
A Survey of Web Caching Schemes for the Internet

Jia Wang
�

Cornell Network Research Group (C/NRG)
Department of Computer Science, Cornell University

Ithaca, NY 14853-7501
jiawang

�
cs.cornell.edu

Abstract

The World Wide Web can be considered as a large distributed in-
formation system that provides access to shared data objects. As
one of the most popular applications currently running on the In-
ternet, the World Wide Web is of an exponential growth in size,
which results in network congestion and server overloading. Web
caching has been recognized as one of the effective schemes to alle-
viate the service bottleneck and reduce the network traffic, thereby
minimize the user access latency. In this paper, we first describe
the elements of a Web caching system and its desirable properties.
Then, we survey the state-of-art techniques which have been used
in Web caching systems. Finally, we discuss the research frontier
in Web caching.

1 Introduction

The World Wide Web (WWW) can be considered as a large dis-
tributed information system that provides access to shared data ob-
jects. The predicted size of the WWW is shown in Figure 1 [5]. As
the WWW continues its exponential growth (the size of static Web
pages increases approximately 15 � per month), two of the major
problems that today’s Web users are suffering from are the network
congestion and server overloading. The rapid growth of the WWW
could be attributed to the fact that at least till now, its usage is quite
inexpensive, and accessing information is faster using the WWW
than using any other means. Also, the WWW has documents that
appeal to a wide range of interests, e.g. news, education, scientific
research, sports, entertainment, stock market growth, travel, shop-
ping, weather, maps, etc. Although the Internet backbone capacity
increases as 60 � per year, the demand for bandwidth is likely to
outstrip supply for the foreseeable future as more and more infor-
mation services are moved onto the Web. If some kind of solution
is not undertaken for the problems caused by its rapidly increas-
ing growth, the WWW would become too congested and its entire
appeal would eventually be lost.

Researchers have been working on how to improve Web per-
formance since the early 90’s. Caching popular objects at locations
close to the clients has been recognized as one of the effective solu-
tions to alleviate Web service bottlenecks, reduce traffic over the In-
ternet and improve the scalability of the WWW system. The idea of
using proxy servers [49] to cache arose when they were firstly used
to allow accesses to the Internet from users within a firewall (see
Figure 2). For security reasons, companies run a special type of
HTTP servers called “proxy” on their firewall machines. A proxy

�
This material is based upon work supported under a National Science Foundation

Graduate Fellowship.

0

100

200

300

400

500

600

700

Si
ze

 o
f

di
st

in
ct

, s
ta

tic
 p

ag
es

 (
in

 m
ill

iio
ns

)

Jun-97 Nov-97 Mar-98 May-99

125

200

275

600

Figure 1: Size of distinct, static Web pages.

server typically processes requests from within a firewall by for-
warding them to the remote servers, intercepting the responses, and
sending the replies back to the clients. Since the same proxy servers
are typically shared by all clients inside of the firewall, naturally
this leads to the question of the effectiveness of using these proxies
to cache documents. Clients within the same firewall usually be-
long to the same organization and likely share common interests.
They would probably access the same set of documents and each
client tends to browse back and forth within a short period of time.
Therefore on the proxy server a previously requested and cached
document would likely result in future hits. Web caching at proxy
server can not only save network bandwidth but also lower access
latency for the clients.

proxy on
firewall
machine

HTTP
server

HTTP
server

HTTP
server

clients within firewall

Figure 2: A proxy running on the firewall machine to service clients
inside the subnet.

Documents can be cached on the clients, the proxies, and the
servers. The effects of Web caching are two-fold. First, it has been

shown that caching documents can improve Web performance sig-
nificantly [13] [26] [42]. There are several advantagesof using Web
caching.

1. Web caching reduces bandwidth consumption, thereby de-
creases network traffic and lessens network congestion.

2. Web caching reduces access latency due to two reasons:

(a) Frequently accessed documents are fetched from
nearby proxy caches instead of remote data servers, the
transmission delay is minimized.

(b) Because of the reduction in network traffic, those docu-
ments not cached can also be retrieved relatively faster
than without caching due to less congestion along the
path and less workload at the server.

3. Web caching reduces the workload of the remote Web server
by disseminating data among the proxy caches over the wide
area network.

4. If the remote server is not available due to the remote server’s
crash or network partitioning, the client can obtain a cached
copy at the proxy. Thus, the robustness of the Web service is
enhanced.

5. A side effect of Web caching is that it provides us a chance to
analyze an organization’s usage patterns.

Furthermore, as suggested by [40] [44], a group of caches co-
operating with each other in terms of serving each other’s requests
and making storage decisions result in a powerful paradigm to im-
prove cache effectiveness. However, it’s worth to note that there are
several disadvantages of using a caching system in Web services.

1. The main disadvantage is that a client might be looking at
stale data due to the lack of proper proxy updating.

2. The access latency may increase in the case of a cache miss
due to the extra proxy processing. Hence, cache hit rate
should be maximized and the cost of a cache miss should be
minimized when designing a caching system.

3. A single proxy cache is always a bottleneck. A limit has to be
set for the number of clients a proxy can serve. An efficiency
lower bound (i.e. the proxy system is ought to be at least
as efficient as using direct contact with the remote servers)
should also be enforced.

4. A single proxy is a single point of failure.

5. Using a proxy cache will reduce the hits on the original
remote server which might disappoint a lot of information
providers, since they cannot maintain a true log of the hits
to their pages. Hence, they might decide not to allow their
documents to be cacheable.

A lot of research work have been done to study the effect of
Web caching and maximize its benefits. There are several subtle
issues on employing a caching system to facilitate Web services
which need to be studied and solved (e.g. proxy location, cache
routing, dynamic data caching, etc). A naive caching system may
actually degrade Web performance drastically and introduce insta-
bilities into network [30]. Intelligent and careful design is crucial
to improve the quality of Web service.

The remainder of this paper is organized as follows. Section
2 outlines the elements of a World Wide Web caching system and
Section 3 describes some desirable characteristics. Section 4 gives
a brief survey of previous works on schemes to improve Web per-
formance. Finally, we summarize our paper by identifying the re-
search frontier in Web caching in Section 5.

2 Elements of a World Wide Web caching system

A generic model of Web caching system is shown in Figure 3. In
such system, documents can be cached at the clients, the proxies,
and the servers. A client always requests page from its local proxy
if it doesn’t have a valid copy of such page in its own browser’s
cache. Upon receiving a request from client, the proxy first checks
to see if it has the requested page. If so, it returns the page to the
client. If it doesn’t have the requested page in its cache, it sends a
request to its cooperative proxies or the server. Upon receiving a
request from another proxy, a proxy checks if it has the requested
page. If so, it returns the page to the requesting proxy. If not, the
proxy may further forward the request to other proxies or the server.
If none of the cooperative proxies has such page, the requested page
is fetched from the server.

In order to make a WWW caching system work, the following
problems need to be solved properly:

� How are the cache proxies organized, hierarchically, dis-
tributed, or hybrid? (caching system architecture)

� Where to place a cache proxy in order to achieve optimal per-
formance? (proxy placement)

� What can be cached in the caching system, data, connection,
or computation? (caching contents)

� How do proxies cooperate with each other? (proxy coopera-
tion)

� What kind of data/information can be shared among cooper-
ated proxies? (data sharing)

� How does a proxy decide where to fetch a page requested by
a client? (cache resolution/routing)

� How does a proxy decide what and when to prefetch from
Web server or other proxies to reduce access latency in the
future? (prefetching)

� How does a proxy manage which page to be stored in its cache
and which page to be removed from its cache? (cache place-
ment and replacement)

� How does a proxy maintain data consistency? (cache co-
herency)

� How is the control information (e.g. URL routing informa-
tion) distributed among proxies? (control information distri-
bution)

� How to deal with data which is not cacheable? (dynamic data
caching)

These questions must be addressed in every reasonable caching
system. Depending upon the choices made in answering each ques-
tion, a variety of schemes have been proposed. They will be dis-
cussed in Section 4.

3 Desirable properties of WWW caching system

Besides the obvious goals of Web caching system, we would like a
Web caching system to have a number of properties. They are fast
access, robustness, transparency, scalability, efficiency, adaptivity,
stability, load balanced, ability to deal with heterogeneity, and sim-
plicity. We discuss them in turn.

clients

clients

clients

Web server Web server

proxy

cooperation

Figure 3: A generic WWW caching system.

� Fast access. From users’ point of view, access latency is an
important measurement of the quality of Web service. A de-
sirable caching system should aim at reducing Web access
latency. In particular, it should provide user a lower latency
on average than those without employing a caching system.

� Robustness. From users’ prospect, the robustness means
availability, which is another important measurement of qual-
ity of Web service. Users desire to have Web service available
whenever they want. The robustness has three aspects. First,
it’s desirable that a few proxies crash wouldn’t tear the en-
tire system down. The caching system should eliminate the
single point failure as much as possible. Second, the caching
system should fall back gracefully in case of failures. Third,
the caching system would be design in such a way that it’s
easy to recover from a failure.

� Transparency. A Web caching system should be transparent
for the user, the only results user should notice are faster re-
sponse and higher availability.

� Scalability. We have seen an explosive growth in network
size and density in last decades and is facing a more rapid
increasing growth in near future. The key to success in such
an environment is the scalability. We would like a caching
scheme to scale well along the increasing size and density of
network. This requires all protocols employed in the caching
system to be as lightweight as possible.

� Efficiency. There are two aspects to efficiency. First, how
much overhead does the Web caching system impose on net-
work? We would like a caching system to impose a minimal
additional burden on the network. This includes both control
packets and extra data packets incurred by using a caching
system. Second, the caching system shouldn’t adopt any
scheme which leads to under-utilization of critical resources
in network.

� Adaptivity. It’s desirable to make the caching system adapt
to the dynamic changing of the user demand and the network
environment. The adaptivity involves several aspects: cache
management, cache routing, proxy placement, etc. This is
essential to achieve optimal performance.

� Stability. The schemes used in Web caching system shouldn’t
introduce instabilities into the network. For example, naive

cache routing based on dynamic network information will re-
sult in oscillation. Such an oscillation is not desirable since
the network is under-utilization and the variance of the access
latency to a proxy or server would be very high.

� Load balancing. It’s desirable that the caching scheme dis-
tributes the load evenly through the entire network. A sin-
gle proxy/server shouldn’t be a bottleneck (or hot spot) and
thereby degrades the performance of a portion of the network
or even slow down the entire service system.

� Ability to deal with heterogeneity. As networks grow in scale
and coverage, they span a range of hardware and software
architectures. The Web caching scheme need adapt to a range
of network architectures.

� Simplicity. Simplicity is always an asset. Simpler schemes are
easier to implement and likely to be accepted as international
standards. We would like an ideal Web caching mechanism
to be simple to deploy.

4 Web caching schemes

Having described the attributes of an ideal Web caching system, we
now survey some schemes described in the literature and point out
their inadequacies.

4.1 Caching architectures

The performance of a Web cache system depends on the size of its
client community; the bigger is the user community, the higher is
the probability that a cached document (previously requested) will
soon be requested again. Caches sharing mutual trust may assist
each other to increase the hit rate. A caching architecture should
provide the paradigm for proxies to cooperate efficiently with each
other.

4.1.1 Hierarchical caching architecture

One approach to coordinate caches in the same system is to set up
a caching hierarchy. With hierarchical caching, caches are placed
at multiple levels of the network. For the sake of simplicity, we
assume that there are four levels of caches: bottom, institutional,
regional, and national levels [69]. At the bottom level of the hier-
archy there are the client/browser caches. When a request is not
satisfied by the client cache, the request is redirected to the institu-
tional cache. If the document is not found at the institutional level,
the request is then forwarded to the regional level cache which in
turn forwards unsatisfied requests to the national level cache. If the
document is not found at any cache level, the national level cache
contacts directly the original server. When the document is found,
either at a cache or at the original server, it travels down the hier-
archy, leaving a copy at each of the intermediate caches along its
path. Further requests for the same document travel up the caching
hierarchy until the document is hit at some cache level.

Hierarchical Web caching was first proposed in the Harvest
project [14]. Other examples of hierarchical caching are Adaptive
Web caching [58], Access Driven cache [83], etc. A hierarchical
architecture is more bandwidth efficient, particularly when some
cooperating cache servers do not have high-speed connectivity. In
such a structure, popular Web pages can be efficiently diffused to-
wards the demand. However, there are several problems associated
with a caching hierarchy [69] [71]:

1. To set up such a hierarchy, cache servers often need to be
placed at the key access points in the network. This often
requires significant coordination among participating cache
servers.

2. Every hierarchy level may introduce additional delays.

3. High level caches may become bottlenecks and have long
queueing delays.

4. Multiple copies of the same document are stored at different
cache levels.

4.1.2 Distributed caching architecture

Recently, a number of researchers have proposed the setup of a to-
tally distributed caching scheme, where there are only caches at
the bottom level. In distributed Web caching systems [61] [71],
there are no other intermediate cache levels than the institutional
caches, which serve each others’ misses. In order to decide from
which institutional cache to retrieve a miss document, all institu-
tional caches keep meta-data information about the content of every
other institutional cache. To make the distribution of the meta-data
information more efficient and scalable, a hierarchical distribution
mechanism can be employed. However, the hierarchy is only used
to distribute directory information about the location of the doc-
uments, not actual document copies. With distributed caching,
most of the traffic flows through low network levels, which are less
congested and no additional disk space is required at intermediate
network levels. In addition, distributed caching allows better load
sharing and are more fault tolerant. Nevertheless, a large-scale de-
ployment of distributed caching may encounter several problems
such as high connection times, higher bandwidth usage, adminis-
trative issues, etc. [69].

There are several approaches to the distributed caching. The
Harvest group designed the Internet Cache Protocol (ICP) [79],
which supports discovery and retrieval of documents from neigh-
boring caches as well as parent caches. Another approach to dis-
tributed caching is the Cache Array Routing protocol (CARP) [73],
which divides the URL-space among an array of loosely coupled
caches and lets each cache store only the documents whose URL
are hashed to it. Provey and Harrison also proposed a distributed
Internet cache [61]. In their scheme upper level caches are replaced
by directory servers which contain location hints about the docu-
ments kept at every cache. A hierarchical meta-data-hierarchy is
used to make the distribution of these location hints more efficient
and scalable. Tewari et al. proposed a similar approach to im-
plement a fully distributed Internet caching system where location
hints are replicated locally at the institutional caches [71]. In the
central directory approach (CRISP) [33], a central mapping service
ties together a certain number of caches. In Cachemesh system
[74], cache servers establish a cache routing table among them,
and each cache server becomes the designed server for a number
of Web sites. User requests are then forwarded to the proper cache
server according to the cache routing table. In Summary Cache
[29], Cache Digest [68], and the Relais project [66], caches inter-
exchange messages indicating their content and keep local directo-
ries to facilitate finding documents in other caches.

4.1.3 Hybrid caching architecture

In a hybrid scheme, caches may cooperate with other caches at the
same level or at a higher level using distributed caching. ICP [79] is
a typical example. The document is fetched from a parent/neighbor
cache that has the lowest RTT. Rabinovich et al. [65] proposed to
limit the cooperation between neighbor caches to avoid obtaining

documents from distant or slower caches, which could have been
retrieved directly from the origin server at a lower cost.

4.1.4 Performance of caching architectures

The main performance measure is the expected latency to retrieve
a Web document. It’s debatable that which caching architecture
can achieve the optimal performance. A recent research work [69]
shows that hierarchical caching has shorter connection times than
distributed caching, and hence, placing additional copies at inter-
mediate levels reduces the retrieval latency for small documents.
It’s also shown that distributed caching has shorter transmission
times and higher bandwidth usage than hierarchical caching. A
“well configured” hybrid scheme can combine the advantages of
both hierarchical and distributed caching, reducing the connection
time as well as the transmission time.

4.2 Cache resolution/routing

Scalability and deployment concerns have led most designers of
Web caching infrastructures to schemes based on deploying a large
number of Web caches scattered over the Internet. The main chal-
lenge in such approaches is how to quickly locate a cache contain-
ing the desired document. While this problem is similar to the gen-
eral problem of network routing, it cannot be solved in the same
way. Conventional routing protocols scale because of the route
aggregation made possible by hierarchical addressing. However,
since documents with the same URL prefixes or server address pre-
fixes will not necessarily be delivered to the same clients, there is
no necessary location among their cache locations. With no way to
aggregate routes, the cache routing tables would be unmanageably
large. In addition, they have to be updated frequently. Out-of-date
cache routing information leads to cache misses. In order to min-
imize the cost of a cache miss, an ideal cache routing algorithm
should route requests to the next proxy which is believed to con-
tain the desired document and along (or close to) the path from the
client towards the Web server.

The common approach is to grow a caching distribution tree
away from each popular server towards sources of high demand and
do cache resolution either via cache routing table or via hash func-
tions. This works well for requests for very popular documents,
because these documents will propagate out to many caches, and
so will be found quickly. For less popular documents, the search
may follow a long and circuitous path of numerous failed checks.
The impact of this is substantial since the hit rate on Web caches is
typically less than 50

�
, indicating a large number of documents of

have only low to moderate popularity [2].

4.2.1 Cache routing table

Malpani et al. [57] work around this problem by making a group
of caches function as one. A user’s request for a page is directed
to an arbitrary cache. If the page is stored there, it’s returned to
the user. Otherwise, the cache forwards the requests to all other
caches via IP multicast. If the page is cached nowhere, the request
is forwarded to the home site of the page.

Harvest cache system [14] organizes caches in a hierarchy and
uses a cache resolution protocol called Internet Cache Protocol
(ICP) [79]. Requests for Web documents are forwarded up the
hierarchy in search of a cached copy. In attempt to keep from
overloading caches at the root, caches query their siblings before
passing requests upwards.

Adaptive Web Caching [58] uses a mesh of caches in which dis-
tribution trees for each server are built. The caches in the mesh are

organized into overlapping multicast groups through which a re-
quest travels in search of a cached document. This scheme benefits
from constructing different distribution trees for different servers
(so no root node will be overloaded) and being robust and self-
configuring. For less popular objects, queries travel through many
caches, and each check requires a query to and responses from a
group of machines. The authors suggest dealing with this problem
by limiting the number of caches a request will access.

Provey and Harrison [61] construct a manually configured hi-
erarchy that must be traversed by all requests. Their scheme is
promising in the way that it reduces load on top-level caches by
only keeping location pointers in the hierarchy.

Wang [74] describes a preliminary plan in Cachemesh system
to put cache routing tables in caches to specify, for each page or
server, where to look next if the local cache does not hold the docu-
ment. A default route for some documents would help to keep table
size reasonable.

To reduce the time needed to find relatively unpopular, but
cached, documents and the latency of searching for documents that
are not cached, Legedza and Guttag [51] integrate the routing of re-
quests with the datagram routing services already provided by the
network layer.

4.2.2 Hashing function

The Cache Array Routing Protocol (CARP) [73] allows for “query-
less” distributed caching by using a hash function based upon the
“array membership list” and URL to provide the exact cache lo-
cation of an object, or where it will be cached upon downloading
from the Internet. When one proxy server is added or removed, 1/ �

URLs need to be reassigned and the new hash function need to be
distributed among proxies, where � is the number of proxy servers.

In Summary cache [29], each proxy keeps a summary of the
URLs of cached documents at each participating proxy and checks
these summaries for potential hits before sending any queries. To
reduce the overhead, the summaries are stored as a Bloom filter [4]
and updated only periodically. Experiments have shown that Sum-
mary cache reduces the number of inter-cache protocol messages,
bandwidth consumption, and protocol CPU overhead significantly
while maintaining almost the same cache hit ratio as ICP (Internet
Caching Protocol) [79].

Karger et al. [41] describe a theoretically based technique for
constructing per-server distribution trees with good load balancing
properties using a special kind of hashing called consistent hash-
ing. A consistent hash function is one which only needs minimal
changes as the range of the function changes. Consistant hashing
technique is designed to relieving hot spots on the WWW and is
still under development. Additionally, it may solve the reassign-
ment problem present in CARP [73].

4.3 Prefetching

Although Web performance is improved by caching documents at
proxies, the benefit from this technique is limited [25] [42]. Pre-
vious research has shown that the maximum cache hit rate can be
achieved by any caching algorithm is usually no more than 40

�
to

50
�

. In other words, regardless of the caching scheme in use, one
out of two documents can not be found in cache [2]. One way to
further increase the cache hit rate is to anticipate future document
requests and preload or prefetch these documents in a local cache.

Prefetching can be applied in three ways in the Web contexts:

1. Between browser clients and Web servers.

2. Between proxies and Web servers.

3. Between browser clients and proxies.

4.3.1 Between browser clients and Web servers

Early studies focus on the prefetching schemes between browser
clients and Web servers. Padmanabhan and Mogul [63] analyze
the latency reduction and network traffic of prefetching using Web
server traces and trace-driven simulation. The prediction algorithm
they used is based on the Prediction-by-Partial-Matching (PPM)
data compressor with prefix depth of 1. The study shows that
prefetching from Web servers to individual clients can reduce client
latency by 45

�
at the expense of doubling the network traffic.

Bestavros and Cunha [7] present a model for speculative dissem-
ination of World Wide Web documents. The work shows that refer-
ence patterns observed at a Web server can be used as an effective
source of information to drive prefetching, and reaches similar re-
sults as [62]. Cunha and Jaccoud use [17] a collection of Web client
traces and study how effectively a user’s future Web accesses can
be predicted from his or her past Web accesses. They show that a
number of models work well and can be used in prefetching. Crov-
ella and Barford [12] analyzed the network effects of prefetching
and shows that prefetching can reduce access latency at the cost
of increasing network traffic and increasing network traffic bursti-
ness (and thereby increasing network delays). They proposed a
rate-controlled prefetching scheme to minimize the negative net-
work effect by minimizing the transmission rate of prefetched doc-
uments. However, these early studies do not consider or model
caching proxies and hence fail to answer the question about perfor-
mance of prefetching completely.

4.3.2 Between proxies and Web servers

After proxies have been used to assist Web access, research interest
has been shifted to investigating prefetching techniques between
proxies and Web servers. Kroeger et al. [42] investigate the per-
formance limits of prefetching between Web servers and proxies,
and show that combining perfect caching and perfect prefetching
at the proxies can at least reduce the client latency by 60

�
for high

bandwidth clients. Markatos and Chronaki [56] propose that Web
servers regularly push their most popular documents to Web prox-
ies, which then push those documents to the clients. They evaluate
the performance of the strategy using several Web server traces and
find that this technique can anticipate more than 40

�
of a client’s

request. The technique requires cooperation from the Web servers.
The study does not evaluate client latency reduction from the tech-
nique. Cohen et al. [18] also investigate similar techniques. Wcol
[22] is a proxy software that prefetches documents, links, and em-
bedded images. The proxy, however, does not push the documents
to the client. Gwertzman and Seltzer [34] discuss a technique called
Geographical Push-Caching where a Web server selectively sends
it documents to the caches that are closest to its clients. The focus
of the study is on deriving reasonably accurate network topology
information and using the information to select caches.

4.3.3 Between browser clients and proxies

Prefetching can also be done between browser clients and proxies.
Loon and Bharghavan [50] proposed a design and an implementa-
tion of a proxy system that performs the prefetching, image filter-
ing, and hoarding for mobile clients. Fan et al. [31] proposed an
approach to reduce latency by prefetching between caching proxies
and browsers. The approach relies on the proxy to predict which
cached documents a user might reference next (based on PPM data
compressor), and takes advantage of idle time between user re-
quests to either push or pull the documents to the user. Simulation

results show that prefetching combined with large browser cache
and delta-compression can reduce client latency up to 23.4

�
.

4.3.4 Summary

The first two approaches run the risk of increasing wide area net-
work traffic, while the last one only affects the traffic over the
modems or the LANs. All of these approaches attempt to prefetch
either documents that are considered as popular at servers or doc-
uments that are predicted to be accessed by user in the near future
based on the access pattern.

4.4 Cache placement/replacement

The key aspect of the effectiveness of proxy caches is a docu-
ment placement/replacement algorithm that can yield high hit rate.
While cache placement has not been well studied, a number of
cache replacement algorithms have been proposed in recent stud-
ies, which attempt to minimize various cost metrics, such as hit
rate, byte hit rate, average latency, and total cost. They can be clas-
sified into the following three categories as suggested in [3].

1. Traditional replacement policies and its direct extensions:
� Least Recently Used (LRU) evicts the object which was

requested the least recently.
� Lease Frequently used (LFU) evicts the object which is

accessed least frequently.
� Pitkow/Recker [78] evicts objects in LRU order, except

if all objects are accessed within the same day, in which
case the largest one is removed.

2. Key-based replacement policies: (i.e. the replacement poli-
cies in this category evict objects based upon a primary key.
Ties are broken based on secondary key, tertiary key, etc.)

� Size [78] evicts the largest object.
� LRU-MIN [2] biased in favor of smaller objects. If

there are any objects in the cache which have size be-
ing at least � , LRU-MIN evicts the least recently used
such object from the cache. If there are no objects with
size being at least � , then LRU-MIN starts evicting ob-
jects in LRU order of size being at least ����� . That is,
the object who has the largest log(size) and is the least
recently used object among all objects with the same
log(size) will be evicted first.

� LRU-Threshold [2] is the same as LRU, but objects
larger than a certain threshold size are never cached.

� Hyper-G [78] is a refinement of LFU, break ties using
the recency of last use and size.

� Lowest Latency First [77] minimizes average latency
by evicting the document with the lowest download la-
tency first.

3. Cost-based replacement policies: (i.e. the replacement poli-
cies in this category employ a potential cost function derived
from different factors such as time since last access, entry
time of the object in the cache, transfer time cost, object ex-
piration time and so on.)

� GreedyDual-Size (GD-Size) associates a cost with each
object and evicts object with the lowest cost/size.

� Hybrid [77] associates a utility function with each ob-
ject and evicts the one has the least utility to reduce the
total latency.

� Lowest Relative Value [54] evicts the object with the
lowest utility value.

� Least Normalized Cost Replacement (LCN-R) [70] em-
ploys a rational function of the access frequency, the
transfer time cost and the size.

� Bolot/Hoschka [10] employs a weighted rational func-
tion of transfer time cost, the size, and the time last
access.

� Size-Adjusted LRU (SLRU) [3] orders the object by ra-
tio of cost to size and choose objects with the best cost-
to-size ratio.

� Server-assisted scheme [19] models the value of
caching an object in terms of its fetching cost, size, next
request time, and cache prices during the time period
between requests. It evicts the object of the least value.

� Hierarchical GreedyDual (Hierarchical GD) [40] does
object placement and replacement cooperatively in a hi-
erarchy.

To sum up, a great deal of effort has been made to maximize the
hit rate. However, the performance of replacement policies depends
highly on traffic characteristics of WWW accesses. No known pol-
icy can outperform others for all Web access patterns.

4.5 Cache coherency

Caches provide lower access latency with a side effect: every cache
sometimes provide users with stale pages - pages which are out of
date with respect to their master copies on the Web servers where
the pages originated [27]. Every Web cache must update pages in
its cache so that it can give users pages which are as fresh as pos-
sible. Caching and the problem of cache coherency on the World
Wide Web are similar to the problems of caching in distributed file
systems. However, the Web is different than a distributed file sys-
tem in its access patterns, its larger scale, and its single point of
updates for Web objects [35].

4.5.1 HTTP commands that assist Web proxies in maintain-
ing cache coherence

Before dealing with the cache coherence mechanisms, we first give
a brief overview about the commands that HTTP [37] provides to
assist Web proxies in maintaining cache coherence.

1. HTTP GET. Retrieves a document given its URL.

2. Conditional GET. HTTP GET combined with the header IF-
Modified-Since. date can be used by proxies to ask a remote
server to return a copy only if it has been modified.

3. Pragma:no-cache. This header appended to GET can indicate
that the object is to be reloaded from the server irrespective
of whether it has been modified or not. Most browsers like
Netscape offer a Reload button which uses this header to re-
trieve the original copy.

4. Last-Modified:date. Returned with every GET message and
indicates the last time the page was modified.

5. Date:date. The last time the object was considered to
be fresh; this is different from the Last-Modified header.
Netscape, one of the most popular browsers, does not pro-
vide a mechanism for displaying the value of a page’s Date
header in the Document Info window.

The above commands have been used by the clients via Web
proxies. If a remote server receives a Conditional GET request but
does not support it, it just sends the entire document. However,
Loutonen and Altis reported in [49] that at least all major HTTP
servers already support the Conditional GET header.

4.5.2 Cache coherence mechanisms

Current cache coherency schemes providing two types of consis-
tency. Strong cache consistency and weak cache consistency have
been proposed and investigated for caches on the World Wide Web.

1. Strong cache consistency

(a) Client validation. This approach is also called polling-
every-time. The proxy treats cached resources as po-
tentially out-of-date on each access and sends an If-
Modified-Since header with each access of the re-
sources. This approach can lead to many 304 responses
(HTTP response code for “Not Modified”) by server if
the resource does not actually change.

(b) Server invalidation. Upon detecting a resource change,
the server sends invalidation messages to all clients that
have recently accessed and potentially cached the re-
source [21]. This approach requires a server to keep
track of lists of clients to use for invalidating cached
copies of changed resources and can become unwieldy
for a server when the number of clients is large. In addi-
tion, the lists themselves can become out-of-date caus-
ing the server to send invalidation messages to clients
who are no longer caching the resource.

2. Weak cache consistency

(a) Adaptive TTL. The adaptive TTL (also called Alex pro-
tocol [11]) handles the problem by adjusting a docu-
ment’s time-to-live based on observations of its life-
time. Adaptive TTL takes advantage of the fact that file
lifetime distribution tends to be bimodal; if a file has
not been modified for a long time, it tends to stay un-
changed. Thus, the time-to-live attribute to a document
is assigned to be a percentage of the document’s current
“age”, which is the current time minus the last modified
time of the document. Studies [11] [34] have shown
that adaptive TTL can keep the probability of stale doc-
uments within reasonable bounds (� 5

�
). Most proxy

servers (e.g. CERN httpd [49] [75]) use this mech-
anism. The Harvest cache [14] mainly uses this ap-
proach to maintain cache consistency, with the percent-
age set to 50

�
. However, there are several problems

with this expiration-based coherence [27]. First, user
must wait for expiration checks to occur even though
they are tolerant to the staleness of the requested page.
Second, if a user is not satisfied with the staleness of
a returned document, they have no choice but to use a
Pragma:No-Cache request to load the entire document
from its home site. Third, the mechanism provides no
strong guarantee towards document staleness. Forth,
users can not specify the degree of staleness they are
willing to tolerate. Finally, when the user aborts a doc-
ument load, caches often abort a document load as well.

(b) Piggyback Invalidation. Krishnamurthy et al. propose
piggyback invalidation mechanisms to improve the ef-
fectiveness of the cache coherency [18] [45] [46] [47].

Three invalidation mechanisms are proposed. The Pig-
gyback Cache Validation (PCV) [45] capitalizes on re-
quests sent from the proxy cache to the server to im-
prove coherency. In the simplest case, whenever a
proxy cache has a reason to communicate with a server
it piggybacks a list of cached, but potentially stale, re-
sources from that server for validation. The basic idea
of the Piggyback Server Invalidation (PSI) mechanism
[46] is for servers to piggyback on a reply to a proxy,
the list of resources that have changed since the last ac-
cess by this proxy. The proxy invalidates cached entries
on the list and can extend the lifetime of entries not on
the list. They also proposed a hybrid approach which
combines the PSI and the PCV techniques to achieve
the best overall performance [47]. The choice of the
mechanism depends on the time since the proxy last re-
quested invalidation for the volume [18]. If the time
is small, then the PSI mechanism is used, while for
longer gaps the PCV mechanism is used to explicitly
validate cache contents. The rationale is that for short
gaps, the number of invalidations sent with PSI is rela-
tively small, but as the time grows longer the overhead
for sending invalidation will be larger than the overhead
for requesting validations.

4.6 Caching contents

Cache proxy has been recognized as an effective mechanism to im-
prove Web performance. A proxy may serve in three roles: data
cache, connection cache , and computation cache. A recent study
has shown that caching Web pages at proxy reduces the user access
latency 3

�
- 5

�
comparing to the no-proxy scheme. In presence of

P-HTTP, a proxy can be used as a connection cache. By using per-
sistent connections between clients and proxy and between proxy
and Web server, the total latency improvements grow substantially
(i.e. 20

�
- 40

�
) [13] [30].

Computation caching can be viewed as the Web server repli-
cates and migrates some of its services to the proxies to alleviate
the server bottleneck. One application of such computation caching
is dynamic data caching. The motivation is that, in presence of cur-
rent caching schemes, the hit ratio at proxy is at most 50

�
, which

is limited by the fact that a significant percentage of Web pages
is dynamically generated and thereby is not cacheable. Computa-
tion caching can be used to improve the performance to retrieve
dynamic data by caching dynamic data at proxies and migrating a
small piece of computation to proxies [16] [23] [53] to generate or
maintain the cached data.

4.7 User access pattern prediction

Proxy’s policies for managing cached resources (i.e. prefetching,
coherence, placement and replacement) and TCP connections rely
on the assumptions about client access pattern. To improve the in-
formation exchanges between Web servers and proxies, a variety of
techniques have been proposed to predict the future requests. One
set of approaches are to group resources that likely to be accessed
together based on the likelihood that pairs of resources are accessed
together, server file system structure, etc [20] [83]. Others are using
Prediction by Partial Match (PPM) model to predict which page is
likely to be accessed in near future [31] [62] [63].

4.8 Load balancing

Many of us have experienced the hot spot phenomenon in the con-
text of Web. Hot spots occur any time a large number of clients

wish to simultaneously access data or get some services from a
single server. If the site is not provisioned to deal with all of
these clients simultaneously, service may be degraded or lost. Sev-
eral approaches to overcoming the hot spots have been proposed.
Most use some kind of replication strategy to store copies of hot
pages/services throughout the Internet; this spreads the work of
serving a hot page/service across several servers (i.e. proxies) [14]
[36] [57] [64].

4.9 Proxy placement

The placement of proxies is also important to achieve optimal Web
performance. The desirable properties of such proxy placement
policies are self-organizing, efficient routing, efficient placement,
load balancing, stable behavior, etc. However, little study has been
done to address this issue. Li et al. [52] attempted to solve it
based on the assumptions that the underlying network topologies
are minimum spanning tree and modeled it as a dynamic program-
ming problem.

4.10 Dynamic data caching

As we mentioned before, the benefit of current Web caching
schemes is limited by the fact that only a fraction of web data is
cacheable. Non-cacheable data (i.e. personalized data, authenti-
cated data, server dynamically generated data, etc.) is of a signifi-
cant percentage of the total data. For example, measurement results
show that 30

�
of user requests contain cookies [13] [30]. How to

make more data cacheable and how to reduce the latency to access
non-cacheable data have become crucial problems in order to im-
prove Web performance. Current approaches can be classified into
two categories: active cache and server accelerator .

Active cache [23] supports caching of dynamic documents at
Web proxies by allowing servers to supply cache applets to be at-
tached to documents and requiring proxies to invoke cache applets
upon cache hitting to finish the necessary processing without con-
tacting the server. It’s shown that Active cache scheme can result in
significant network bandwidth saving at the expense of CPU cost.
However, due to the significant CPU overhead, the user access la-
tency is much larger than that without caching dynamic objects.

Web server accelerator [53] resides in front of one or more Web
servers to speed up user accesses. It provides an API which allows
application programs to explicitly add, delete, and update cached
data. The API allows the accelerator to cache dynamic as well
as static data. Invalidating and updating cached data is facilitated
by the Data Update Propagation (DUP) algorithm which maintains
data dependence information between cached data and underlying
data in a graph [16].

4.11 Web traffic characteristics

Understanding the nature of the workloads and system demands
created by users of the World Wide Web is crucial to properly
designing and provisioning Web services. The effectiveness of
caching schemes relies on the presence of temporal locality in Web
reference streams and on the use of appropriate cache management
policies that appropriate for Web workloads. A number of mea-
surements have been done to exploit the access properties at clients,
proxies, and servers [1] [6] [8] [25] [26].

5 Conclusion

As Web service becomes more and more popular, users are suffer-
ing network congestion and server overloading. Great efforts have

been made to improve Web performance. Web caching is recog-
nized to be one of the effective techniques to alleviate server bottle-
neck and reduce network traffic, thereby minimize the user access
latency. In this paper, we give an overview of recent Web caching
schemes. By surveying previous works on Web caching, we no-
tice that there are still some open problems in Web caching such
as proxy placement, cache routing, dynamic data caching, fault tol-
erance, security, etc. The research frontier in Web performance
improvement lies in developing efficient, scalable, robust, adap-
tive, and stable Web caching scheme that can be easily deployed in
current and future network.

6 Acknowledgements

Special thanks to Prof. S. Keshav at Department of Computer Sci-
ence, Cornell University for his valuable comments.

References

[1] G. Abdulla, E. A. Fox, M. Abrams, and S. Williams, WWW
proxy traffic characterization with application to caching
(http://csgrad.cs.vt.edu/ abdulla/proxy/proxy-char.ps).

[2] M. Abrams, C. R. Standridge, G. Abdulla, S. Williams,
and E. A. Fox, Caching proxies: limitations and poten-
tials, Proceedings of the 4th International WWW Confer-
ence, Boston, MA, Dec. 1995.

[3] C. Aggarwal, J. L. Wolf, and P. S. Yu, Caching on the World
Wide Web, IEEE Transactions on Knowledge and data En-
gineering, Vol. 11, No. 1, January/February 1999.

[4] B. Bloom, Space/time trade-offs in hash coding with allow-
able errors, Communications of ACM, 13(7), pp. 422-426,
July 1970.

[5] K. Bharat and A. Broder, Measuring the Web
(http//www.research.digital.com/SRC/whatsnew/
sem.html).

[6] P. Barford, A. Bestavros, A. Bradley, and M. E. Crovella,
Changes in Web client access patterns: characteristics and
caching implications, World Wide Web (special issue on
Characterization and Performance Evaluation), 1999.

[7] A. Bestavros and C. Cunha, Server-initiated document dis-
semination for the WWW, IEEE Data Engineering Bulletin,
Sept. 1996.

[8] L. Breslau, P. Cao, L. Fan, G. Phillips, S. Shenker, Web
caching and Zipf-like distributions: evidence and implica-
tions, Proceedings of Infocom’99.

[9] S. Bhattacharjee, K. Calvert, and E. W. Zegura, Self-
organizing wide-area network caches, IEEE Infocom’98,
April 1998.

[10] J. C. Bolot and P. Hoschka, Performance engineering of the
World-Wide Web: Application to dimensioning and cache
design, Proceedings of the 5th International WWW Confer-
ence, Paris, France, May 1996.

[11] V. Cate, Alex - a global file system, Proceedings of the 1992
USENIX File System Workshop, pp. 1-12, May 1992.

[12] M. Crovella and P. Batford, The network effects of prefetch-
ing, Proceedings of Infocom’98.

[13] R. Caceres, F. Douglis, A. Feldmann, G. Glass, and M. Rabi-
novich, Web proxy caching: the devil is in the details, ACM
Performance Evaluation Review, 26(3): pp. 11-15, Decem-
ber 1998.

[14] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F.
Schwartz, and K. J. Worrel, A hierarchical Internet object
cache, Usenix’96, January 1996.

[15] P. Cao and S. Irani, Cost-aware WWW proxy caching al-
gorithms, Proceedings of the 1997 Usenix Symposium on
Internet Technologies and Systems (USITS-97), Monterey,
CA, Dec. 1997.

[16] J. Challenger, A. Iyengar, and P. Dantzig, A scalable system
for consistently caching dynamic Web data, Proceedings of
Infocom’99.

[17] C. R. Cunha, and C. F. B. Jaccoud, Determining WWW
user’s next access and its application to pre-fetching, Pro-
ceedings of ISCC’97: The second IEEE Symposium on
Computers and Communications, July 1997.

[18] E. Cohen, B. Krishnamurthy, and J. Rexford, Improving
end-to-end performance of the Web using server volumes
and proxy filters, Proceedings of Sigcomm’98.

[19] E. Cohen, B. Krishnamurthy, and J. Rexford, Evaluating
server-assisted cache replacement in the Web, Proceedings
of the European Symposium on Algorithms-98, 1998.

[20] E. Cohen, B. Krishnamurthy, and J. Rexford, Efficient algo-
rithms for predicting requests to Web servers, Proceedings
of Infocom’99.

[21] P. Cao and C. Liu, Maintaining strong cache consistency in
the World Wide Web, Proceedings of the 17th IEEE Interna-
tional Conference on Distributed Computing Systems, May
1997.

[22] K. Chinen and S. Yamaguchi, An interactive prefetching
proxy server for improvement of WWW latency, Proceed-
ings of INET’97, June 1997.

[23] P. Cao, J. Zhang, and K. Beach, Active cache: caching
dynamic contents on the Web, Proceedings of IFIP Inter-
national Conference on Distributed Systems Platforms and
Open Distributed Processing (Middleware’98), pp. 373-388.

[24] G. V. Dias, G. Cope, and R. Wija-
yaratne, A smart Internet caching system
(http://www.isoc.org.ar/inet96/proc/a4/a4 3.htm).

[25] F. Douglis, A. Feldmann, B. Krishnamurthy, and J. Mogul,
Rate of change and other metrics: a live study of the World-
Wide Web, Proceedings of the 1997 Usenix Symposium on
Internet Technologies and Systems (USITS-97), Dec. 1997.

[26] B. M. Duska, D. Marwood, and M. J. Feelay, The
measured access characteristics of World Wide
Web client proxy caches, Proceedings of USENIX
Symposium on Internet Technologies and Systems
(http://cs.ubc.ca/spider/feeley/wwwap/wwwap.html).

[27] A. Dingle and T. Partl, Web cache coherence, Fifth Interna-
tional World Wide Web Conference, Paris, France, 1996.

[28] D. Ewing, R. Hall, and M. Schwartx, A measurement study
of Internet file transfer traffic, Technical Report CU-CS-
571-92, University of Colorado, Dept. of Computer Science,
Boulder, Colorado, January 1992.

[29] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, Summary
cache: a scalable wide-area Web cache sharing protocol,
Proceedings of Sigcomm’98.

[30] A. Feldmann, R. Caceres, F. Douglis, G. Glass, and M. Ra-
binovich, Performance of Web proxy caching in heteroge-
neous bandwidth environments, Proceedings of Infocom’99.

[31] L. Fan, P. Cao, W. Lin, and Q. Jacobson, Web prefetching
between low-bandwidth clients and proxies: potential and
performance, Proceedings of the Sigmetrics’99.

[32] S. Galssman, A cache relay for the WWW,
Proceedings of the 1st International WWW
Conference, Geneva, Switzerland, May 1994
(http://www.research.digital.com/SRC/personal/
Steve Glassman/CachingTheWeb.ps).

[33] S. Gadde, M. Rabinovich, and J. Chase, Reduce,
reuse, recycle: an approach to building large In-
ternet caches, Proceedings of the HotOS’97 Work-
shop, May 1997 (http://www.cs.duke.edu/ari/cisi/crisp-
recycle/crisp-recycle.htm).

[34] J. Gwetzman and M. Seltzer, The case for geographi-
cal pushing-caching, HotOS Conference, 1994 (ftp://das-
ftp.harvadr.edn/techreports/tr-34-94.ps.gz).

[35] J. Gwetzman and M. Seltzer, World Wide Web cache con-
sistency, Proceedings of the USENIX Technical Conference,
pp. 141-152, January 1996.

[36] A. Heddaya, S. Mirdrad, and D. Yates, Diffu-
sion based caching along routing paths (http://cs-
www.bu.edu/faculty/heddaya/Pepers-NonTR/webcache-
wkp.ps.Z).

[37] Hypertext Transfer Protocol – HTTP/1.0, RFC 1945.

[38] Hypertext Transfer Protocol – HTTP/1.1, RFC 2068.

[39] J. Jung and K. Chon, Nation-wide caching
project in Korea - design and experimentation,
Proceedings of the 2nd Web Cache Workshop
(http://ircache.nlanr.net/Cache/Workshop97/Papers/
Jaeyeon/jaeyeon.html).

[40] M. R. Korupolu and M. Dahlin, Coordinated placement and
replacement for large-scale distributed caches, Proceedings
of the IEEE Workshop on Internet Applications, July 1999
(Technical Report TR-98-30, Department of Computer Sci-
ence, University of Texas at Austin, December 1998).

[41] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin,
and R. Panigrahy, Consistent hashing and random trees:
distributed caching protocols for relieving hot spots on the
World Wide Web, STOC 1997.

[42] T. M. Kroeger, D. D. E. Long, and J. C. Mogul, Explor-
ing the bounds of Web latency reduction from caching and
prefetching, Proceedings of the 1997 Usenix Symposium
on Internet Technologies and Systems, Monterey, CA, Dec.
1997.

[43] M. R. Korupolu, C. G. Plaxton and R. Rajaraman, Place-
ment algorithms for hierarchical cooperative caching, Pro-
ceedings of the 10th Annual ACM-SIAM Symposium on
Discrete Algorithms, January 1999.

[44] P. Krishnan and B. Sugla, Utility of cooperating Web proxy
caches, Computer Networks and ISDN Systems, pp. 195-
203, April 1998.

[45] B. Krishnamurthy and C. E. Wills, Study of piggyback cache
validation for proxy caches in the World Wide Web, Pro-
ceedings of the 1997 USENIX Symposium on Internet Tech-
nology and Systems, pp. 1-12, December 1997.

[46] B. Krishnamurthy and C. E. Wills, Piggyback server in-
validation for proxy cache coherency, Proceedings of the
WWW-7 Conference, pp. 185-194, 1998.

[47] B. Krishnamurthy and C. E. Wills, Proxy cache co-
herency and replacement - towards a more complete picture,
ICDC99, June 1999.

[48] I. Lovric, Internet cache protocol extension, Internet Draft
� draft-lovric-icp-ext-01.txt� .

[49] A. Luotonen and K. Altis, World Wide Web proxies, Com-
puter Networks and ISDN Systems, First International Con-
ference on WWW, April 1994.

[50] T. S. Loon and V. Bharghavan, Alleviating the latency and
bandwidth problems in WWW browsing, Proceedings of the
1997 Usenix Symposium on Internet Technologies and Sys-
tems (USITS-97), Dec. 1997.

[51] U. Legedza and J. Guttag, Using network-level support to
improve cache routing, Computer Networks and ISDN Sys-
tems 30, 22-23, pp. 2193-2201, Nov. 1998.

[52] B. Li, M. J. Golin, G. F. Italiano, X. Deng, and K. Sohraby,
On the optimal placement of Web proxies in the Internet,
Proceedings of Infocom’99.

[53] E. Levy-Abegnoli, A. Iyengar, J. Song, and D. Dias, Design
and performance of Web server accelerator, Proceedings of
Infocom’99.

[54] P. Lorenzetti, L. Rizzo, and L. Vicisano,
Replacement policies for a proxy cache
(http://www.iet.unipi.it/luigi/research.html).

[55] I. Melve, Client-cache communication, Internet Draft� draft-melve-clientcache-com-00.txt � .

[56] E. P. Markatos and C. E. Chronaki, A TOP-10 approach to
prefetching on Web, Proceedings of INET’98.

[57] R. Malpani, J. Lorch, and D. Berger, Making World Wide
Web caching servers cooperate, Proceedings of the 4th In-
ternational WWW Conference, Boston, MA, Dec. 1995
(http://www.w3j.com/1/lorch.059/paper/059.html).

[58] S. Michel, K. Nguyen, A. Rosenstein, L. Zhang, S. Floyd
and V. Jacobson, Adaptive Web caching: towards a new
caching architecture, Computer Network and ISDN Sys-
tems, November 1998.

[59] I. Melve, L. Slettjord, T. Verschuren, and H. Bekker, Build-
ing a Web caching system - architectural considerations,
Proceedings of the 8th Joint European Networking Confer-
ence, Edinburgh, Scotland, May 1997.

[60] M. Nabeshima, The Japan cache project: an experiment
on domain cache, Computer Networks and ISDN System,
September 1997.

[61] D. Povey and J. Harrison, A distributed Internet cache, Pro-
ceedings of the 20th Australian Computer Science Confer-
ence, Sydney, Australia, Feb. 1997.

[62] T. Palpanas and A. Mendelzon, Web prefetching using par-
tial match prediction, Proceedings of WCW’99.

[63] V. N. Padmanabhan and J. C. Mogul, Using predictive
prefetching to improve World Wide Web latency, proceed-
ings of Sigcomm’96.

[64] M. Rabinovich, Issues in Web content replication.

[65] M. Rabinovich, J. Chase, and S. Gadde, Not all hits are cre-
ated equal: cooperative proxy caching over a wide-area net-
work, Computer Networks And ISDN Systems 30, 22-23,
pp. 2253-2259, Nov. 1998.

[66] Relais: cooperative caches for the World Wide Web, 1998
(http://www-sor.inria.fr/projects/relais/).

[67] C. Roadknight and I. Marshall, Variations in cache behavior,
Computer Networks and ISDN Systems, pp. 733-735, April
1998.

[68] A. Rousskov and D. Wessels, Cache Digest, Proceedings of
3rd International WWW Caching Workshop, June 1998.

[69] P. Rodriguez, C. Spanner, and E. W. Biersack, Web caching
architectures: hierarchical and distributed caching, Proceed-
ings of WCW’99.

[70] P. Scheuermann, J. Shim, and R. Vingralek, A case for
delay-conscious caching of Web documents, Proceedings of
the 6th International WWW Conference, Santa Clara, Apr.
1997.

[71] R. Tewari, M. Dahlin, H. Vin, and J. Kay, Beyond hierar-
chies: design considerations for distributed caching on the
Internet, Technical Report TR98-04, Department of Com-
puter Science, University of Texas at Austin, February 1998.

[72] R. Tewari, H. Vin, A. Dan, and D. Sitaram, Resource based
caching for Web servers, Proceedings of SPIE/ACM Confer-
ence on Multimedia Computing and Networking (MMCN),
January 1998.

[73] V. Valloppillil and K. W. Ross, Cache array routing protocol
v1.0, Internet Draft � draft-vinod-carp-v1-03.txt � .

[74] Z. Wang, Cachemesh: a distributed cache system for World
Wide Web, Web Cache Workshop, 1997.

[75] D. Wessels, Intelligent caching for World-Wide Web
objects, Proceedings of INET’95, Honolulu, Hawaii,
June 1995 (http://info.isoc.org/HMP/PAPER/139/archive/
papers.ps.9505216).

[76] K. J. Worrell, Invalidation in large scale network ob-
ject caches, M.S. Thesis, Department of Computer Sci-
ence, University of Colorado, Boulder, Colorado, De-
cember 1994 (ftp://ftp.cs.colorado.edu/pub/cs/techreports/
schwartz/WorrellThesis.ps.Z).

[77] R. P. Wooster and M. Abrams, Proxy caching that esti-
mates page load delays, Proceedings of the 6th International
WWW Conference, April 1997 (http://www.cs.vt.edu/ chi-
tra/docs/www6r/).

[78] S. Williams, M. Abrams, C. R. Standridge, G. Abdulla, and
E. A. Fox, Removal policies in network caches for World-
Wide Web documents, Proceedings of Sigcomm’96.

[79] D. Wessels and K. Claffy, Internet cache protocol (IPC), ver-
sion 2, RFC 2186.

[80] D. Wessels and K. Claffy, Application of Internet cache pro-
tocol (IPC), version 2, RFC 2187.

[81] J. Yin, L. Alvisi, M. Dahlin, and C. Lin, Using leases to sup-
port server-driven consistency in large-scale systems, Pro-
ceedings of the 18th International Conference on Distributed
Computing System (ICDCS’98), May 1998.

[82] P. S. Yu and E. A. MacNair, Performance study of a col-
laborative method for hierarchical caching in proxy servers,
Computer Networks and ISDN Systems, pp. 215-224, April
1998.

[83] J. Yang, W. Wang, R. Muntz, and J. Wang, Access driven
Web caching, UCLA Technical Report

�
990007.

