input/output (I/O) bandwidth; and has 2
Mbytes of on-chip distributed L1 static RAM
providing on-chip memory bandwidth of 57
Gbytes/s. Is this the latest billion-dollar, 3,000
man-year processor effort? In fact, it took only
a handful of graduate students at the Labora-
tory for Computer Science at MIT to design
and implement Raw.

Our research addresses a key technological
problem for microprocessor architects: How
to leverage growing quantities of chip resources
even as wire delays become substantial.

The Raw research prototype uses a scalable
instruction set architecture (ISA) to attack the
emerging wire-delay problem by providing a
parallel, software interface to the gate, wire, and
pin resources of the chip. An architecture that
has direct, first-class analogs to all of these phys-
ical resources will ultimately let programmers
achieve the maximum amount of performance

and energy efficiency in the face of wire delay.
Existing architectural abstractions, such as
interrupts, caches, context switches, and virtu-
alization can continue to be supported in this
environment, even as a new low-latency com-
munication mechanism—the static network—
enables new application domains.

Technology trends
Until recently, the abstraction of a wire as an

instantaneous connection between transistors
has shaped assumptions and architectural
designs. In an interesting twist, just as the
clock frequency of processors has risen expo-
nentially over the years, the fraction of the
chip that is reachable by a signal in a single
clock cycle has decreased exponentially.1

Thus, the idealized wire abstraction is becom-
ing less and less representative of reality. Archi-
tects now need to explicitly account for wire
delay in their designs.

Today, it takes on the order of two clock
cycles for a signal to travel from edge-to-edge
(roughly fifteen mm) of a 2-GHz processor

Michael Bedford Taylor
Jason Kim

Jason Miller
David Wentzlaff

Fae Ghodrat
Ben Greenwald
Henry Hoffman

Paul Johnson
Jae-Wook Lee

Walter Lee
Albert Ma

Arvind Saraf
Mark Seneski

Nathan Shnidman
Volker Strumpen

Matt Frank
Saman Amarasinghe

Anant Agarwal
Massachusetts Institute of Technology

WIRE DELAY IS EMERGING AS THE NATURAL LIMITER TO MICROPROCESSOR

SCALABILITY. A NEW ARCHITECTURAL APPROACH COULD SOLVE THIS

PROBLEM, AS WELL AS DELIVER UNPRECEDENTED PERFORMANCE, ENERGY

EFFICIENCY, AND COST EFFECTIVENESS.

THE RAW MICROPROCESSOR:
A COMPUTATIONAL FABRIC FOR

SOFTWARE CIRCUITS AND
GENERAL-PURPOSE PROGRAMS

250272-1732/02/$17.00  2002 IEEE

die. Processor manufacturers have strived to
maintain high clock rates in spite of the
increased impact of wire delay. Their innova-
tion has been at many levels. The transition
from aluminum to copper wires has reduced
the resistance and thus the resistance-capaci-
tance delay of the wires. Process engineers
have also altered the aspect ratio of the wires
to reduce resistance. Finally, the introduction
of low-k dielectrics will provide a one-time
improvement in wire delay.

Unfortunately, materials and process changes
have not been sufficient to solve the problem.
Forced to worry about wire delays, designers
place the logic elements of their processors very
carefully, minimizing the distance between

communicating transistors on
critical paths. In the past, pre-
cious silicon area dictated logic
reuse, but designers now freely
duplicate logic to reduce wire
lengths—for example, the
adders in the load/store unit
and in the arithmetic logic
unit (ALU).

Even microarchitects are
making concessions to wire
delay. The architects of Com-
paq’s Alpha 21264 were
forced to split the integer unit
into two physically dispersed
clusters, with a one-cycle
penalty for communication
of results between clusters.
More recently, the Intel Pen-
tium 4 architects had to allo-
cate two pipeline stages solely
for the traversal of long wires.

The wire delay problem
will only get worse. In the
arena of 10-GHz processors,
designers will experience
latencies of 10 cycles or more
across a processor die. It will
become increasingly more
challenging for existing
architectures to turn chip
resources into higher perfor-
mance. See the “An evolu-
tionary response for current
instruction set architectures”
sidebar for how we think
existing architectures will

attempt to overcome this challenge.

The Raw microprocessor
We designed Raw2 to use a scalable ISA that

provides a parallel software interface to the
gate, wire, and pin resources of a chip. An
architecture with direct, first-class analogs to
all of these physical resources lets program-
mers extract the maximum amount of per-
formance and energy efficiency in the face of
wire delay. In effect, we try to minimize the
ISA gap by exposing the underlying physical
resources as architectural entities.

The Raw processor design divides the
usable silicon area into 16 identical, pro-
grammable tiles. Each tile contains

26

MICROARCHITECTURE

IEEE MICRO

An evolutionary response for current instruction set architectures
Figure A shows how we believe today’s microarchitectures will adapt as effective silicon area and pin

resources increase and as wire delay worsens. Designers will want to utilize the increased silicon resources,
while maintaining high clock rates. We envision a high-frequency execution core, containing several nearby
clustered ALUs, with speculative control guessing to which ALU cluster to issue. Around this core is a host of
pipelined floating-point units (which are less latency sensitive), prefetch engines, multilevel cache hierarchies,
speculative control, and other out-of-band logic that’s focused on making the tiny execution core run as efficiently
and as fast as possible. In addition, since most conventional instruction set architectures (ISAs) do not have an
architectural analog to pins, most pins will be allocated to wide, external-memory interfaces that are opaque
to the software.

The ISA gap between software-usable processing resources and the actual amount of underlying physical
resources is going to steadily increase in these future designs. Even today, it is easy to tell that the percentage
of silicon performing actual com-
putation has dropped quadratical-
ly over time. The Compaq Alpha
21464 design—an eight-way issue
superscalar—is in excess of 27
times as large as the original two-
way issue 21064. The area of the
management logic dwarfs the area
occupied by the ALUs, and system
performance is getting increasing-
ly nondeterministic and sensitive
to the particulars of the program
implementation. Intel, for instance,
has produced hundreds of pages
that suggest methods of improving
system performance by avoiding
stall conditions in the Pentium 4
microarchitecture. Furthermore, the
power consumption, as well as
design and verification costs, of
these increasingly complex archi-
tectures is skyrocketing.

L1

L2

L3

DRAM
(L4)

Floating-
point units

One cycle wire Arithmetic logic unitsExecution core

Speculative
and out-

of-band control
logic

Figure A. How today’s microarchitectures might adapt to
worsening wire delay as effective silicon area and pin
resources increase.

• one static communication router;
• two dynamic communication routers;
• an eight-stage, in-order, single-issue,

MIPS-style processor;
• a four-stage, pipelined, floating-point

unit;
• a 32-Kbyte data cache; and
• 96 Kbytes of software-managed instruc-

tion cache.

We sized each tile so that the time for a signal
to travel through a small amount of logic and
across the tile is one clock cycle. Future Raw
processors will have hundreds or perhaps
thousands of tiles.

The tiles interconnect using four 32-bit
full-duplex on-chip networks, consisting of
over 12,500 wires, as Figure 1 shows. Two net-
works are static (routes specified at compile
time) and two are dynamic (routes specified at
runtime). Each tile only connects to its four
neighbors. Every wire is registered at the input
to its destination tile. This means that the
length of the longest wire in the system is no
greater than the length or width of a tile. This
property ensures high clock speeds, and the
continued scalability of the architecture.

The Raw ISA exposes these on-chip net-

works to the software, enabling the program-
mer or compiler to directly program the
wiring resources of the processor and to care-
fully orchestrate the transfer of data values
between the computational portions of the
tiles—much like the routing in a full-custom
application specific integrated circuit (ASIC).
Effectively, the wire delay manifests itself to
the user as network hops. It takes six hops for
a data value to travel from corner to corner of
the processor, corresponding to approximate-
ly six cycles of wire delay.

On the edges of the network, the network
buses are multiplexed in hardware down onto
the pins of the chip using logical channels,3 as
Figure 2 (next page) shows. To toggle a pin,
the user programs the on-chip network to
route a data value off the side of the array.
Our 1,657 pin, ceramic-column grid-array
package provides 14 full-duplex, 32-bit, 7.5-
Gbps I/O ports at 225 MHz, for a total of 25
Gbytes/s of bandwidth. The design does not
require this many pins; rather, we use this
number to illustrate that no matter how
many pins a package has (100 or 10,000),
Raw’s scalable architectural mechanism lets
the programmer put them to good use. Fewer
pins merely require more multiplexing. Alter-

27MARCH–APRIL 2002

Compute
resources

Programmable
routers

(a)

(b)

32-bit
full duplex

network link

Figure 1. On-chip interconnects in Raw. The Raw microprocessor comprises 16 tiles (a).
Each tile (b) has computational resources and four networks, each with eight point-to-point
32-bit buses to neighbor tiles.

nately, a small pin-count package can be sup-
ported by bonding out only a subset of the
ports.

The Raw I/O port is a high-speed, simple (a
three-way multiplexed I/O port has 32 data
and five control pins for each direction), and
flexible word-oriented abstraction that lets sys-
tem designers proportion the quantities of I/O
devices according to the application domain’s
needs. Memory intensive domains can have up
to 14 dedicated interfaces to DRAM. Other
applications may not have external memory—

a single ROM hooked up to
any I/O port is sufficient to
boot Raw so that it can exe-
cute out of the on-chip mem-
ory. In addition to transferring
data directly to the tiles, off-
chip devices connected to Raw
I/O ports can route through
the on-chip networks to other
devices to perform direct
memory accesses (DMAs). We
plan to hook up arrays of high-
speed data input devices,
including wide-word analog-
to-digital converters, to exper-
iment with Raw in domains
that are I/O, communication,
and compute intensive.

Architectural entities
The conventional ISA has

enjoyed enormous success
because it hides the details of
the underlying implementa-

tion behind a well-defined compatibility layer
that matches the underlying implementation
substrate fairly well. Much as the existence of
a physical multiplier in a processor merits the
addition of a corresponding architectural enti-
ty (the multiply instruction), the prominence
of gate resources, wire delay, and pins will
soon merit the addition of corresponding
architectural entities. Furthermore, we expose
these entities in a way that will allow subse-
quent generations of Raw processors to be
backward compatible.

Table 1 contrasts how the Raw ISA and
conventional ISAs expose gates, wire delay,
and pins to the programmer. Because the Raw
ISA has interfaces that are more direct, Raw
processors will have more functional units, as
well as more flexible and more efficient pin
utilization. High-end Raw processors are like-
ly to have more pins, because the architecture
is better at turning pin count into perfor-
mance and functionality. Finally, Raw proces-
sors will be more predictable and have higher
clock frequencies because of the explicit expo-
sure of wire delay.

This exposure makes Raw scalable. Creat-
ing subsequent, more powerful, generations
of the processor is straightforward; we simply
stamp out as many tiles and I/O ports as the

IEEE MICRO

Table 1. How Raw converts physical resources

into architectural entities.*

Physical entity Raw ISA analog Conventional ISA analog

Gates Tiles, new instructions New instructions
Wire delay Network hops None
Pins I/O ports None

*Conventional ISAs attempt to utilize increasing gate quantities through the

addition of new instructions (like parallel SIMD instructions) and through

dynamic mapping of operations to a small number of architecturally invisible

ALUs. Wire delay is typically hidden through pipelining and speculation, and

is reflected to the user in the form of dynamic stalls for non-fast-path and

mispredicted code. Pin bandwidth is hidden behind speculative cache-miss

hardware prefetching and large line sizes.

28

MICROARCHITECTURE

PCI-X

PCI-X

D
R

A
M

D
R

A
M

D
R

A
M

DRAM

DRAM

DRAM

DRAM

Raw I/O ports
7.5 Gbps channels
(14 total)

Raw
chipset

Multiplexing of
networks down

onto pins via
logical channels

High-speed
input device

Wide-word analog-
to-digital converter

Figure 2: Pin multiplexing and device usage in Raw.

silicon die and package allow.
The design has no centralized
resources, global buses, or
structures that get larger as
the tile or pin count increas-
es. Finally, wire length, design
complexity, and verification
complexity are all indepen-
dent of transistor count.

Application domains
The Raw microprocessor

runs computations that form
a superset of those run on
today’s general-purpose pro-
cessors. Our goal is to run not
just conventional scalar codes
(for example, Specint and
Specfp), but word-level com-
putations that require so much
performance that they have been consigned to
custom ASIC implementations. If an applica-
tion can take advantage of the customized
placement and routing, the ample gates, and
the programmable pin resources available in an
ASIC process, it should also benefit from the
architectural versions of those same resources
in the Raw microprocessor. For instance, our
first-cut, untuned implementation of a soft-
ware Gigabit Internet protocol router on a 225-
MHz, 16-tile Raw processor runs more than
fives times faster than a hand-tuned imple-
mentation on a 700-MHz Pentium III proces-
sor. Additionally, an implementation of video
median filter on 128 tiles attained a 57-time
speedup over a single Raw tile.

Unlike an ASIC, however, applications for
Raw can be written in a high-level language
such as C or Java, or new languages such as
StreamIt,4 and the compilation process takes
minutes, not months. We call applications
that leverage the Raw static network’s ASIC-
like place-and-route facility software circuits.
Sample software circuits we are experimenting
with include gigabit routers, video and audio
processing, filters and modems, I/O protocols
(RAID, SCSI, FireWire) and communica-
tions protocols (for cellular phones, multiple
channel cellular base stations, high-definition
TV, Bluetooth, and IEEE 802.11a and b).
These protocols could run as dedicated
embedded hosts, or as a process on a general-
purpose machine.

Application mapping
The Raw operating system allows both space

and time multiplexing of processes. Thus, not
only can a Raw processor run multiple inde-
pendent processes simultaneously, it can con-
text switch them in and out as on a conventional
processor. The operating system allocates a rec-
tangular-shaped number of tiles (correspond-
ing to physical threads that can themselves be
virtualized) proportional to the amount of com-
putation that is required by that process. When
the operating system context-switches in a given
process, it finds a contiguous region of tiles that
corresponds to the dimension of the process,
and resumes the execution of the physical
threads. We employ this gang scheduling poli-
cy because the physical threads of the process
are likely to communicate with each other. Con-
tinuous or real-time applications can be locked
down and will not be context-switched out.

Figure 3 shows a Raw processor running
multiple processes simultaneously. Tradition-
al applications, including threaded Java pro-
grams, message passing interface (MPI) codes,
and server applications, use Raw as a high-
density multiprocessor. The corner tile is in
sleep mode to save power. The four-tile block
is running an automatically parallelized5 scalar
code. The top eight tiles in Figure 3 illustrate
the more novel software circuit usage of the
tiles. Video data is streamed in over the pins,
transformed by a filtering operation, and then
streamed out to a frame buffer and screen. In

29MARCH–APRIL 2002

httpd

Custom
data path
pipeline

Frame buffer
and screen

Zzzz…

Four-way
parallelized
scalar code

Two-way threaded
Java program

Video
data

stream

Memory and functional units

Figure 3. Application mapping onto a Raw microprocessor.

this situation, the tiles work together, paral-
lelizing the computation. We assign opera-
tions to tiles in a manner that minimizes
congestion and then configure the network
routes between these operations. This is very
much like the process of designing a cus-
tomized hardware circuit. In Raw, the com-
piler performs this customization.4,5 This
customization can also be done manually
using Raw’s assembly code.

To make both parallelized scalar codes and
software circuits work, we need a very low-
latency network—the faster the network, the
greater the range of applications that can be
parallelized. Multiprocessor networks designed
for MPI programs have latencies on the order
of 1,000 cycles; state-of-the-art networks have
latencies of 30 cycles.6 The Raw network can
route the output of the ALU on one tile to the
input of the ALU of a neighboring tile in three
cycles.

Design decisions
The Raw tile design crystallized around the

need to provide low-latency communication
for efficient execution of software circuits and
parallel, scalar codes. At the same time, we
wanted to provide scalable versions of the
standard toolbox of useful architectural con-

structs, such as data and
instruction virtualization,
caching, interrupts, context
switches, address spaces,
latency tolerance, and event
counting. To achieve these
goals, a Raw tile employs its
compute processor, static
router, and dynamic routers.
The static router manages the
two static networks, which
provide the low-latency com-
munication required for soft-
ware circuits and other
applications with compile-
time predictable communica-
tion. The dynamic routers
manage the dynamic net-
works, which transport
unpredictable operations like
interrupts, cache misses, and
compile-time unpredictable
communication (for example,
messages) between tiles.

Compute processor
Our focus in designing the compute proces-

sor was to tightly integrate coupled network
interfaces into the processor pipelines. We
wanted to make the network first class in every
sense to maximize its utility. The most com-
mon network interfaces are memory mapped;
other networks use special instructions for
sending and receiving.6,7 The most aggressive
processor networks are register mapped and
do not require a special send or receive com-
mand; instructions can target the networks
just as easily as registers.3

Our design takes network integration one
step further: The networks are not only regis-
ter mapped but also integrated directly into
the bypass paths of the processor pipeline.
This makes the network ports truly first-class
citizens in the architecture. Figure 4 shows
how this works. Registers 24 through 27 are
mapped to the four on-chip physical net-
works. For example, a read from register 24
will pull an element from an input FIFO
buffer, while a write to register 24 will send
the data word out onto that network. If data
is not available on an input FIFO buffer, or if
an output FIFO buffer does not have enough
room to hold a result, the processor will stall

IEEE MICRO

IF RFD
A TL

M1 M2

F P

E

U

TV

F4 WB

r26

r27

r25

r24

Network
input
FIFO buffers

r26

r27

r25

r24

Network
output
FIFO buffers

Ex: lb r25, 0x341(r26)

IF
D

RF
E

M1

M2
A

TL
TV

WB

Instruction fetch
Instruction decode
Register fetch
Execute
Multiply 1

F, P, U, F4 Four stages of the floating-point unit

Multiply 2
Address
Tag lookup
Tag verify
Write-back stage

Figure 4. Raw compute processor pipeline.

30

MICROARCHITECTURE

in the register fetch stage. The instruction for-
mat also provides a single bit in the instruc-
tion, which allows the instruction to specify
two output destinations: one network or reg-
ister, and the network implied by register 24
(the first static network). This gives the tile
the option of keeping local copies of trans-
mitted values.

Each output FIFO buffer connects to each
pipeline stage. The FIFO buffers pull the old-
est value out of the pipeline as soon as it is
ready, rather than just at the write-back stage
or through the register file.3 This decreases the
latency of an ALU-to-network instruction by
as much as four cycles for our eight-stage
pipeline. This logic is exactly like the standard
bypass logic of a processor pipeline except that
it gives priority to older instructions rather
than newer instructions.

In early processor designs, the register file
was the central communication mechanism
between functional units. Starting with the
first pipelined processors, the bypass network
became largely responsible for the communi-
cation of active values, and the register file
evolved into a dumping ground or check-
pointing facility for inactive values. The Raw
networks (the static networks in particular)
extend this trend and are in essence 2D bypass
networks serving as bridges between the
bypass networks of separate tiles. The low
latency of in-order, intertile ALU-to-ALU
operand delivery distinguishes Raw from pre-
vious systolic or message-passing systems.3,6,7

The integration of networks into the pipelined
bypass path of the compute processor reflects
our view that scalar data transport among
functional units on adjacent tiles is as impor-
tant as that which occurs among functional
units within a single tile. The resulting low
latency of intertile communication allows the
Raw static network to perform customized
scalar data routing with ASIC-like latencies.

The early bypassing of values to the net-
work has some challenging effects on pipeline
operation. Perhaps most importantly, it
changes the semantics of the compute proces-
sor’s commit point. An instruction that has
had a value bypassed out early has created a
side effect, which makes it difficult to squash
the instruction in a later stage. The simplest
solution we have found for this is to place the
commit point at the execute stage.

Static router
For software circuits and parallel scalar

codes, we use the two static networks to route
values between tiles. The static networks pro-
vide ordered, flow-controlled, and reliable
transfer of single-word operands and data
streams between the tiles’ functional units.
The operands need to be delivered in order so
that the instructions issued by the tiles are
operating on the correct data. Flow control of
operands allows the program to remain cor-
rect in the face of unpredictable architectural
events such as cache misses and interrupts.

The static router is a five-stage pipeline that
controls two routing crossbars and thus two
physical networks. Each crossbar routes values
between seven entities—the static router
pipeline; the north, east, south, and west neigh-
bor tiles; the compute processor; and the other
crossbar. The static router uses the same fetch
unit design as the compute processor, except it
fetches a 64-bit instruction word from the
8,096-entry instruction memory. This instruc-
tion simultaneously encodes a small command
(conditional branches with or without decre-
ment, and accesses to a small register file) and 13
routes (one for each unique crossbar output) for
a total of 14 operations per cycle per tile.

For each word sent between tiles on the sta-
tic network, there must exist a corresponding
instruction in the instruction memory of each
router on the word’s path. These instructions
are typically programmed at compile time and
are cached just like the instructions of the com-
pute processor. Thus, the static routers collec-
tively reconfigure the entire communication
pattern of the network on a cycle-by-cycle
basis. Further, because the router program
memory is large and also cached, there is no
practical architectural limit on the number of
simultaneous communication patterns sup-
ported in a computation. In this manner, the
communication and compute operations are
treated with equal importance. This mecha-
nism distinguishes Raw’s network from previ-
ous systems such as iWarp or Numesh.3,8

Because the static router knows what route
will be performed long before the word
arrives, route preparations can be pipelined.
This allows data word routing immediately
upon the word’s arrival. This low latency is
critical for exploiting instruction-level paral-
lelism in scalar codes. Dynamic routers have

31MARCH–APRIL 2002

more latency than the static router (despite
the same bandwidth) because they have to
wait for a header word to arrive before they
can initiate preparations for a route. Thus,
dynamic networks are better suited for long
data streams and not scalar transport.

The static router is flow-controlled, and it
proceeds to the next instruction only after all of
the routes in a particular instruction are com-
pleted. This ensures that destination tiles receive
incoming words in a known order, even when
tiles suffer branch mispredicts, cache misses,
interrupts, or other unpredictable events.

The static router provides single-cycle-per-
hop latencies and can route two values in each
direction per cycle. Figure 5 shows two tiles
communicating across the static network. The
word computed by the floating-point multi-
ply instruction spends one cycle in each stat-
ic router and one cycle in the decode stage of
the target tile. This gives a total latency of
three cycles for a word to travel from the out-
put of the ALU of one tile to the input of the
ALU of the next tile. Unlike this example,
actual Raw programs have more random and
dense communication patterns, which reflect
the internal flow of data between operations
in the original high-level language source.

The dynamic networks
Early on in the Raw project, we realized the

need to support dynamic as well as static events.
We thus added a pair of dimension-ordered,
wormhole-routed dynamic networks to the
architecture.9 To send a message on one of these
networks, the user injects a single header word
that specifies the destination tile (or I/O port),
a user field, and the length of the message. The
user then sends up to 31 data words. While this

is happening, the message worms its way
through the network to the destination tile.
Our implementation of this network takes one
cycle per hop, plus an extra cycle for every hop
that turns. (We use an optimization that
exploits the fact that most routes are straight.)
On an uncongested network, the header reach-
es the destination in 2 + X + 1 + Y + 2 cycles.
That is, two cycles of latency to leave the com-
pute processor (this counts as a hop and a turn),
a number of X (that is, horizontal) hops, one
hop if a turn is required, a number of Y hops,
and then a hop and a turn to enter the com-
pute processor.

One major concern with dynamic networks
is deadlock caused by the over commitment of
buffering resources. Classically, there are two
solutions for deadlock: avoidance and recov-
ery. Deadlock avoidance requires users to limit
their usage to a set of disciplines that have been
proven not to deadlock. Unfortunately, this
limits the network’s usefulness. Deadlock
recovery places no restrictions on network use,
but requires that the network be drained to
some source of copious memory when the
network appears to be deadlocked. Unfortu-
nately, if that out-of-band memory system
itself uses deadlock recovery, the system could
fail. Our solution uses a pair of otherwise iden-
tical networks: The memory network has a
restricted usage model that uses deadlock
avoidance, and the general network is unre-
stricted and uses deadlock recovery. If the gen-
eral network deadlocks, an interrupt routine
is activated that uses the memory network to
recover.

Trusted clients—operating system, data
cache, interrupts, hardware devices, DMA, and
I/O—use the memory network. Each client is
not allowed to block on a network send unless
it can guarantee that its input buffers can sink
all messages that it might be receiving. Alterna-
tively, a client can guarantee that it will not block
on a network send if it has enough private
buffering resources on the path to its destina-
tion. Clients are each allocated a number of
buffers to accomplish their basic functionality.
For large, high-performance transfers, the clients
can negotiate permission with the operating sys-
tem for temporary use of a pool of additional
buffers associated with each I/O port.

Untrusted clients use the general network
and rely on the hardware deadlock recovery

IEEE MICRO

Software-
controlled
crossbar

Software-
controlled
crossbar

Route: Route:Processor→east West→processor

Floating-point-multiply instruction
r24, r3, r4

Floating-point-add instruction
r5, r3, r24

Figure 5. Two tiles communicating over the static network.

32

MICROARCHITECTURE

mechanism to maintain forward progress
when deadlock occurs. The operating system
programs a configurable counter on the com-
pute processor to detect if words have waited
too long on the input.6 This counter causes
an interrupt so that the network can be
drained into DRAM. A separate interrupt
then allows the general network input port to
be virtualized, substituting in the data from
the DRAM.

Because it is a user-level construct, the gen-
eral network is virtualized for each group of
tiles that corresponds to a process. The upper
left tile is considered Tile 0 for the purposes of
this process. On a context switch, the contents
of the general and static networks are saved
off, and the process and its network data can
be restored at any time to a new offset on the
Raw grid.

Both the hardware caches and the software
share the memory network. On a cache miss,
the hardware cache consults a configurable hash
function to map addresses to destination ports
or tiles. The cache then issues a header word,
like every other client of the network, and then
a sequence of words that is interpreted by the
DRAM controller. On a cache fill, the cache
state machine will also wait for the result and
then transfer words into the cache memory. Just
like any other I/O device on the network, the
DRAMs are equally accessible by hardware and
software. It is often useful to write codes that
operate on large data blocks that stream direct-
ly in and out of the DRAMs.

The Raw processor supports parallel imple-
mentation of external (device I/O) interrupts;
each tile can process an interrupt indepen-
dently of the others. The interrupt con-
troller(s) (implemented by a dedicated tile or
as part of the support chipset) signals an inter-
rupt to a particular tile by sending a special
one-word message through an I/O port. The
tile’s network hardware checks for that mes-
sage and transparently pulls it off the network
and sets the compute processor’s external inter-
rupt bit. When the compute processor services
the interrupt, it queries the interrupt controller
for the cause of the interrupt and then con-
tacts the appropriate device or DRAM.

Implementation
We implemented the Raw chip 16-tile pro-

totype in IBM’s SA-27E, 0.15-micron, six-level,

copper, ASIC process.
Although the Raw array is only
16 × 16 mm, we used an 18.2
× 18.2-mm die to allow a high
pin-count package. The 1,657
pin, ceramic-column grid-array
package provides 1,080 high-
speed transceiver logic I/O
pins. We estimate that the chip
consumes 25 W, mostly in
memory accesses and pins. We
quiesce unused functional units
and memories and tristate
unused data I/O pins. We tar-
geted a 225-MHz worst-case
frequency (average-case fre-
quency is typically 25 percent
higher), which is competitive
with other 0.15-micron ASIC
processors, like IRAM from the
University of California, Berke-
ley, and the customizable
processors from Tensilica.

We pipelined our processor
aggressively and treated con-
trol paths very conservatively
to avoid spending significant
periods closing timing in the
back end. Despite this, we
found that wire delay inside
the tile was large enough that
placement could not be
ignored as an issue. We creat-
ed a library of routines (7,000
lines of code) that automati-
cally places the majority of the structured logic
in the tile and around the perimeter of the
chip. This structured logic is visible in Figure
6, a screen capture of the Raw tile placement.
Figure 7 shows a screen capture of placement
for the entire Raw chip. The replicated 4 × 4-
pattern in the middle is the array of Raw tiles.
The semistructured logic around the edges is
the I/O multiplexing logic. Figure 8 (next
page) gives a detailed floorplan of the Raw tile.

The placement routines dropped cycle time
from 8 to 4 ns, which matches the Synopsys
synthesis tool’s timing estimates. The synthe-
sis, back-end processing, and our placement
infrastructure can turn our Verilog source into
a fully placed chip in approximately 6 hours
on one machine. We used a logic emulator
donated by IKOS Technologies coupled with

33MARCH–APRIL 2002

Figure 6. Raw tile—placed.

Figure 7. Raw chip—placed.

the Raw motherboard to boot the gate-level
Verilog and run test simulations.

Applications with a very small (two or three
way) amount of instruction-level parallelism
generally do not benefit much from running
on Raw. This is because intertile latency is
great enough that it is cheaper to compute
locally than to distribute the computation to
a neighbor tile. A two-way-issue compute
processor would have helped fill out our par-
allelism profile for these applications, espe-
cially Specint benchmarks.

For scalar codes with a moderate degree of
instruction-level parallelism, we found that
our C and Fortran compiler, RawCC,5 is
effective at exploiting parallelism by auto-
matically partitioning the program graph,
placing the operations, and programming the
routes for the static router. We attain
speedups ranging from 6× to 11× versus a sin-
gle tile on Specfp applications for a 16-tile
Raw processor and 9× to 19× for 32 tiles.
When parallelism is limited by the applica-
tion, we find that RawCC comes close to the

IEEE MICRO

Static-router control

Event
counters

Compute-processor
instruction

SRAM

Data cache
SRAM

Integer
multiply

Floating-
point
unit Special-

purpose
registers

Control

Bypass network Compute-processor
FIFO buffers

R
eg

is
te

r
fil

e

Test
net-
work

Fuses

Arithmetic
logic units
(simple)

Arithmetic
logic units (critical)

Arithmetic
logic units
(medium)

BIST

BIST

FusesFuses BIST

Data
cache
tags

Le
as

t r
ec

en
tly

us
ed

 b
its

Dynamic-network 1 crossbar

Dynamic-network 2 crossbar

Dynamic-network 1 control

Dynamic-network 2 control

Static-router crossbar 2

Static-router crossbar 1

Data
cache
control

BIST

S
ta

tic
-r

ou
te

r
fe

tc
h

un
it

Static-router
instruction

SRAM

F
et

ch
 u

ni
t

Figure 8. Raw tile floor plan.

34

MICROARCHITECTURE

hand-parallelized speedup, but tends to use
up to two times as many tiles.

For structured applications with a lot of
pipelined parallelism or heavy data move-
ment like that found in software circuits,
careful orchestration and layout of operations
and network routes provided us with maxi-
mal performance because it maximizes per-
tile performance. For these applications (and
for the operating system code), we developed
a version of the Gnu C compiler that lets the
programmer specify the code and communi-
cation on a per-tile basis. Although this seems
laborious, the alternative for these sorts of
performance-oriented applications is an
ASIC implementation, which is considerably
more work than programming Raw. We are
currently working on a new compiler that
automates this mode of programming.4

The replicated tile design saved us consid-
erable time in all phases of the project: design,
RTL Verilog coding, resynthesis, verification,
placement, and back-end flow.

Our design supports the glueless connec-
tion of up to 64 Raw chips in any rec-

tangular mesh pattern, creating virtual Raw
systems with up to 1,024 tiles. We intend to
use this ability to investigate Raw processors
with hundreds of tiles. We think that reaching
the point at which a Raw tile is a relatively
small portion of total computation could
change the way we compute. We can imagine
computation becoming inexpensive enough
to dedicate entire tiles to prefetching, gather-
ing profile data from neighbor tiles, translat-
ing (say for x86 emulation) and dynamically
optimizing instructions, or even to simulat-
ing traditional hardware structures like video
Ramdacs.

The idea of creating architectural analogs
to pins, gates, and wires will ultimately lead
to a class of chips that can address a great range
of applications. It takes a lot of imagination
to envision a 128-tile Raw processor, how fast
a full-custom version would clock, or how a
more sophisticated compute processor design
could affect the overall system. It is our hope
that the Raw research will provide insight for
architects who are looking for new ways to
build processors that leverage the vast
resources and mitigate the considerable wire
delays that loom on the horizon. MICRO

Acknowledgment
Raw is funded by DARPA, the National Sci-

ence Foundation, and MIT’s Project Oxygen.

References
1. R. Ho, K. Mai, and M. Horowitz, “The Future

of Wires,” Proc. IEEE, IEEE CS Press, Los
Alamitos, Calif., April 2001, pp. 490-504.

2. Waingold et al., “Baring It All to Software:
Raw Machines,” Computer, vol. 30, no. 9,
Sept. 1997, pp. 86-93.

3. T. Gross and D.R. O’Halloron, iWarp,
Anatomy of a Parallel Computing System,
MIT Press, Cambridge, Mass., 1998.

4. B. Thies et al., “StreamIT: A Compiler for
Streaming Applications,” tech. memo MIT-
LCS-TM-620, Massachusetts Inst. Technolo-
gy Lab. Comp. Sci., Cambridge, Mass., 2001;
http://www.lcs.mit.edu/publications/pubs/pdf/
MIT-LCS-TM-620.pdf (current Feb. 2002).

5. Lee et al., “Space-Time Scheduling of
Instruction-Level Parallelism on a Raw
Machine,” 8th Int’l Conf. Architectural
Support for Programming Languages and
Operating Systems (ASPLOS-VIII), ACM
Press, New York, 1998, pp. 46-57.

6. J. Kubiatowicz, Integrated Shared-Memory
and Message-Passing Communication in the
Alewife Multiprocessor, doctoral disserta-
tion, EECS Dept., Massachusetts Inst. Tech-
nology, Cambridge, Mass., 1998.

7. M. Annaratone et al., “The Warp Computer:
Architecture, Implementation and Perfor-
mance,” IEEE Trans. Computers, vol. 36, no.
12, 1987, pp. 1523-1538.

8. D. Shoemaker et al., “NuMesh: An
Architecture Optimized for Scheduled
Communication,” J. Supercomputing, vol.
10, no. 3, 1996, pp. 285-302.

9. W. Dally, A VLSI Architecture for Concurrent
Data Structures, Kluwer Academic
Publishers, Boston, 1987.

Direct questions and comments about this
article to Michael Taylor, MIT Laboratory
for Computer Science, 200 Technology
Square, Bldg. NE43, Cambridge, MA 02139;
mtaylor@cag.lcs.mit.edu

For further information on this or any other
computing topic, please visit our Digital
Library at http://computer.org/publications/
dlib.

35MARCH–APRIL 2002

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

