
0018-9162/02/$17.00 © 2002 IEEE48 Computer

Smart Cameras as
Embedded Systems

I ncreasingly powerful integrated circuits are
making an entire range of new applications
possible. Complementary metal-oxide semi-
conductor (CMOS) sensors, for example, have
made the digital camera a commonplace con-

sumer item. These light-sensitive chips, positioned
where film would normally be, capture images as
reusable digital files that users can upload to their
computer, manipulate with software, and distrib-
ute electronically.

Recent technological advances are enabling a new
generation of smart cameras that represent a quan-
tum leap in sophistication. While today’s digital
cameras capture images, smart cameras capture
high-level descriptions of the scene and analyze
what they see. These devices could support a wide
variety of applications including human and ani-
mal detection, surveillance, motion analysis, and
facial identification.

Video processing has an insatiable demand for
real-time performance. Fortunately, Moore’s law
provides an increasing pool of available computing
power to apply to real-time analysis. Smart cam-
eras leverage very large-scale integration (VLSI) to
provide such analysis in a low-cost, low-power sys-
tem with substantial memory. Moving well beyond
pixel processing and compression, these systems run
a wide range of algorithms to extract meaning from
streaming video.

Because they push the design space in so many
dimensions, smart cameras are a leading-edge appli-
cation for embedded system research. The Embedded
Systems Group in Princeton University’s Department
of Electrical Engineering (http://www.ee.princeton.
edu/~wolf/embedded-group/) has developed a first-
generation smart camera system that can detect peo-
ple and analyze their movement in real time.

DETECTION AND RECOGNITION ALGORITHMS
Although there are many approaches to real-time

video analysis, we chose to focus initially on human
gesture recognition—identifying whether a subject
is walking, standing, waving his arms, and so on.
Because much work remains to be done on this
problem, we sought to design an embedded system
that can incorporate future algorithms as well as use
those we created exclusively for this application.

As Figure 1 shows, our algorithms use both low-
level and high-level processing. The low-level com-
ponent identifies different body parts and cate-
gorizes their movement in simple terms. The high-
level component, which is application-dependent,
uses this information to recognize each body part’s
action and the person’s overall activity based on
scenario parameters.

Low-level processing
The system captures images from the video input,

which can be either uncompressed or compressed
(MPEG and motion JPEG), and applies four dif-
ferent algorithms to detect and identify human body
parts.

Region extraction. The first algorithm transforms
the pixels of an image, like that shown in Figure
2a, into an M × N bitmap and eliminates the back-
ground. It then detects the body part’s skin area
using a YUV color model with chrominance val-
ues downsampled by a factor of two. Next, as
Figure 2b illustrates, the algorithm hierarchically
segments the frame into skin-tone and non-skin-
tone regions by extracting foreground regions adja-
cent to detected skin areas and combining these
segments in a meaningful way.

Contour following. The next step in the process,
shown in Figure 2c, involves linking the separate

Smart cameras capture high-level descriptions of a scene and perform
real-time analysis of what they see. These low-cost, low-power systems
push the design space in many dimensions, making them a leading-edge
application for embedded system research.

Wayne Wolf
Burak Ozer
Tiehan Lv
Princeton University

C O V E R F E A T U R E

groups of pixels into contours that geometrically
define the regions. This algorithm uses a 3 × 3 fil-
ter to follow the edge of the component in any of
eight different directions.

Ellipse fitting. To correct for deformations in image
processing caused by clothing, objects in the frame,
or some body parts blocking others, an algorithm
fits ellipses to the pixel regions as Figure 2d shows
to provide simplified part attributes. The algorithm
uses these parametric surface approximations to
compute geometric descriptors for segments such

as area, compactness (circularity), weak perspec-
tive invariants, and spatial relationships.

Graph matching. Each extracted region modeled
with ellipses corresponds to a node in a graphical
representation of the human body. A piecewise qua-
dratic Bayesian classifier uses the ellipses parame-
ters to compute feature vectors consisting of binary
and unary attributes. It then matches these attrib-
utes to feature vectors of body parts or meaningful
combinations of parts that are computed offline. To
expedite the branching process, the algorithm

September 2002 49

Region
extraction

Contour
following

Ellipse
fitting

Graph
matching

Video
input

Image
duplication

Output
modification

Video
output

Gesture
classifier

Recognized
activity

HMM
for head

HMM
for torso

HMM
for hand1

HMM
for hand2

(a) (b)

Figure 1. Human
detection and activ-
ity recognition algo-
rithms. (a) Low-level
processing algo-
rithms identify body
parts and categorize
their movements. (b)
High-level process-
ing algorithms use
hidden Markov mod-
els (HMMs) and a
gesture classifier to
evaluate overall
activity.

(a) (b)

(c) (d)

Figure 2. Initial
steps in gesture
recognition: (a) orig-
inal image, (b)
region extraction, (c)
contour following,
and (d) ellipse
fitting.

50 Computer

begins with the face, which is generally easiest to
detect.

High-level processing
The high-level processing component, which can

be adapted to different applications, compares the
motion pattern of each body part—described as a
spatiotemporal sequence of feature vectors—in a
set of frames to the patterns of known postures and
gestures and then uses several hidden Markov mod-
els in parallel to evaluate the body’s overall activ-
ity. We use discrete HMMs that can generate eight
directional code words that check the up, down,
left, right, and circular movement of each body
part.

Human actions often involve a complex series of
movements. We therefore combine each body part’s
motion pattern with the one immediately follow-
ing it to generate a new pattern. Using dynamic pro-
gramming, we calculate the probabilities for the
original and combined patterns to identify what the
person is doing. Gaps between gestures help indi-
cate the beginning and end of discrete actions.

A quadratic Mahalanobis distance classifier com-
bines HMM output with different weights to gen-
erate reference models for various gestures. For
example, a pointing gesture could be recognized as
a command to “go to the next slide” in a smart

meeting room or “open the window” in a smart
car, whereas a smart security camera might inter-
pret the gesture as suspicious or threatening.

To help compensate for occlusion and other
image-processing problems, we use two cameras
set at a 90-degree angle to each other to capture the
best view of the face and other key body parts. We
can use high-level information acquired through
one view to switch cameras to activate the recog-
nition algorithms using the second camera. Certain
actions, such as turning to face another direction
or executing a predefined gesture, can also trigger
the system to change views.

TOWARD AN EMBEDDED SYSTEM
As the “Motion-Detection and Gesture-Recog-

nition Systems” sidebar describes, a number of
researchers are working on human motion detec-
tion and gesture-recognition systems.

We initially used Matlab (http://www.mathworks.
com/) to develop our algorithms. This technical
computation and visualization programming envi-
ronment runs orders of magnitude more slowly
than embedded platform implementations, a speed
difference that becomes critical when processing
video in real time. We therefore ported our Matlab
implementation to C code running on a very long
instruction word (VLIW) video processor, which

The research efforts focusing on human motion
detection and gesture-recognition systems include
Leonard,1 a single-camera system that classifies sim-
ple motion events such as picking up an object using
force dynamics. Mark Lucente, Gert-Jan Zwart,
and Andrew D. George2 have implemented a mul-
timodal input system that also relies on one cam-
era to let subjects manipulate virtual objects using
gestures and voice commands. This system
processes approximately 10 frames per second with
a latency of 0.2 seconds.

The University of Maryland’s Keck Laboratory
for the Analysis of Visual Motion (http://www.
umiacs.umd.edu/users/lsd/kecklab.html) employs a
multicamera system to construct dynamic graphi-
cal representations of human movement and object
manipulation. Digital cameras simultaneously cap-
ture some activity—such as a technician repairing a
mechanism—from multiple viewpoints, and a suite
of networked computers integrates this data with
other sensor information into a 3D model for analy-
sis using advanced computer graphics. Thomas B.
Moeslund and Erik Granum discuss related work
in their survey.3

Mircea Nicolescu and Gérard G. Medioni4 have
developed algorithms to electronically pan, tilt, and
zoom through images supplied by an array of cam-

eras. Their qualitative criteria for evaluating video
input have confirmed that pan-tilt-zoom systems
outperform wide-angle-lens cameras. Jonathan
Foote and Don Kimber5 have built a computation-
ally and materially inexpensive panoramic camera
system that also uses multiple cameras.

The MIT Media Lab (http://www.media.mit.
edu/) is developing technology that can track peo-
ple’s actions, interpret gestures, and recognize facial
expressions in environments ranging from the
home and workplace to car interiors.6-9 Smart
rooms, smart desks, and wearable computers use
context-sensing and communication devices to
unobtrusively help people carry out everyday func-
tions.

Scott Stillman and Irfan Essa10 also have pro-
posed a near-real-time system consisting of various
types of sensors spread throughout an environment
to track persons, detect faces, and recognize speech
signals.

Other research efforts focus on various aspects
of multiprocessor systems for video processing. Sek
M. Chai and colleagues, for example, have devel-
oped an architecture for pixel-level processing in
the imaging array.11 In addition, John A. Watlington
and V. Michael Bove are building a dynamically
scheduled dataflow system using a distributed

Motion-Detection and Gesture-Recognition Systems

let us make many architectural measurements on
the application and make the necessary optimiza-
tions to architect a custom VLSI smart camera.

Requirements
At the development stage, we evaluated the algo-

rithms according to accuracy and other familiar
standards. However, an embedded system has addi-
tional real-time requirements:

• Frame rate. The system must process a certain
amount of frames per second to properly ana-
lyze motion and provide useful results. The
algorithms we use as well as the platform’s
computational power determine the achiev-
able frame rate, which can be extremely high
in some systems.

• Latency. The amount of time it takes to pro-
duce a result for a frame is also important
because smart cameras will likely be used in
closed-loop control systems, where high latency
makes it difficult to initiate events in a timely
fashion based on action in the video field.

Moving to an embedded platform also meant
that we had to conserve memory. Looking ahead
to highly integrated smart cameras, we wanted to
incorporate as little memory in the system as pos-

sible to save on both chip area and power con-
sumption. Gratuitous use of memory also often
points to inefficient implementation.

Components
Our development strategy called for leveraging

off-the-shelf components to process video from a
standard source in real time, debug algorithms and
programs, and connect multiple smart cameras in
a networked system. We use the 100-MHz Philips
TriMedia TM-1300 as our video processor. This
32-bit fixed- and floating-point VLIW processor
features a dedicated image coprocessor, a variable
length decoder, an optimizing C/C++ compiler, inte-
grated peripherals for concurrent real-time
input/output, and a rich set of application library
functions including MPEG, motion JPEG, and 2D
text and graphics.

Our testbed architecture, shown in Figure 3, uses
two TriMedia boards attached to a host PC for pro-
gramming support. Each PCI bus board is connected
to a Hi8 camera that provides NTSC composite
video. Several boards can be plugged into a single
computer for simultaneous video operations. The
shared memory interface offers higher performance
than the networks likely to be used in VLSI cameras,
but they let us functionally implement and debug
multiple-camera systems with real video data.

September 2002 51

resource manager for compact, relatively inex-
pensive media-processing applications.12

References
1. J.M. Siskind, “Visual Event Classification via Force

Dynamics,” Proc. 17th Nat’l Conf. Artificial Intelli-
gence and 12th Conf. Innovative Applications of Arti-
ficial Intelligence (AAAI/IAAI 00), AAAI Press/MIT
Press, Menlo Park, Calif., 2000, pp. 149-155.

2. M. Lucente, G-J. Zwart, and A.D. George, “Visual-
ization Space: A Testbed for Deviceless Multimodal
User Interface,” Computer Graphics, vol. 31, no. 2,
1997; http://www.lucente.biz/pubs/pubs.html.

3. T.B. Moeslund and E. Granum, “A Survey of Com-
puter Vision-Based Human Motion Capture,” Com-
puter Vision and Image Understanding, vol. 81, no.
3, 2001, pp. 231-268.

4. M. Nicolescu and G.G. Medioni, “Electronic Pan-
Tilt-Zoom: A Solution for Intelligent Room Sys-
tems,” Proc. IEEE Int’l Conf. Multimedia and Expo
(ICME 00), IEEE CS Press, Los Alamitos, Calif.,
2000, pp. 1581-1584.

5. J. Foote and D. Kimber, “FlyCam: Practical
Panoramic Video and Automatic Camera Control,”
Proc. IEEE Int’l Conf. Multimedia and Expo (ICME
00), IEEE CS Press, Los Alamitos, Calif., 2000, pp.
1419-1422.

6. A. Pentland and T. Choudhury, “Face Recognition
for Smart Environments,” Computer, Feb. 2000, pp.
50-55.

7. A.D. Wilson and A.F. Bobick, “Realtime Online
Adaptive Gesture Recognition,” Proc. 15th Int’l
Conf. Pattern Recognition (ICPR 00), IEEE CS Press,
Los Alamitos, Calif., 2000, pp. 270-275.

8. A. Pentland, “Smart Rooms, Smart Clothes,” Proc.
14th Int’l Conf. Pattern Recognition (ICPR 98),
IEEE CS Press, Los Alamitos, Calif., 1998, pp. 949-
953.

9. A. Pentland, “Looking at People: Sensing for Ubiq-
uitous and Wearable Computing,” IEEE Trans. Pat-
tern Analysis and Machine Intelligence, vol. 22, no.
1, 2000, pp. 107-119.

10. S. Stillman and I. Essa, “Towards Reliable Multi-
modal Sensing in Aware Environments,” Proc.
Workshop on Perceptive User Interfaces (PUI 01),
ACM Press, New York, 2001; http://www.cs.ucsb.
edu/PUI/PUIWorkshop/.

11. S.M. Chai et al., “Focal Plane Processing Architec-
tures for Real-Time Hyperspectral Image Process-
ing,” J. Applied Optics: Special Issue on Information
Processing, vol. 39, no. 5, 2000, pp. 835-849.

12. J. Watlington and V.M. Bove Jr., “A System for Par-
allel Media Processing,” Parallel Computing, vol.
23, no. 12, 1997, pp. 1793-1809.

52 Computer

EXPERIMENTS AND OPTIMIZATIONS
After converting the original Matlab implemen-

tation into C, we performed some experiments to
gauge the smart camera system’s effectiveness and
evaluate bottlenecks. The unoptimized code took,
on average, 20.4 million cycles to process one input
frame, equal to a rate of 5 frames per second.

We first measured the CPU times of each low-
level processing step to determine where the cycles
were being spent. Microsoft Visual C++ is more
suitable for this purpose than the TriMedia com-
piler because it can collect the running time of each
function as well as its subfunctions’ times.

Figure 4a shows the processing-time distribution
of the four body-part-detection algorithms. Figure
4b shows the memory characteristics of each low-
level processing stage.

As data representation becomes more abstract,
input/output data volume decreases. The change in
required memory size, however, is less predictable
given the complex relationships that can form
between abstract data. For example, using six sin-
gle-precision, floating-point parameters to describe
100 ellipses requires only 2.4 Kbytes of memory,
but it takes 10 Kbytes to store information about
two adjoining ellipses.

Based on these early experiments, we optimized
our smart camera implementation by applying
techniques to speed up video operations such as
substituting new algorithms better suited to real-
time processing and using TriMedia library rou-
tines to replace C-level code.

Algorithmic changes
We originally fit superellipses (generalized

ellipses) to contour points, and this was the most
time-consuming step. Rather than trying to opti-
mize the code, we decided to use a different algo-
rithm. By replacing the original method developed
from principal component analysis with moment-
based initialization, we reduced the Levenberg-

Marquardt fitting procedure, thus decreasing the
execution time. Also, to accelerate processing dur-
ing the graph-matching stage, we modified the algo-
rithm to determine different regions’ adjacency.

Library functions
During the region-extraction stage, the system

processes each pixel in the input frame indepen-
dently. Absolute value and threshold calculations
result in branching, which limits instruction-level
parallelism (ILP). One possible solution to this prob-
lem is to split the frame into several pieces and
process these pieces on a multiprocessor or simulta-
neous multithreading platform. However, we opted
to reduce the number of branches in the program.

The TriMedia processor provides an
INONZERO operation that takes two input
operands. If the first is not zero, the destination is
set to the value of the second operand; otherwise,
it is set to zero. Another special operation, IABS,
can provide absolute values. These operations are
visible in C code as they are packed into functions,
and together they remove most of the branches.

We also used loop unrolling to extend basic block
size. This optimization increased the processing
speed of the region-extraction step by a factor of 2.3.

Control-to-data transformation
Increasing the processor’s issue width can exploit

the high degree of parallelism that region extrac-
tion offers. Using a processor with more functional
units could thus reduce processing time during this
stage. However, contour following, which converts
pixels to abstract forms such as lines and ellipses,
consumes even more time. The algorithm also oper-
ates serially: It finds a region’s boundary by look-
ing at a small window of pixels and sequentially
moving around the contour; at each clockwise step
it must evaluate where to locate the contour’s next
pixel. While this approach is correct and intuitive,
it provides limited ILP.

We evaluated all possible directions in parallel
and combined the true/false results into a byte,
which served as an index to look up the boundary
pixel in a table. We also manipulated the algo-
rithm’s control-flow structure to further increase
ILP. These optimizations doubled the contour-fol-
lowing stage’s running speed.

Optimization results
The combination of these methods radically

improved CPU performance for the application.
Optimization boosted the program’s frame rate
from 5 to 31 frames per second. In addition, latency

Shared
memory

TriMedia board

TriMedia board

Monitor

Host computerCamera 2

Camera 1

Region of interest
for camera 1

Region of interest
for camera 2

Figure 3. Smart
camera test room
and testbed archi-
tecture. Principal
components include
video processors on
standard PCI bus
cards, a shared
memory interface,
and a host PC for
programming
support.

decreased from about 340 to 40-60 milliseconds
per frame. We have since added HMMs and other
high-level processing parts, and the program now
runs at about 25 frames per second.

O ur board-level system is a critical first step in
the design of a highly integrated smart camera.
Although the current system is directly useful

for some applications, including security and medi-
cine, a VLSI system will enable the development of
high-volume, embedded computing products.

Because the digital processors and memory use
advanced small-feature fabrication and the sensor
requires relatively large pixels to efficiently collect
light, it makes sense to design the system as two
chips and house them in a multichip module.
Separating the sensor and the processor also makes
sense at the architectural level given the well-under-
stood and simple interface between the sensor and
the computation engine.

We believe that embedding single-instruction
multiple-data (SIMD) processors into the sensor is
not critical to achieve real-time performance. The
advantages of leveraging existing sensor technol-
ogy far outweigh any benefits of using pixel-plane
processors until they become more plentiful.
However, attaching special-purpose SIMD proces-
sors to the multiprocessor can be useful for bound-
ary analysis and other operations. Such accelerators
can also save power, which is important given the
cost and effort required to deploy multiple cam-
eras, especially in an outdoor setting. High-frame-
rate cameras, which are useful for applications
ranging from vibration analysis to machinery
design, will likely require many specialized pro-
cessing elements that are fast as well as area effi-
cient, allowing the inclusion of more parallel units.

We are still in the early stages of determining the
type of network best suited to a multicamera sys-
tem. Distributed processing is an important means
of reducing power consumption in such systems—
sending raw pixels over the network is less efficient
than sending the results of intermediate analysis.
However, as algorithms for real-time multicamera
analysis continue to develop, bandwidth require-
ments may change. �

Acknowledgments
This work was funded by the New Jersey Center

for Pervasive Information Technology; the
MARCO/DARPA Center for Circuits, Systems,
Software; and the National Science Foundation.

We also thank Kees Vissers, Flaviu Turean, and
Sebastian Mirolo at TriMedia, which generously
provided us with processor boards, for their con-
structive suggestions.

Wayne Wolf is a professor in Princeton University’s
Department of Electrical Engineering, where he
heads the Embedded Systems Group, and an asso-
ciated faculty member in the Department of Com-
puter Science. He received a PhD in electrical
engineering from Stanford University. He is a Fel-
low of the IEEE and the ACM. Contact him at
wolf@princeton.edu.

Burak Ozer is a research staff member and mem-
ber of the Embedded Systems Group in the Depart-
ment of Computer Engineering at Princeton
University. He received a PhD in electrical engi-
neering from the New Jersey Institute of Technol-
ogy. He is a member of the IEEE. Contact him at
iozer@ee.princeton.edu.

Tiehan Lv is a graduate student and member of the
Embedded Systems Group in the Department of
Electrical Engineering at Princeton University. He
received an MAE in electrical engineering from
Peking University, China. Contact him at lv@ee.
princeton.edu.

September 2002 53

10

100

1,000

10,000

100,000

1,000,000

Region
extraction

Contour
following

Ellipse
fitting

Graph
matching

1

M
em

or
y

vo
lu

m
e

(b
yt

es
)

0

10

20

30

40

50

60

Pr
oc

es
si

ng
 ti

m
e

(p
er

ce
nt

)

Input data
Output data
Required memory

Region
extraction

Contour
following

Ellipse
fitting

Graph
matching(a)

(b)

Figure 4. (a)
Processing-time
distribution of the
original algorithms,
implemented in C,
before optimization.
(b) Memory volume
of low-level
processing stages.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

