
0018-9162/01/$10.00 © 2001 IEEE66 Computer

Speculative
Multithreaded
Processors

S
emiconductor technologies—along with
innovative computer architectures—have
provided the bricks and mortar for building
phenomenal improvements in processing
speed during the past decade, culminating

ultimately in the hundreds of millions of transistors
used to build increasingly fast on-chip devices.
Innovations in computer microarchitecture and
accompanying compilers have enabled us to make
good use of these building materials to provide high-
performance computing systems.

Typically, we decide how to use available semicon-
ductor resources in two steps. First, we choose the
desired functionality—the techniques for extracting
and enhancing performance. In the implementation
phase, we translate those techniques into structures
and signals that we must then design, build, and ver-
ify. Although often described separately, in practice
these two phases are tightly coupled.

During the 1990s, novel functionality played the
dominant role in processor design. Given a reasonable
limit on overall design size—for example, fewer than
tens of millions of transistors—we could divide up the
transistor budget simply by using high-level perfor-
mance metrics. Doing so made verification relatively
simple, and designs did not have to explicitly account
for wire delays, which were not significant compared
to logic delays.

In the future, implementation issues will likely dom-
inate even basic functionality. We have begun to real-
ize that scaling conventional superscalar designs
increases complexity and cost with no guarantee that
such designs will meet performance goals. Monolithic

designs that use hundreds of millions of transistors will
be very difficult to design, debug, and verify, and
increasing wire delays will make intrachip communi-
cation and clock distribution costly. Consequently,
some computer architects advocate a shift from high-
performance to high-throughput processing, using dis-
tributed components that divide and conquer design
process complexity and exploit communication local-
ity to overcome wire delays. With this trend comes a
renewed and increasing interest in multithreaded archi-
tectures. Such architectures can extract parallelism
from a sequential program via thread-level specula-
tion—be it control-driven or data-driven—giving them
the flexibility to operate in both multiple-program,
high-throughput and single-program, high-perfor-
mance environments.

RATIONALE FOR SPECULATIVE MULTITHREADING
Fortunately, the twin goals of increasing single-pro-

gram performance and decreasing implementation dif-
ficulty don’t necessarily conflict. The motivation for
using speculative multithreading comes from two
directions: On the one hand, we are already witness-
ing the diminishing potential of current techniques to
extract parallelism from single programs and thus
increase their performance; on the other, technology
trends suggest the onset of commercial processors that
can simultaneously execute multiple independent
threads.1 Thus, we are almost compelled to find inno-
vations that will enable multithreaded processors to
support the parallel execution of a single program.

A speculative multithreaded processor consists logi-
cally of replicated processing elements that coopera-

Speculation will overcome the limitations in dividing a single
program into multiple threads that can execute on the multiple logical
processing elements needed to enhance performance through
parallelization.

Gurindar S.
Sohi
Amir Roth
University of
Wisconsin-Madison

C O V E R F E A T U R E

tively perform the parallel execution of a conventional
sequential program—also called a program thread—
divided into chunks called speculative threads.
Speculation is key: Without speculation, we can only
divide programs conservatively into nonspeculative
threads whose mutual independence and execution is
guaranteed. Speculation enables much more aggressive
divisions that can exploit threads whose independence
and execution may not be guaranteed but are parallel,
and likely to be executed, with high probability.

Current parallelism-extraction
method limitations

Today, the superscalar model holds the incumbent
position for achieving high single-program perfor-
mance. Imperative programs—written in languages
like Fortran, C, and Java—are defined by a static con-
trol flow. As Figure 1 shows, at runtime, the proces-

sor unrolls the static control flow to produce a
dynamic instruction stream. A superscalar processor
operates on the group of instructions at the frontier of
the dynamic instruction stream as the processor grad-
ually unrolls the stream. The processor repeatedly
searches this dynamic instruction window for unexe-
cuted, independent instructions and attempts to exe-
cute these instructions in parallel. To attain sustained
high performance, each window should contain
enough independent instructions to support effective
instruction-level parallelism (ILP).

Unfortunately, imperative programming conven-
tions make consistently high ILP rare. Programmers
tend to group dependent statements together into sta-
tic structures—helping them reason about their pro-
grams but limiting the independent work available in
any given dynamic instruction window. Optimizing
compilers attempt to improve window ILP by trans-

April 2001 67

Figure 1. A dynamic instruction stream. A superscalar processor operates on the group of instructions at the frontier of the dynamic instruction stream as
the processor gradually unrolls the stream.

 if (node->neighbor != NULL)
while ((node = node->next) != NULL)

node->value -= node->neighbor->value * node->coeff

br I1I11:
stt f0, 16(r1)I10:
subt f0, f3, f0I9:
mult f1, f2, f3I8:
ldt f2, 24(r1)I7:

ldt f0, 16(r1)I5:

ldq r2, 8(r1)I3:
beq r1, I12I2:
ldq r1, 0(r1)I1:

ldt f1, 16(r2)I6:

beq r2, I11I4:

br I1I11:

ldq r2, 8(r1)I3:
beq r1, I12I2:
ldq r1, 0(r1)I1:

beq r2, I11I4:

br I1I11:
stt f0, 16(r1)I10:
subt f0, f3, f0I9:
mult f1, f2, f3I8:
ldt f2, 24(r1)I7:

ldt f0, 16(r1)I5:

ldq r2, 8(r1)I3:
beq r1, I12I2:
ldq r1, 0(r1)I1:

ldt f1, 16(r2)I6:

beq r2, I11I4:

br I1I11:
stt f0, 16(r1)I10:
subt f0, f3, f0I9:
mult f1, f2, f3I8:
ldt f2, 24(r1)I7:

ldt f0, 16(r1)I5:

ldq r2, 8(r1)I3:
beq r1, I12I2:
ldq r1, 0(r1)I1:

ldt f1, 16(r2)I6:

beq r2, I11I4:

br I1I11:

ldq r2, 8(r1)I3:
beq r1, I12I2:
ldq r1, 0(r1)I1:

beq r2, I11I4:

br I1I11:
stt f0, 16(r1)I10:
subt f0, f3, f0I9:
mult f1, f2, f3I8:
ldt f2, 24(r1)I7:

ldt f0, 16(r1)I5:

ldq r2, 8(r1)I3:
beq r1, I12I2:
ldq r1, 0(r1)I1:

ldt f1, 16(r2)I6:

beq r2, I11I4:
br I1I11:
stt f0, 16(r1)I10:
subt f0, f3, f0I9:
mult f1, f2, f3I8:
ldt f2, 24(r1)I7:

ldt f0, 16(r1)I5:

ldq r2, 8(r1)I3:
beq r1, I12I2:
ldq r1, 0(r1)I1:

ldt f1, 16(r2)I6:

beq r2, I11I4:

br I1I11:
stt f0, 16(r1)I10:
subt f0, f3, f0I9:
mult f1, f2, f3I8:
ldt f2, 24(r1)I7:

ldt f0, 16(r1)I5:

ldq r2, 8(r1)I3:

beq r1, I12I2:

ldq r1, 0(r1)I1:

ldt f1, 16(r2)I6:

beq r2, I11I4:br I1I11:

ldq r2, 8(r1)I3:
beq r1, I12I2:
ldq r1, 0(r1)I1:

beq r2, I11I4:

ldq r2, 8(r1)I3:

ldq r1, 0(r1)I1:

ldt f1, 16(r2)I6:

beq r2, I11I4:

ldq r2, 8(r1)I3:
ldq r1, 0(r1)I1:

beq r2, I11I4:

ldt f1, 16(r2)I6:

stream
instruction
Dynamic

thread 0 (head)
control-driven
Nonspeculative

thread 1
control-driven
Speculative

thread 2
control-driven
Speculative

main thread
control-driven
Nonspeculative

helper threads
data-driven
Speculative

68 Computer

parently reordering instructions from nearby program
regions, but even sophisticated compiler scheduling is
fundamentally limited by the compiler’s inability to
perfectly determine the programmer’s intent and its
commitment to preserve the program’s high-level
structure and semantics.

Given the amount of parallel work being done, we
could conceivably build a superscalar processor with
an instruction window large enough to simultaneously
contain code from different program regions—specif-
ically, different functions or loop iterations. However,
over and above the many engineering obstacles, main-
taining a large, contiguous window full of useful
instructions poses a fundamental problem. Specifically,
the decreasing accuracy of a series of branch predic-

tions leads to an exponentially decreasing likelihood
that instructions at the tail of the window will be use-
ful.

Overcoming this problem requires a model that lets
parallelism from different program regions be
exploited in a reasonably independent—that is, non-
contiguous and nonserial—manner. The speculative
multithreading model considers each program region
to be a speculative thread or small program. By exe-
cuting multiple speculative threads in parallel, high
degrees of concurrency can be achieved in an aggre-
gate fashion, especially if each thread is mostly sequen-
tial. The model subsequently merges the threads to
recreate the original program. Speculative multi-
threading lets us fashion a large instruction window

Luiz André Barroso, Kourosh
Gharachorloo, Tom Heynemann,
Dan Joyce, David Lowell, Harland
Maxwell, Joel McCormack,
Ravishankar Mosur, Jeff Sprouse,
Robert Stets, and Scott Smith
Compaq Computer Corp.

Today’s microprocessor industry strug-
gles with escalating development and
design costs, which arise from exceedingly
complex processors that push the limits of
instruction-level parallelism. Meanwhile,
such designs yield diminishing returns and
are ill-suited for commercial applications
such as database and Web workloads,
which constitute the high-performance
servers’ most important market. These
server applications typically suffer from
large memory stall times, exhibit little
instruction-level parallelism, and have no
use for high-performance floating-point or
multimedia functionality.

Fortunately, increasing chip densities
provide architects with many options for
tackling design complexities while address-
ing commercial applications’ needs.
Integrating all system-level components
onto the processor die—as the upcoming
Alpha 21364 does—enables a more effi-
cient memory hierarchy without further
increasing design complexity. Beyond that,
exploiting the abundance of thread-level
parallelism in commercial workloads
through simultaneous multithreading or
chip multiprocessing seems promising. The

chip multiprocessing approach is particu-
larly useful for addressing design complex-
ity because it enables using simpler cores.

The Piranha project’s1 primary goals are
to

• build a system that achieves superior
performance on commercial work-
loads, and

• effectively address design cost and
complexity issues.

Our research prototype aggressively
exploits chip multiprocessing by integrat-
ing eight simple Alpha processor cores
along with a two-level cache hierarchy,
memory controllers, coherence protocol
engines, and an interconnect router onto a
single chip. Combining simple, single-issue
in-order processor cores with an industry-
standard ASIC design methodology should
let us complete our design with a shorter
schedule and smaller team and budget than
a commercial microprocessor requires.

Although each Piranha processor core
is substantially slower than a conventional
next-generation processor because of its
simpler design and the constraints of an
ASIC process, integrating eight cores onto
a single chip provides Piranha with a two-
fold to threefold performance margin on
important commercial workloads. This
advantage can approach a factor of five
using full-custom instead of ASIC logic.

Most of Piranha’s architectural innova-
tions lie in the memory and interconnect

subsystems, including a shared eight-way
banked, eight-way associative noninclusive
L2 cache; highly specialized micropro-
grammed coherence protocol engines; and
an aggressive two-level coherence proto-
col. Piranha is particularly efficient for
applications with little instruction-level
parallelism because it can exploit thread-
level parallelism to issue multiple indepen-
dent misses and better utilize its aggressive
memory. In addition, significant construc-
tive cache interference among threads for
applications such as databases lets a rela-
tively small, 1-Mbyte L2 cache effectively
handle the eight processor cores.

While the exceedingly complex general-
purpose architecture of most current
processors is not optimal for any given
application domain, Piranha’s focused
design targets an important market seg-
ment at the possible expense of other
workloads, resulting in superior perfor-
mance and improved time to market.

Reference
1. L.A. Barroso et al., “Piranha: A Scalable

Architecture Based on Single-Chip Multi-
processing,” Proc. 27th Ann. Int’l Symp.
Computer Architecture (ISCA 2000),
ACM Press, New York, June 2000, pp.
282-293.

The authors are affiliated with Compaq
Computer Corp. Contact Luiz André
Barroso at Luiz.Barroso@compaq.com.

Piranha: Exploiting Single-Chip Multiprocessing

out of an ensemble of smaller instruction windows,
thereby facilitating implementation. In addition,
proper thread division can logically isolate branches
in one thread from those in another,2 relieving the fun-
damental problem of diminishing instruction utility.

Multithreaded architectures
Multithreaded processors that support concurrent

execution of multiple threads on a single chip look to
dominate the next decade, with two models currently
being explored. Simultaneous multithreading (SMT)
uses a monolithic design with most resources shared
among the threads.1,3 Chip multiprocessing (CMP) pro-
poses a distributed design that uses a collection of inde-
pendent processing elements with less resource sharing.4

SMT strives to provide low-cost multithreading
support atop conventional ILP superscalar processors,
whereas CMP offers design simplicity and replication
arguments. Both models target independent threads
and use multithreading to improve throughput. If
these threads are derived from a single program, the
increased throughput also results in higher single-pro-

gram performance. The “Piranha: Exploiting Single-
Chip Multiprocessing” sidebar outlines a CMP imple-
mentation, while the “Cray MTA: Multithreading for
Latency Tolerance” sidebar describes an implemen-
tation of the SMT approach.

As technology advances, the distinction between the
SMT and CMP microarchitectures will likely blur.
Regardless of the specific implementation, multi-
threaded processors will logically appear to be collec-
tions of processing elements. Whether we can exploit
this organization to improve both the throughput and
execution time of a single program remains uncertain.
With thread-level speculation, the logical processors
can execute conventional parallel threads as well as
single programs divided into speculative threads.

DIVIDING PROGRAMS INTO MULTIPLE THREADS
There are several ways to divide programs into

threads. We categorize these divisions as control-dri-
ven or data-driven, depending on whether threads
divide primarily along control-flow or dataflow
boundaries. We can further subcategorize these divi-

April 2001 69

Burton Smith, Cray

In the uniform shared-memory pro-
gramming model, computer system per-
formance does not depend significantly on
data placement in memory. The Cray MTA
implements this model using a very high
bandwidth interconnection network and
the parallelism generated by fine-grained
multithreading to tolerate memory latency.

The MTA system accommodates up to
256 custom multithreaded processors.
Instead of data caches, each processor
switches context every cycle among as
many as 128 instruction streams, or hard-
ware threads, choosing on each cycle only
from those streams ready to execute their
next instruction. The processors thereby
tolerate up to 128 cycles of memory
latency while achieving high utilization.
Further, each stream can issue as many as
eight memory references without waiting
for earlier ones to finish, augmenting the
processors’ memory latency tolerance to a
maximum of 1,024 cycles.

The instructions are 64 bits wide and
can contain a memory reference operation,
an arithmetic or logical operation, and a
branch or simple arithmetic or logical

operation. By issuing an instruction on
nearly every cycle, each processor achieves
a sustainable two operations per cycle,
irrespective of data placement in memory.

The MTA’s thread-based programming
model permits mixing implicit and explicit
parallelism. The virtual machine has an
unbounded number of processors with
uniform access to all memory locations.
The programmer can specify an
unbounded number of threads that inter-
act via shared data structures. The runtime
system acquires physical resources from
the operating system and uses these
resources to implement the virtual
machine.

The runtime environment normally
multiplexes hardware streams among an
unbounded number of threads. If the run-
time environment encounters insufficient
parallelism to fully occupy its processor
resources, it surrenders some protection
domains to the operating system for allo-
cation to other tasks. Conversely, the run-
time demands additional processor
resources as parallelism increases.

In addition to providing a high level of
single-thread optimization, MTA compil-
ers perform automatic parallelization of

Fortran, C, and C++ source code. The
compilers restructure loop nests to
enhance parallelism. They perform whole-
program analysis and optimization,
including in-line expansion and paral-
lelization of loops containing function calls
and input-output operations. Linear recur-
rences are automatically parallelized, as
are reductions even in the presence of
unknown dependences—as in histogram-
ming, for example.

The programmer can insert pragmas
and directives to help the compiler per-
form automatic parallelization. The par-
allelism that the compiler discovers and
exploits supplements whatever the user
explicitly generates. Inner-loop parallelism
is easy for the compilers to discover and
manage, whereas outer-loop parallelism
may be evident only to the programmer.

The tremendous software support that
the MTA provides for parallel program-
ming depends crucially on its uniform
shared-memory architecture, which mul-
tithreading alone makes possible.

Burton Smith is chief scientist at Cray in
Seattle. Contact him at burton@cray.
com.

Cray MTA: Multithreading for Latency Tolerance

70 Computer

sions as nonspeculative or speculative. From the
processor’s point of view, nonspeculative
threads are completely independent, with any
dependence being explicitly enforced using
architectural synchronization constructs.
Speculative threads, on the other hand, need not
be perfectly independent or synchronized, with
developers leaving it up to the hardware to
detect and recover from violations of the inde-
pendence assumptions.

Threads obtained from program division are
expected to execute on different logical processing
units. To achieve concurrency, proximal threads—
threads that will simultaneously coexist in the
machine—must be highly data-independent. If we
achieve such data-independence, concurrency, and,
hence, performance, can scale almost linearly with the
number of threads even for small per-thread window
sizes. Efficiency remains constant as bandwidth and,
hopefully, performance increase. We believe that spec-
ulation can allow data-independence criteria to be
achieved more easily, giving speculative solutions dis-
tinct performance advantages over their nonspecula-
tive counterparts.

Control-driven threads
Multithreading seeks to divide programs into data-

independent parallel threads. For imperative pro-
grams, the most natural division occurs along
control-flow boundaries because of the boundaries’
control-driven architectural semantics: Instructions
are totally ordered, and architectural state is precisely
defined only at instruction boundaries, an approach
that provides explicit control flow and implicit data
flow. Control-driven multithreading divides the
dynamic instruction stream into contiguous segments
that the system can subsequently “sew” together end-
to-end to reconstruct the sequential execution.
Control-driven multithreading presents the challenge
of finding division points that minimize interthread
data dependencies.

Control-driven multithreading differs from parallel
programming. Whereas parallel programs execute
multiple concurrent control-driven threads, these
threads exchange data in arbitrary ways and their
semantics rarely match the semantics of individual
threads run in series. In contrast, control-driven mul-
tithreading lets us impose parallel execution on what
is essentially a sequential program. The data flows
between control-driven threads in one direction only—
from sequentially older threads to younger ones.

Nonspeculative control-driven threads. Without sup-
port for detecting and recovering from data-depen-
dence violations or for aborting unnecessary threads
and discarding their effects, nonspeculative control-
driven multithreading requires strict guarantees about

thread execution certainty and data integrity. Because
thread execution cannot be undone, execution-cer-
tainty requirements dictate that we only fork non-
speculative control-driven threads if we know their
execution is needed. To maximize concurrency, we
usually achieve execution certainty by forking a
thread at a previous control-equivalent point—for
example, forking a loop at the beginning of the pre-
vious iteration.

Data integrity requires that access to thread-shared
data occurs or appears to occur in sequential order.
When we speak of data integrity, we refer mainly to
memory integrity. Support for direct interthread regis-
ter communication is typically not available, but, when
it is, we assume that appropriate synchronization is pro-
vided. In contrast, interthread memory communication
is naturally available, meaning that access to any mem-
ory location potentially shared with other threads must
be explicitly synchronized. Data sharing and synchro-
nization should be kept to a minimum in these cases to
allow for adequate concurrency among threads.

With such strict safety requirements, dividing a pro-
gram into nonspeculative threads has traditionally
fallen to the programmer and compiler. The pro-
grammer has the deepest knowledge of the algorithm’s
parallel dimensions, as well as the potential for data
sharing among different divisions. However, the
tedium of manual thread division often leads to errors.
Because debugged compilers don’t make errors, com-
puter scientists have expended considerable effort to
have compilers automate program multithreading and
parallelism, but have had success only in very limited
domains.

Speculative control-driven threads. Nonspeculative con-
trol-driven multithreading suffers from two major
problems. First, execution-certainty requirements limit
thread division to control-independent program
points, which may not satisfy the primary data-inde-
pendence criteria. Second, even when proximal
threads are data-independent, if we cannot prove this
independence, conservative synchronization must be
used to guard against the unlikely but remotely pos-
sible case of reordered accesses. Wherever developers
apply synchronization needlessly, they unnecessarily
lose concurrency and performance.

Speculation can alleviate these problems. In specu-
lative, control-driven multithreading, memory need
not be explicitly synchronized at all. The correct total
order of memory operations can be reconstructed from
the explicit or implied order of threads. This ordering
can be used as the basis for hardware support to detect
and potentially recover from interthread, memory-
ordering violations.5,6 With such support, access to
thread-shared data can proceed optimistically, with
penalties incurred only in those cases where proximal
threads actually share data and the accesses occur in

In speculative,
control-driven

multithreading,
memory need

not be explicitly
synchronized at all.

nonsequential order. Further, since ordering-violation
scenarios are typically predictable, slight modifications
to the basic mechanism let it learn to recognize these
scenarios early and artificially synchronize the offend-
ing store-and-load pairs.6

Execution-certainty constraints can be lifted using
similar mechanisms. We can recover from interthread
memory-ordering violations by using hardware that
buffers or undoes changes to the architected thread
state. Such hardware support allows threads to be
spawned at points where their final usefulness cannot
be absolutely guaranteed, but where they show a high
likelihood of usefulness and more favorable data-inde-
pendence characteristics.

Speculative control-driven multithreading has been
the subject of academic research since the 1990s and
is slowly finding its way into commercial products.
Sun’s MAJC architecture7 supports such threads via
its space time computing model. A prototype chip
from NEC—Merlot—uses speculative control-driven
multithreading to parallelize the execution of code
that can’t be parallelized by other known means.8 We
expect that more processors will make use of specu-
lative control-driven threads in the coming decade, as
this technology moves from the research phase into
commercial implementations.

Data-driven threads
Where control-driven multithreading divides pro-

grams along control-flow boundaries, data-driven
multithreading uses dataflow boundaries as the major
division criterion. Such a division naturally achieves
the desired interthread data-independence and result-
ing parallelism.9 Data-driven threads provide almost
ideal performance and efficiency optimization. In
its pure form, data-driven multithreading occurs at
the granularity of a single instruction.9 Data-driven
sequencing—or fetch—of an instruction is triggered
by the availability of one of its input operands.
Instructions enter the machine as soon as they can exe-
cute, but no sooner. This arrangement maximizes the
amount of work that can overlap long latency instruc-
tions, while not wasting resources on instructions
unready to use them.

Options besides instruction-level, data-driven
sequencing exist. Data-driven sequencing can also be
used on a thread granularity with conventional, con-
trol-driven sequencing at the instruction level.10 In this
organization, instructions from one or several related
computations are packed into totally ordered threads
that implicitly specify dataflow relationships.
Individual threads, assigned to processing elements,
sequence and execute in a control-driven manner.

However, the dataflow relationships between
threads are represented explicitly, and thread creation
is triggered in a data-driven manner—by the avail-

ability of its data inputs from the outcome of a
previous thread. The data-driven threads we
expect to see in future processors will likely take
this form.

Nonspeculative data-driven threads. Imperative
languages cannot implement nonspeculative
data-driven multithreading easily. The main
barrier arises from an imperative program’s
inability to specify a priori an explicit dataflow
program representation because dataflow
information only applies to a few well-defined
boundaries. A data-forwarding error—either
of omission or false commission—changes the pro-
gram’s meaning. The automatic conversion of imper-
ative code to dataflow-explicit form has been the
subject of some research, but data-driven program
representations can generally be constructed only for
code written in functional, data-driven languages.

Speculative data-driven threads. Nonspeculative data-
driven multithreading suffers from two major prob-
lems. First, programs generally cannot be divided into
data-driven threads. Second, even in cases where a
division is possible, the resulting representation
breaks the sequential semantics created by the pro-
grammer and destroys the correlation between the
executing program and the source code from which
it was derived. Sequential semantics, or at least its
appearance, is very important for program develop-
ment, debugging, and the interaction with non-data-
driven system components and tasks. The loss of
sequential semantics causes more serious conse-
quences than simply disturbing the programmer.

Again, speculation might solve these problems if we
shift our approach to multithreading. We begin with
the idea that a sequential semantics requires the pres-
ence of a main or architectural thread that executes
the program in full. Such a main thread means that
data-driven threads can only perform ancillary work
and that their presence will inevitably exact some
overhead on the total system. However, the main-
thread concept also means that dividing a program
into disjoint threads is not strictly necessary and that
speculative data-driven threads can concentrate on
performance-enhancing tasks without correctness
obligations. It is likely that data-driven threads will
play the role of helper threads that run ahead of a
main thread and absorb microarchitectural latencies
on its behalf.

We believe that programs inherently contain suffi-
cient levels of ILP, obscured by long-latency microar-
chitectural events like cache misses and branch
mispredictions. High single-thread performance can
be achieved if these latencies, which will likely become
relatively longer, can somehow be removed or hidden
from the main thread. This task can be accomplished
by augmenting the program with data-driven helper

April 2001 71

We expect that
more processors
will make use of

speculative
control-driven
threads in the

coming decade.

72 Computer

threads that pre-execute the computations of
problem instructions before they cause stalls in
the main program thread.

The helper model copies selected computa-
tions from the program and packs them into
data-driven threads.11,12 While the program is
still executed as a single control-driven thread,
data-driven threads spawn at certain points in
the main program that compute some future
instruction. When the main program thread
catches up to the data-driven thread, it has the
option of using the result or repeating the com-

putation, albeit with a reduced latency.12

Speculation intertwines with the reduced helper sta-
tus of data-driven threads. The main thread’s ultimate
responsibility for the architectural interface immedi-
ately relieves data-driven threads from any correctness
obligations. Without these obligations, data-driven
threads can be constructed using available dataflow
information. In addition, data-driven threads need not
comprise a complete partitioning of the program—
their use can be reserved for only those situations that
most need their parallelism-enhancing characteristics.

SYSTEM ARCHITECTURE
Future support for speculative threads depends on

the discovery of acceptable solutions to several prob-
lems, ranging from low-level thread-implementation
to high-level thread-usage strategies.

The most important decision involves the division
of labor between the programmer, compiler, operating
system, and processor. The processor will execute the
threads, but what entity should be responsible for
other thread-related tasks such as thread selection,
spawning, scheduling, resource allocation, and com-
munication? Placing all responsibility on the proces-
sor presents an attractive option. Given that future
processors will have nearly a billion transistors, a few
million could be dedicated easily to multithreading-
specific management tasks.

A processor-only implementation has no forward-
or backward-compatibility problems; it preserves the
current system interface while enhancing the perfor-
mance of legacy software. This implementation has
drawbacks, however, including added design com-
plexity and the mandated rigidity and simplicity of
thread-selection and management algorithms.

Because thread selection presents an important and
delicate problem, we could assign this function to soft-
ware or even the programmer, thereby probably pro-
ducing much better thread divisions. However, any path
in which multithreading information flows from or
through software to the hardware requires a change in
the software-hardware interface. Such changes typi-
cally meet with resistance, especially if they have archi-
tectural semantics that must be implemented. Successful

approaches will likely be those that perturb an existing
architecture only slightly, and preferably not at all.

We expect that thread selection will be implemented
in software and conveyed to hardware, but in an advi-
sory form. The prefetch instructions found in recent
architectures provide one example of advisory infor-
mation. In this model, hardware can act upon the infor-
mation fully, partially, or selectively, or even ignore it
altogether, all without impacting correctness. The
processor retains the option of enhancing or refining
this information dynamically as well. Restricting spec-
ulative thread information to an advisory role relieves
the architect of many functionality guarantees that
would hamper future-generation implementations.

W e must develop several technologies before
speculative multithreading becomes com-
monplace in mainstream processors. These

technologies include means for conveying thread
information from software to hardware, algorithms
for thread selection and management, and hardware
and software to support the simultaneous execution
of a collection of speculative and nonspeculative
threads. Our research group is investigating several
aspects of speculative multithreaded processors. This
work includes identifying problem scenarios that
could benefit from multithreading, identifying and
selecting appropriate threads, determining methods
of conveying thread information from software to
hardware, and investigating the microarchitectural
aspects of simultaneously executing an ensemble of
speculative and nonspeculative threads in a profitable
manner. The main challenge, which encompasses all
aspects of this work, involves finding appropriate
threads for relevant problem situations so that an ade-
quate benefit can be achieved when they are executed
on an underlying microarchitecture. ✸

Acknowledgments
This work was supported in part by National Science

Foundation grants MIP-9505853, CCR-9900584 and
0071924, donations from Intel and Sun Microsystems,
the University of Wisconsin Graduate School, and by
an Intel Foundation Graduate Fellowship.

References
1. Arvind and R.S. Nikhil, “Executing a Program on the

MIT Tagged-Token Dataflow Architecture,” IEEE
Trans. Computers, Mar. 1990, pp. 300-318.

2. R.S. Chappell et al., “Simultaneous Subordinate Micro-
threading (SSMT),” Proc. 26th Int’l Symp. Computer
Architecture, ACM Press, New York, 1999, pp. 186-195.

3. J. Emer, “Simultaneous Multithreading: Multiplying
Alpha’s Performance,” presentation, Microprocessor

We expect that
thread selection

will be implemented
in software and

conveyed to
hardware, but in
an advisory form.

Forum, Oct. 1999.
4. M. Franklin and G.S. Sohi, “ARB: A Hardware Mech-

anism for Dynamic Reordering of Memory References,”
IEEE Trans. Computers, May 1996, pp. 552-571.

5. L. Hammond, B.A. Nayfeh, and K. Olukotun, “A Single-
Chip Multiprocessor,” Computer, Sept. 1997, pp. 79-85.

6. R.A. Iannucci, “Toward a Dataflow/von Neumann
Hybrid Architecture,” Proc. 15th Int’l Symp. Computer
Architecture, ACM Press, New York, 1988, pp. 131 -140.

7. A. Moshovos et al., “Dynamic Speculation and Syn-
chronization of Data Dependence,” Proc. 24th Int’l
Symp. Computer Architecture, ACM Press, New York,
1997, pp. 181-193.

8. N. Nishi et al., “A 1-GIPS 1-W Single-Chip Tightly Cou-
pled Four-Way Multiprocessor with Architecture Sup-
port for Multiple Control-Flow Execution,” Proc. 47th
Int’l IEEE Solid-State Circuits Conf., IEEE Press, Pis-
cataway, N.J., 2000, pp. 418-475.

9. A. Roth and G.S. Sohi, “Speculative Data-Driven Mul-
tithreading,” Proc. 7th Int’l Symp. High-Performance
Computer Architecture (HPCA-7), IEEE CS Press, Los
Alamitos, Calif., 2001, pp. 37-48.

10. G.S. Sohi, S. Breach, and T.N. Vijaykumar, “Multiscalar
Processors,” Proc. 22nd Int’l Symp. Computer Archi-
tecture, ACM Press, New York, 1991, pp. 414-425.

11. M. Tremblay et al., “The MAJC Architecture: A Synthe-
sis of Parallelism and Scalability,” IEEE Micro, Nov./
Dec. 2000, pp. 12-25.

12. D.M. Tullsen et al., “Exploiting Choice: Instruction Fetch
and Issue on an Implementable Simultaneous Multi-
threading Processor,” Proc. 23rd Int’l Symp. Computer
Architecture, ACM Press, New York, 1996, pp. 191-202.

Gurindar S. Sohi is a professor in the Computer Sciences
and Electrical and Computer Engineering Departments
at the University of Wisconsin-Madison. His research
interests focus on architectural and microarchitectural
techniques for high-performance microprocessors,
including instruction-level parallelism, out-of-order
execution with precise exceptions, nonblocking caches,
speculative multithreading, and memory-dependence
speculation. He received a PhD in electrical and com-
puter engineering from the University of Illinois, Urbana-
Champaign. He is a member of the IEEE and the ACM.
Contact him at sohi@cs.wisc.edu.

Amir Roth is a PhD candidate in the Department of
Computer Sciences at the University of Wisconsin-Madi-
son. His research interests are in the area of computer
architecture, primarily the design of future high-perfor-
mance microprocessors. He is also interested in emerg-
ing applications and their performance needs, compiler
technology, and opportunities for software-hardware
cooperation. He received an MS in computer science
from the University of Wisconsin-Madison. He is a mem-
ber of the ACM. Contact him at amir@cs.wisc.edu.

A comprehensive, peer-reviewed

resource for the scientific

computing field.

A comprehensive, peer-reviewed

resource for the scientific

computing field.

Areas of expertise include

■ Astronomy

■ Chemistry

■ Visualization

■ Signal Processing

■ Professional Resources
and

more…

COMPUTER.ORG/CISEPORTAL

