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Preface

This document provides an overview of the TriCore Instruction Set Architecture (ISA). This document
is written for engineering managers, hardware engineers, and software engineers.

Additional information about the TriCore product line can be found in the following publications.
Please call your regional sales office to request these publications.

■ TriCore Architecture Manual

■ TriCore Instruction Set Simulator User’s Guide

■ Introducing TriCore (Brochure)

■ TriCore Development Tools (Brochure)
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1 Introducing the TriCore Family Architecture

Future trends for embedded systems include a convergence of microcontroller and DSP architec-
tures, as well as superintegration of memory and logic. Embedded applications are evolving towards
a single system-on-a-chip. This chip of the future will be comprised of a unified microcontroller-DSP
core (32 bits), data and program memory (RAM, ROM, OTP, etc.), and custom application-specific
logic (ASIC), as shown in Figure 1. The single core will provide virtual multiprocessing, which elimi-
nates the need for multiple controllers and DSPs. On-chip memories enhance performance and re-
duce system power dissipation. The integration of system peripherals and customer-specific logic
will increase overall system performance at a reduced cost. The resident (off-the-shelf) real-time op-
erating system will have a compact kernel with appropriate plug-ins for debug, communications, etc.
The application layer on top of the RTOS will be automatically generated with the help of app-builder
programs that draw on rich library routines like DSP, floating-point, and peripheral management.

Figure 1: System-on-a-Chip for Embedded Applications

The scenario described above is imperative for the embedded systems of tomorrow. More and more
applications demand higher system performance at a reasonable cost. System manufacturers are on
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the classic electronics “treadmill”—faster speeds and increased functionality/features for the same or
even lower price. For example, cellular phones have migrated from analog to digital. Many cell
phones incorporate features like paging and voice mail; some even provide internet access and PDA
(personal digital assistant) functionality. Form factors have evolved from hand-held to matchbox size.
Availability of low power dissipation components allow for increased talk and standby times. And, of
course, market prices have dropped dramatically.

With cost-effective processor performance, more work can be off-loaded from hardware to software
tasks running on these powerful multi-tasking CPUs. Combined microcontroller-DSP cores can elim-
inate the need for dual processors and dual development tool sets. On-chip Flash memory eases
field programmability concerns.

The elements for tomorrow’s embedded systems exist today. The TriCore Instruction Set Architec-
ture (ISA) from Siemens Semiconductor combines the real-time capability of a microcontroller, the
computational power of a DSP, and the high-performance/price features of a RISC load/store archi-
tecture onto a compact, reprogrammable core. TriCore is the first single-core 32-bit microcontroller-
DSP architecture optimized for real-time embedded systems. You can select peripheral functions
(DMA, debug, etc.) from Siemens Semiconductors’ library of peripheral modules. You also can
choose the type and size of on-chip memory: SRAM, DRAM, ROM, Flash, and OTP. The core and
peripherals are easily connected to yield a high-performance, cost-effective system-on-a-chip, tai-
lored to your application.

Key benefits to using the TriCore for your next real-time embedded system are:

■ The single architecture merges both DSP and microcontroller features without sacrificing the per-
formance of either

■ Fast task switching (via an internal wide bus to on-chip memory) allows TriCore to be used effec-
tively as a virtual multiprocessor. For example, it can switch from a DSP to a microcontroller task
in two cycles.

■ Large on-chip memory blocks (RAM, ROM, DRAM, OTP, FLASH) result in higher performance,
more reliable operation, and reduced system power consumption

■ The architecture allows direct control of on-chip peripherals without additional glue logic. TriCore
supports a lean but powerful memory protection and on-chip debug support scheme.

■ A freely intermixed 16-bit and 32-bit instruction format reduces code size for your application by
approximately 30 to 40%.

■ Interrupts are processed as injected calls and are handled by the same mechanism.

The architecture uses a RISC-like register model and load/store architecture to support HLL (High-
Level Language) Compilers and their optimization strategies. Fast context switching and low inter-
rupt latencies enable a flexible distribution of processor performance between concurrent tasks and
effective control of peripheral events. Integrated debug hardware eases the software development
cycle.

The TriCore architecture can save or store half the register context upon an interrupt within two cy-
cles automatically. The architecture thus provides fast interrupt response without having to do a lot of
housekeeping before entering the real interrupt service routine.
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The architecture allows for a wide range of implementations, ranging from simple scalar to supersca-
lar. Furthermore, the ISA is capable of interacting with different system architectures, including mul-
tiprocessing. This flexibility at the implementation and system levels allows for different trade-offs
between performance and cost at any point in time.

The native microcontroller-DSP capabilities of the architecture allow you to tune through software,
the microcontroller and DSP performance of each TriCore core. For instance, the performance of a
100-MHz TriCore-1 core with a sustained 130 MIPS rating is 80 microcontroller MIPS + 50 DSP MI-
PS, or 40 microcontroller MIPS + 90 DSP MIPS, depending on how the system designer implements
load-sharing in software.

The key features of the TriCore instruction set architecture are:

■ 4-GB unified data, program, and I/O space

■ 16- and 32-bit instructions for reduced code size

■ Low interrupt latency

■ Fast context switch using wide pathway to on-chip memory

■ Dual single-clock-cycle 16x16 multiply-accumulate unit

■ Saturating integer arithmetic

■ Extensive bit handling capabilities

■ SIMD packed data operations

1.1 TriCore Instruction Categories

To optimize code space, the TriCore architecture offers a flexible set of instruction formats. Although
the architecture is 32 bits, there are 16-bit instruction formats available to code the most needed in-
structions in a smaller amount of memory space. This reduces the instruction code space by an av-
erage of one third or more, over conventional RISC architectures.

The TriCore instructions are subdivided into the following categories.

See “Instruction Set Highlights” on page 13.

■ Branch ■ Arithmetic (Integer, DSP, and SIMD Packed Arithmetic)

■ Load/Store ■ Comparison

■ System ■ Bit Manipulation

■ 16-Bit Subset ■ Address Arithmetic and Address Comparison
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1.2 Target Applications

TriCore has been optimized to meet the requirements of embedded applications like computer pe-
ripherals, automotive power-train controllers, vehicle dynamics systems, cellular communications,
and networking equipment. An increasing number of embedded designs employ both a microcontrol-
ler or microprocessor and a DSP or hard-wired ASIC. A TriCore device can replace both these com-
ponents due to its inherent microcontroller-DSP capabilities and its ability to switch between those
tasks at breakneck speed.

1.3 TriCore Roadmap

The TriCore architecture is implemented as a family of cores. A core is a silicon implementation of
the architecture. Figure 2 shows the future of the TriCore family architecture. The base group of
cores is the TriCore-1 subgroup. TriCore-2 will be a true 64-bit microcontroller with higher degrees of
superscalar execution, higher DSP performance, and fast clock speeds. TriCore-3 will perform multi-
threading, have increased DSP performance over the TriCore-2, and execute at clock speeds in ex-
cess of 300 MHz.

Figure 2: TriCore Roadmap
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2 TriCore Programming Model

This section discusses the aspects of the TriCore architecture that are visible to software: the sup-
ported data types and formats, the various addressing modes that the architecture provides, and the
memory model.

2.1 Architectural Registers

The TriCore architectural registers consist of 32 general-purpose registers (GPRs), two 32-bit regis-
ters with program status information (PCXI and PSW), and a program counter (PC). Four GPRs have
special functions: D15 is used as an implicit data register, A10 is the stack pointer (SP), A11 is the re-
turn address register, and A15 is the implicit base address register. PCXI, PSW, and PC are core
special function registers (CSFRs). The PCXI and PSW registers contain status flags, previous exe-
cution information, and protection information.

Figure 3: Architectural Registers (GPRs)

2.2 Data Types and Formats

The TriCore instruction set supports operations on booleans, bit strings, characters, signed fractions,
addresses, signed and unsigned integers, and single-precision floating-point numbers. Most instruc-
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The general-purpose registers are all 32 bits wide, and most instructions operate on word (32-bit)
values. Thus when data with fewer bits than a word is loaded from memory, it must be sign or zero-
extended before operations can be applied to the full word. The sign or zero extension is done con-
currently as part of the load operation.

The data memory and CPU registers store data in little-endian byte order (the least-significant bytes
are at lower addresses). Little-endian memory referencing is used consistently for data and instruc-
tions. When the TriCore system is connected to an external big-endian device, translation between
big- and little-endian format is performed by the bus interface.

Alignment requirements differ for addresses and data. Addresses (32 bits) must be aligned on a word
boundary to permit transfers between address registers and memory. For transfers between data
registers and memory, data may be aligned on any halfword boundary, regardless of size; bytes may
be accessed an any valid byte address, with no alignment restrictions.

2.3 Memory Model

The TriCore architecture can access up to 4 Gbytes of unified program and I/O memory. The address
width is 32 bits. The address space is divided into 16 regions or segments (0 through 15). Each seg-
ment is 256 Mbytes. The upper four bits of an address select the specific segment. The first 16-
Kbytes of each segment can be accessed using either absolute addressing or absolute bit address-
ing with the bit set and bit clear instructions.

Figure 4 shows the TriCore architecture’s address space mapping.

Figure 4: Address Map and Memory Model
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2.4 Addressing Modes

Addressing modes allow load and store instructions to efficiently access simple data elements within
data structures such as records, randomly and sequentially accessed arrays, stacks, and circular
buffers. Simple data elements are 8, 16, 32, or 64 bits wide.

The TriCore architecture supports seven addressing modes, as listed in Table 1. These addressing
modes support efficient compilation of C, easy access to peripheral registers, and efficient imple-
mentation of typical DSP data structures (circular buffers for filters and bit-reversed indexing for
FFTs).

Addressing modes not supported directly in the hardware can be synthesized through short instruc-
tion sequences using indexed addressing, PC-relative addressing, or extended absolute addressing.

Table 1: Addressing Modes of the TriCore Architecture

Addressing Mode Address Register Use
Offset Size

(bits)

Absolute None 18

Base + Short Offset Address Register 10

Base + Long Offset Address Register 16

Pre-increment Address Register 10

Post-increment Address Register 10

Circular Address Register Pair 10

Bit-reverse Address Register Pair —
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3 Tasks and Contexts

In this document, the term TASK refers to an independent thread of control. There are two types of
tasks: SOFTWARE-MANAGED TASKS (SMTs) and INTERRUPT SERVICE ROUTINES (ISRs). Software-managed
tasks are created through the services of a real-time kernel or OS, and are dispatched under the con-
trol of scheduling software.

Each task is allocated its own permission level, depending on the task’s function. Individual permis-
sions are enabled/disabled primarily through the IO mode bits in the Processor Status Word (PSW).

Associated with any task is a set of state elements known collectively as the task’s CONTEXT. The con-
text is everything the processor needs in order to define the state of the associated task and enable
its continued execution. It includes the CPU general registers that the task uses, the task’s program
counter (PC), and its Program Status Information (PCXI and PSW). The TriCore architecture effi-
ciently manages and maintains the tasks’ contexts through hardware.

The context is subdivided into the UPPER CONTEXT and the LOWER CONTEXT. The upper context con-
sists of the upper address registers, A10 - A15, and the upper data registers, D8 - D15. These regis-
ters are designated as non-volatile, for purposes of function calling. The upper context also includes
PCXI and PSW. The lower context consists of the lower address registers, A2 through A7, and the
lower data registers, D0 through D7, plus the PC. Registers A0 and A1 in the lower address registers
and A8 and A9 in the upper address registers are defined as SYSTEM GLOBAL REGISTERS. These regis-
ters are not included in either context partition, and are not saved and restored across calls or inter-
rupts. The operating system normally uses them to reduce system overhead.

The TriCore architecture uses linked lists of fixed-size CONTEXT SAVE AREAS (CSAs). A CSA is 16
words of on-chip memory storage, aligned on a 16-word boundary. Each CSA can hold exactly one
upper or one lower context. CSAs are linked together through a LINK WORD.

The TriCore architecture saves and restores context much more quickly than conventional micropro-
cessors and microcontrollers. Its unique memory subsystem design with a wide data path allows the
TriCore architecture to perform rapid data transfers between processor registers and on-chip memo-
ry.

Context switching occurs when an event or instruction causes a break in program execution, result-
ing in the CPU needing to resolve this event before continuing with the program. These events and
instructions consist of the following:

1. interrupt or service requests,

2. traps, or

3. function calls.
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4 Interrupt System

One key feature of the TriCore architecture is its powerful and flexible interrupt system. The interrupt
system is built around programmable Service Request Nodes (SRNs). A SERVICE REQUEST is defined
as an interrupt request or a DMA request. A service request may come from an on-chip peripheral,
external hardware, or software.

Conventional architectures handle service requests by loading a new Program Status from a vector
table in data memory. With the TriCore architecture, service requests jump to vectors in code memo-
ry. This procedure reduces response time for service requests. The first instructions of the interrupt
service routine (ISR) execute at least three cycles earlier than they would otherwise.

Service requests are prioritized, which enables nested interrupts. A service request can interrupt the
servicing of a lower priority interrupt. Interrupt sources with the same priority cannot interrupt each
other. The Interrupt Control Unit (ICU) determines which source will win arbitration based on the pri-
ority number.

All service requests are assigned priority numbers (SRPNs). Even the CPU has its own priority num-
ber. Different service requests must be assigned different priority numbers. The maximum number of
interrupt sources is 255. Programmable options range from one priority level with 255 sources up to
255 priority levels with one source each.

Interrupt numbers are assumed to be assigned in linear order of interrupt priority. This is feasible, be-
cause interrupt numbers are not hardwired to individual sources. They are assigned by software ex-
ecuted during the power-on boot sequence.

Figure 5 shows several examples where Task 1 is interrupted. For a simple interrupt, the TriCore au-
tomatically saves the upper context upon entering the Interrupt Service Routine (ISR). Then the up-
per context registers can be used within the ISR. When the Return from Execution instruction is
issued, the upper context from the time of the interrupt is automatically restored.

In the general interrupt, the upper context is automatically stored. The ISR explicitly saves the lower
context using the SVLCX instruction. Both upper and lower context registers can be used within the
rest of the ISR. Before returning to Task 1, the restore lower context instruction is issued followed by
a return from exception, which automatically restores the upper context.

In the ISR in the persistent context example, explicit upper and lower context values are loaded from
memory using the LDUCX and LDLCX instructions. These values were saved from a previous call or
interrupt for explicit use in the ISR. At the end of the ISR, new values to be used in a subsequent ISR
call are stored explicitly using the STUCX and STLCX instructions.
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Figure 5: Interrupt Examples
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5 Trap System

A trap occurs as a result of an event such as a non-maskable interrupt, an instruction exception, or
illegal access. The TriCore architecture contains eight trap classes. These traps are further classified
as synchronous or asynchronous, and hardware or software. Each trap is assigned a Trap Identifica-
tion Number (TIN) that identifies the cause of the trap within its class.

The eight trap classes are:

■ Reset ■ Internal Protection ■ Instruction Errors ■ Context Management

■ Assertion ■ System Bus & Peripheral
Errors

■ System Call ■ Non-Maskable Interrupt
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6 Protection System

The protection system allows you to assign access permissions to memory regions for data and
code. Protection capabilities are useful for protecting core system functionality from bugs that may
have slipped through testing. They are also important aids to testing and debugging.

The TriCore’s protection system provides the essential features to isolate errors and facilitate debug-
ging. It protects critical system functions against both software and transient hardware errors.

The TriCore’s embedded architecture allows each task to be allocated the specific permission level it
needs to perform its function. The three permission levels are:

■ USER-0 MODE is used for tasks that do not access peripheral devices.

■ USER-1 MODE is used for tasks that access common, unprotected peripherals. Interrupts can be
disabled at this level for a short period.

■ SUPERVISOR MODE permits read/write access to system registers and protected peripheral devices.

The memory protection model for the TriCore architecture is based on address ranges, where each
address range has an associated permission setting. Address ranges and their associated permis-
sions are specified in two to four identical sets of tables residing in Core SFR (CSFR) space. Each
set is referred to as a PROTECTION REGISTER SET (PRS).

When the protection system is enabled, the TriCore checks every load/store or instruction fetch ad-
dress for legality before performing the access. To be legal, the address must fall within one of the
ranges specified in the currently selected PRS, and permission for that type of access (read, write,
execute) must be present in the matching range.
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7 Instruction Set Highlights

This section provides high-level details on the TriCore instruction set. Complete information on all in-
structions can be found in Siemens Semiconductor’s TriCore Architecture Manual.

7.1 Instruction Set Summary

The following table summarizes the TriCore instruction set. Shaded entries indicate 16-bit instruc-
tions.
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Mnemonic Definition Mnemonic Definition

ABS Absolute value DVADJ Divide adjust

ABSDIF Absolute value of difference DVINIT Divide initialization word

ABSDIFS Absolute value of difference with saturation DVSTEP Divide step

ABSS Absolute value with saturation ENABLE Enable interrupt

ADD Add EQ Equal

ADDC Add carry EQANY Multiple compare

ADDI Add immediate EQZ Equal zero address

ADDIH Add immediate high word EXTR Extract bit field

ADDS Add with saturation GE Greater than or equal

ADDSC Add scaled address IMASK Insert mask

ADDX Add and generate carry INS Insert bit

AND Logical AND INSN Insert bit Not

ANDN Logical AND Not INSERT Insert

AND.comp Compare, AND and accumulate ISYNC Synchronize instructions

AND.logic Bit and logical accumulate J Jump unconditional

BISR Begin ISR JA Jump unconditional absolute

CACHEA.I Cache Address Invalidate JEQ Jump if equal

CACHEA.W Cache Address Writeback JGE Jump if greater than or equal

CACHEA.WI Cache Address Writeback and Invalidate JGEZ Jump if greater than or equal to
zero

CADD Conditional ADD JGTZ Jump if greater than zero

CADDN Conditional ADD Not JI Jump indirect

CALL Call JL Jump and link

CALLA Call absolute JLA Jump and link absolute

CALLI Call indirect JLEZ Jump if less than or equal to zero

CLO Count leading ones JLI Jump and link immediate

CLS Count leading signs JLT Jump if less than

CLZ Count leading zeros JLTZ Jump if less than zero

CMOV Conditional move JNE Jump if not equal

CMOVN Conditional move Not JNED Jump if not equal and decrement

CSUB Conditional subtract JNEI Jump if not equal and increment

CSUBN Conditional subtract Not JNZ Jump if not equal to zero

DEBUG Debug JZ Jump if zero

DEXTR Double extract LD Load

DISABLE Disable interrupt LDLCX Load lower context

DSYNC Synchronize data LDMDST Load modify store
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LDUCX Load upper context NE Not equal

LEA Load Effective address NEZ.A Not equal zero address

LOOP Loop NOP No operation

LT Less than NOR Logical NOR

MADD(S) Multiply-Add (S = with Saturation) NOT Bitwise complement

MADDM(S).H Packed Multiply-Add Q Format - Multipreci-
sion

OR Logical OR

MADDR(S).H Packed Multiply-Add Q Format w/ Rounding OR.comp Compare, OR and accumulate

MADDR(S).Q Multiply-Add Q Format with Rounding OR.logic Bit OR logical accumulate

MADDSU(S).H Packed Multiply-Add/Sub Q Format ORN Logical OR Not

MADDSUM(S).H Packed Multiply-Add/Sub Q Format - Multi-
precision

RET Return from call

MADDSUR(S).H Packed Multiply-Add/Sub Q Format w/
Rounding

RFE Return from Exception

MAX Maximum value RSLCX Restore lower context

MFCR Move from Core Register RSTV Reset overflow flags

MIN Minimum value RSUB Reverse subtract

MOV Move RSUBS Reverse subtract with saturation

MOVH(.A) Move halfword to address SAT Saturate result

MOVZ.A Move zero to address SEL Select

MSUB(S) Multiply-Subtract (S = with Saturation) SELN Select Not

MSUBAD(S).H Packed Multiply-Sub/Add Q Format SH Shift

MSUBADM(S).H Packed Multiply-Sub/Add Q Format - Multi-
precision

SH.comp Compare accumulate and shift

MSUBADR(S).H Packed Multiply-Sub/Add Q Format w/
Rounding

SH.logic Bit shift logical accumulate

MSUBM(S).H Packed Multiply-Subtract Q Format - Multi-
precision

SHA Arithmetic shift

MSUBR(S).H Packed Multiply-Subtract Q Format w/
Rounding

SHAS Arithmetic shift with saturation

MSUBR(S).Q Multiply-Subtract Q Format w/ Rounding ST Store

MTCR Move to Core Register STLCX Store lower context

MUL(S) Multiply (S = with Saturation) STUCX Store upper context

MUL.H Packed Multiply Q Format SUB Subtract

MUL.Q Multiply Q Format SUBC Subtract with carry

MUL(S).U Multiply Unsigned (S = with Saturation) SUBS Subtract signed with saturation

MULM.H Packed Multiply Q Format - Multiprecision SUBX Subtract extended

MULR.H Packed Multiply Q Format with Rounding SVLCX Save lower context

MULR.Q Multiply Q Format with Rounding SWAP Swap

NAND Logical NAND SYSCALL System call

Mnemonic Definition Mnemonic Definition
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The TriCore architecture supports both 16- and 32-bit instructions formats. All instructions have a 32-
bit format. The 16-bit instructions are a subset of the 32-bit instructions, chosen because of their fre-
quency of use and included to reduce code space. The 16-bit instructions employ one or more of the
following methods to allow encoding in 16 bits:

■ 2-operand alternative to 3-operand ALU instructions (destination = second source operand)

■ implicit source, destination, or base address operand

■ small constants

■ short branch displacements

■ short load/store offsets

TRAPV Trap on overflow XOR Logical exclusive OR

TRAPSV Trap on sticky overflow XOR.comp Compare, XOR and accumulate

XNOR Logical exclusive NOR

Mnemonic Definition Mnemonic Definition
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The width of the address/data is implicit in the opcode. The 32-bit instruction formats are shown in
Figure 6, and the 16-bit instruction formats are shown in Figure 7. Refer to the TriCore Architecture
Manual for more information on the instruction formats and their mnemonics.

Figure 6: 32-Bit Instruction Formats

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ABS op1op2 off18[13..10] off18[5..0] off18[17..14]off18[9..6] s1/d

ABSB op1op2 off18[13..10] off18[5..0] off18[17..14] boff18[9..6] bpos3

B disp24[15..0] op1disp24[23..16]

BIT d s1 op1op2 p1 s2p2

BO op1op2 off10[5..0] s2off10[9..6] s1/d

BOL op1off16[9..6] off16[15..10] s2off16[5..0] s1/d

BRC s1 op1op2 disp15 const4

BRN s1 op1op2 n[3..0]disp15 n4

BRR s1 op1op2 s2disp15

RC d const9 s1 op1op2

RCPW d p s1 op1op2 w const4

RCR d const9 s1 op1op2s3

RCRR d s1 op1op2s3 const4

RCRW d s1 op1op2s3 w const4

RLC d s1 op1const16

RR d s1 op1op2 s2n

RRPW d p s1 op1op2 s2w

RRR d s1 op1op2 s2ns3

RRRR d s1 op1op2 s2s3

RRRW d s1 op1op2 s2s3 w

SYS op1op2
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Figure 7: 16-Bit Instruction Formats

7.2 Load and Store Instructions

The load and store instructions move data between registers and memory, using the seven address-
ing modes shown in Table 1 on page 7. The addressing mode determines the effective byte address
for the load or store instruction and any update of the base pointer Address register.

7.3 Arithmetic Instructions

Arithmetic instructions operate on data and addresses in registers. Status information about the re-
sult of the arithmetic operations is recorded in five status flags. These instructions are categorized
further into integer arithmetic, DSP arithmetic, and packed arithmetic instructions.

7.3.1 Integer Arithmetic

Move. The move instructions consist of MOV (sign-extends the value to 32 bits), MOV.U (zero-ex-
tends to 32 bits), MOVH (loads a 16-bit constant into the most-significant 16 bits of the register and
zero fills the least-significant 16 bits).

Addition and Subtraction. The addition instructions are ADD (no saturation), ADDS (signed satura-
tion), and ADDS.U (unsigned saturation), ADDX (extended precision addition), ADDC (Add with Car-
ry), ADDI (Add Immediate), and ADDIH (Add Immediate High Word).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SB disp8 op1

SBC disp4 op1const4

SBR disp4 op1s2

SBRN disp4 op1n[3..0] n4

SC op1const8

SLR d op1s2

SLRO d op1off4

SR op1op2 s1/d

SRC op1const4 s1/d

SRO op1s2 off4

SRR op1s2 s1/d

SRRS op1s2 ns1/d

SSR s1 op1s2

SSRO s1 op1off4
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Because the large immediate of ADDI is sign-extended, it may be used for both addition and subtrac-
tion.

The RSUB (Reverse Subtract) instruction subtracts a register from a constant. Using zero as the
constant yields negation as a special case.

Multiply and Multiply-Add. Multiplication of two 32-bit integers that produce a 32-bit result can be
handled using MUL (Multiply Signed), MULS (Multiply Signed with Saturation), and MULS.U (Multi-
ply Unsigned with Saturation). The MULM (Multiply with Multiword Result) and MULM.U (Multiply
with Multiword Result Unsigned) instructions produce the full 64-bit result, which is stored to a regis-
ter pair; MULM is for signed integers, and MULM.U is for unsigned integers. Special multiply instruc-
tions are used for DSP operations.

The multiply-add instruction (MADD) multiplies two signed operands, adds the result to a third oper-
and, and stores the result in a destination. Because, the third operand and the destination do not use
the same registers, the intermediate sums of a multi-term multiply-add instruction can be saved with-
out requiring any additional register moves. The MADD, MADDS (Multiply-Add with Saturation), and
MADDS.U (Multiply-Add with Saturation Unsigned) instructions operate on and produce 32-bit inte-
gers; MADDS and MADDS.U will saturate on signed and unsigned overflow, respectively. To add the
64-bit product to a 64-bit source and produce a 64-bit result, the instructions MADDM (Multiply-Add
with Multiword Result), MADDM.U (Multiply-Add with Multiword Result Unsigned), MADDMS (Multi-
ply-Add Multiword with Saturation), and MADDMS.U (Multiply-Add Multiword with Saturation Un-
signed) can be used.

The set of Multiply-Subtract (MSUB) instructions, which supports the accumulation of products using
subtraction instead of addition, provides the same set of variations as the MADD instructions.

Division. The TriCore ISA supports division of 32-bit by 32-bit integers for both signed and unsigned
integers through a divide-step sequence that decreases interrupt latency (the length of time inter-
rupts must be disabled). The divide instructions consist of DVINIT (Divide Initialization), DVSTEP
(Divide Step), and DVADJ (Divide Adjust).

Absolute Value, Absolute Difference. The ABS and ABSDIF instructions compute the absolute
value of a signed number or absolute value of the difference between two signed numbers, respec-
tively. Each instruction has a version that saturates when the result is too large to be represented as
a signed number.

Min, Max, Saturate. The MIN and MAX instructions calculate the minimum or maximum value be-
tween two operands, respectively. The SAT instructions saturate the result of a 32-bit calculation be-
fore storing it in a byte or halfword in memory or a register.

Conditional Instructions. The conditional instructions—Conditional Add (CADD), Conditional Add
Not (CADDN) Conditional Subtract (CSUB), Conditional Subtract Not (CSUBN), Select (SEL), and
Select Not (SELN)—provide efficient alternatives to conditional jumps around very short sequences
of code. All conditional instructions use a condition operand that controls the execution of the instruc-
tion. The condition operand is a data register, with any non-zero value interpreted as TRUE, and a
zero value interpreted as FALSE.

Logical. The TriCore architecture provides a complete set of two-operand, bit-wise logic operations:
AND, OR, XOR, NAND, NOR, XNOR, and negations of one of the inputs (ANDN and ORN).
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Count Leading Zeroes, Ones, and Signs. Three Count Leading instructions provide efficient sup-
port for normalization of numerical results, prioritization, and certain graphics operations: CLZ (Count
Leading Zeros), CLO (Count Leading Ones), and CLS (Count Leading Signs). These instructions de-
termine the amount of left shifting necessary to remove redundant zeros, ones, or signs.

The Count Leading instructions are useful for parsing certain Huffman codes and bit strings consist-
ing of boolean flags, since the code or bit string can be quickly classified by determining the position
of the first one (scanning from left to right).

Shift. The shift instructions support multi-bit left and right shifts. The shift amount is specified by a
signed integer (n), which may be the contents of a register or a sign-extended constant in the instruc-
tion.

Bit-Field Extract and Insert. The TriCore architecture supports two bit-field extract instructions. The
EXTR.U and EXTR instructions extract w (width) consecutive bits from the source, beginning with
the bit number specified by the pos (position) operand. The width and position can be specified by
two immediate values, by a data register and an immediate value, or by a data register pair.

7.3.2 DSP and Packed Arithmetic

DSP arithmetic instructions operate on 16-bit, signed fractional data in the 1.15 format (also known
as Q15) and 32-bit signed fractional data in 1.31 format (also known as Q31). Data values in this for-
mat have a single, high-order sign bit, with a value of 0 or -1, followed by an implied binary point and
fraction. Their values are in the range [-1, 1).

16-bit DSP data is loaded into the most significant half of a data register, with the 16 least-significant
bits set to zero. The left alignment of 16-bit data allows it to be directly added to 32-bit data in 1.31
format. All other fractional formats can be synthesized by explicitly shifting data as required.

Operations created for this format are multiplication, multiply-add, and multiply-subtract. The signed
fractional formats 1.15 and 1.31 are supported with the MUL.Q and MULR.Q instructions. These in-
structions operate on 2 left-justified, signed fractions and return a 32-bit signed fraction.

7.3.2.1 Scaling

The multiplier result can be shifted in two ways:

■ Left shifted by 1

- 1 sign bit is suppressed and the result is left-aligned, thus conserving the input format.

■ Not shifted

- The result retains its 2 sign bits (2.30 format).

- This format can be used with IIR filters, in which some of the coefficients are between 1 and 2,
and to have 1 guard bit for accumulation.
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7.3.2.2 Special case = -1 * -1 => +1

When multiplying the two maximum negative values (-1), the result should be the maximum positive
number (+1). For example,

0x8000 * 0x8000 = 0x4000 0000

is correctly interpreted in Q format as:

-1(1.15 format) * -1(1.15 format) = +1 (2.30 format)

However, when the result is shifted left by 1, the result is 0x8000 0000, which is incorrectly interpret-
ed as:

-1(1.15 format) * -1(1.15 format) = -1 (1.31 format)

To avoid this problem, the result of a Q format operation (-1 * -1) that has been left-shifted by 1 (left-
justified), is saturated to the maximum positive value. Thus,

0x8000 * 0x8000 = 0x7FFF FFFF

is correctly interpreted in Q format as:

-1(1.15 format) * -1(1.15 format) = (nearest representation of)+1 (1.31 format)

This operation is completely transparent to the user and does not set the overflow flags.

7.3.2.3 Guard bits

When accumulating sums (for example, in filter calculations) guard bits are often required to prevent
overflow. The instruction set directly supports the use of 1 guard bit when using a 32-bit accumulator;
when more guard bits are required, a register pair (64 bits) can be used.

7.3.2.4 Rounding

Rounding is used to retain the 16-bit most-significant bits of a 32-bit result. Rounding is combined
with the MUL, MADD, MSUB instructions, and is implemented by adding 1 to bit 15 of a 32-bit regis-
ter.

7.3.2.5 Overflow and Saturation

Saturation on signed and unsigned overflow is implemented as part of the MUL, MADD, MSUB in-
structions.

7.3.2.6 Sticky Advance Overflow and Block Scaling in FFT

The Sticky Advance Overflow (SAV) bit, which is set whenever an overflow “almost” occurred, can be
used in block scaling of intermediate results during an FFT calculation. Before each pass of applying
a butterfly operation, the SAV bit is cleared, and after the pass the SAV bit is tested. If it is set, then
all of the data is scaled (using an arithmetic right shift) before starting the next pass. This procedure
gives the greatest dynamic range for intermediate results without the risk of overflow.
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7.3.3 Packed Arithmetic

The packed arithmetic instructions partition a 32-bit word into several identical objects, which can
then be fetched, stored, and operated on in parallel. These instructions, in particular, allow the full ex-
ploitation of the 32-bit word of the TriCore architecture in signal and data processing applications.

The TriCore architecture supports two packed formats. The first format (Figure 8) divides the 32-bit
word into two, 16-bit (halfword) values. Instructions which operate on data in this way are denoted in
the instruction mnemonic by the “.H” and “.HU” data type modifiers.

Figure 8: Packed Halfword Data Format

The second packed format (Figure 9) divides the 32-bit word into four 8-bit values. Instructions which
operate on the data in this way are denoted by the “.B” and “.BU” data type modifiers.

The loading and storing of packed values into data registers is supported by the normal Load Word
and Store Word instructions (LD.W and ST.W). The packed objects can then be manipulated in par-
allel by a set of special packed arithmetic instructions that perform such arithmetic operations as ad-
dition, subtraction, multiplication, etc.

Addition is performed on individual packed bytes or halfwords using the ADD.B and ADD.H instruc-
tions and their saturating variations ADDS.B and ADDS.H. ADD.B ignores overflow/underflow within
individual bytes, while ADDS.B will saturate individual bytes to the most positive, 8-bit signed integer
(127) on individual overflow, or to the most negative, 8-bit signed integer (-128) on individual under-
flow. Similarly, the ADD.H instruction ignores overflow/underflow within individual halfwords, while
the ADDS.H will saturate individual halfwords to the most positive 16-bit signed integer (215-1) on in-
dividual overflow, or to the most negative 16-bit signed integer (-215) on individual underflow. Satura-
tion for unsigned integers is also supported by the ADDS.BU and ADDS.HU instructions.

Halfword 1 Halfword 0

Halfword 1

Destination 0Destination 1

Operation

Operand n

Operand mHalfword 0

Result
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Besides addition, arithmetic on packed data includes subtraction, multiplication, absolute value, and
absolute difference.

Figure 9: Packed Byte Data Format

7.4 Comparison Instructions

The compare (and conditional jump) instructions use a compare operation on the contents of two
registers. The boolean result (1 = true and 0 = false) is stored in the least-significant bit of a data reg-
ister, and the remaining bits in the register are cleared to zero. Figure 10 illustrates the operation of
the LT (Less Than) compare instruction.

Figure 10: LT Comparison

7.5 Bit Operations

Some TriCore instructions operate on single bits. There are eight instructions for combinatorial logic
functions with two inputs, and twelve instructions with three inputs.

The one-bit result of a two-input function is stored in the least-significant bit of the destination data
register, and the most-significant 31 bits are set to zero (see Figure 11). The source bits can be any
bit of any data register. The available Boolean operations are: AND, NAND, OR, NOR, XOR, XNOR,
ANDN, and ORN.

Byte 3

Byte 3

Destination 3

Operation

Byte 2

Byte 2

Byte 1

Byte 1

Byte 0

Byte 0

Destination 2 Destination 1 Destination 0

Byte 1Byte 2Byte 3

Operand m

Operand n

Result

Data 1

Operation

Data 2

Destination

A<B?
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Figure 11: Two-Input Boolean Operations

The three-input Boolean operations are used to evaluate complex Boolean operations where the out-
put of a two-input instruction together with the least-significant bit of a third data register, forms the in-
put to a further operation. The result is written to bit 0 of the third data register, with the remaining bits
unchanged. Refer to Figure 12. The available Boolean operations are: AND.AND.T, AND.ANDN.T,
AND.NOR.T, AND.OR.T, OR.AND.T, OR.ANDN.T, OR.NOR.T, and OR.OR.T.

Figure 12: 3-Input Boolean Operation

7.6 Address Arithmetic and Address Comparison

The TriCore architecture provides selected arithmetic operations on the address registers. These op-
erations supplement the address calculations inherent in the addressing modes used by the load and
store instructions.

As with the comparison instructions that use the data registers, the comparison instructions using the
address registers put the result of the comparison in the least-significant bit of the destination data
register and clear the remaining register bits to zeros. An example using the Less Than (LT.A) in-
struction is shown in Figure 13.

Data 1

Operation

Data 2

Destination

bit n bit m

boolean

Data 1

Operation

Data 2

Destination

bit n bit m
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Figure 13: LT.A Comparison Operation

7.7 Branch Instructions

Branch instructions change the flow of program control by modifying the value in the PC register.
There are two types of branch instructions: conditional and unconditional. Whether or not a condi-
tional branch is taken depends on the result of a Boolean compare operation, rather than on the state
of condition codes.

7.8 System Instructions

The system instructions allow user-mode and supervisor-mode programs to access and control var-
ious system services, including interrupts, the instruction and data caches, and the TriCore’s debug-
ging facilities. There are also instructions that read and write the PSW and PCXI registers, for both
user and supervisor-only mode programs. The Load/Store Upper/Lower Context instructions explic-
itly save and restore a task’s upper and lower contexts.

7.9 16-bit Instructions

The 16-bit instructions are a subset of the 32-bit instruction set, chosen because of their frequency of
use. They significantly reduce static code size and thus reduce the cost of code memory and provide
a higher effective instruction bandwidth. Because the 16-bit and 32-bit instructions all differ in the pri-
mary opcode, the two instruction sizes can be freely intermixed.

The 16-bit instructions are formed by imposing one or more of the following format constraints: small-
er constants, smaller displacements, smaller offsets, implicit source, destination, or base address
registers, and combined source and destination registers (the two-operand format). In addition, the
16-bit load and store instructions support only a limited set of addressing modes.

Address 1

Operation

Address 2

Destination

A<B?
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8 TriCore-1 Core and Modules

The minimum TriCore implementation consists of a CPU core. As per your design requirements, you
can easily add peripheral and memory modules to the core design from Siemens’ library. These
modules connect via the FPI Bus (Flexible Peripheral Interconnect Bus). The core contains an inter-
face to the FPI bus, for easy interconnection to all kinds of internal and external peripherals, memo-
ries, and different active bus agents like CPUs, DMA/PCP controllers, and coprocessors. Figure 14
shows the CPU core with optional data and instruction caches. The following subsections discuss
the core and the optional modules that can comprise a TriCore-1 chip.

Figure 14: TriCore-1 Core and Optional Memory
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8.1 TriCore-1 Core

The TriCore-1 core implements a Harvard architecture with separate address and data buses for pro-
gram and data memories. Instruction fetches can be handled in parallel with data accesses. The Tri-
Core-1 superscalar core consists of two major pipelines with four stages each, and one minor
pipeline for loop control. The three pipelines operate in parallel, allowing up to three instructions to
execute in one cycle.

The core is a RISC Load/Store machine. All arithmetic instructions use registers. The ISA contains a
set of Load/Store instructions, which fetch the data from memory and store it back to memory. There
are two General-Purpose Register Files; one is comprised of 16 address registers and the other is
comprised of 16 data registers. The TriCore ISA provides a set of Load/Store instructions that fetch
the data from the memory and store it back to the memories. The data side of the core has a 128-bit
wide bus, which can save two data and two address registers in one cycle to the cache system. This
configuration allows fast interrupt response.

The TriCore-1 core’s Integer Execute Unit consists of a dual Multiply Accumulate Module (MAC), an
ALU, and a small tightly coupled Coprocessor interface, which has access to the Register File. The
TriCore-1 core can process two Multiply-Accumulates per clock cycle.

The Flexible Peripheral Interconnect Bus (FPI Bus) easily connects the core to memory, internal and
external peripherals, CPUs, coprocessors, etc. The data and instruction caches are both connected
to the FPI Bus through individual interfaces. The data accesses from the FPI Bus are not cached in
order to avoid coherency problems. The DMA accesses to the data memory are cached. The
Scratchpad RAMs (SPRs) ensure the timing of critical routines without having to rely on the caches.

8.2 FPI Bus Overview

The FPI Bus (Flexible Peripheral Interconnect Bus) is an on-chip bus designed to be used in modu-
lar, highly integrated system chips. The FPI Bus is designed for memory and I/O mapped data trans-
fers between its bus agents, where bus agents are on-chip function blocks (modules) that are
equipped with an FPI Bus interface. It is a demultiplexed bus with up to 32 address bits and 64 data
bits. Its peak throughput is 800 Mbytes/s at 100 MHz. There is no limit to the number of peripheral
modules that can be connected to the FPI Bus.

Additional features of the FPI Bus are:

■ Multimaster capability (up to 16 masters)

■ Demultiplexed operation

■ Clock synchronous

■ 8-/16-/32- and 64-bit data transfers

■ Broad range of transfer types from single to multiple data transfers

■ Flexible bus protocol, which can be tailored to your application needs

There are three types of agents possible on the FPI Bus (see Figure 15):
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■ Master agents which can initiate and control transactions

■ Slave agents, which only support simple read and write of registers and are not actively operating
on the bus protocol.

■ Master-Slave Agents, which support advanced features like split read transfer support and error
handling. Depending on the type of transaction these agents may act as master or slave or both.

Figure 15: Examples of Modules within an FPI Bus-Based System

8.3 Peripheral Control Processor Module

The Peripheral Control Processor module (PCP) implemented in the TriCore architecture is a pro-
grammable data movement and manipulation device. It has up to 255 logical channels, which it ser-
vices on a demand basis. It performs simple data transfers, monitors the transferred data values, and
even performs operations on them. For example, the PCP can answer peripheral service requests by
adding a new value to a compare register to set up a new time-out event without any CPU interven-
tion. The PCP can service up to 64 peripheral events in parallel to the CPU, where in conventional
systems the CPU has to undergo the burden of an interrupt service routine. Figure 16 shows a block
diagram of the PCP.
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Figure 16: PCP Block Diagram

With the PCP, you can perform the following operations:

■ Move data between any two memory or I/O locations

■ Move data between the PCP parameter RAM and any memory or I/O location

■ Read a data, modify it, and store the result

■ Move data until a predefined data value has been detected

■ Read data, compare it to predefined limits and conditionally perform appropriate actions

■ Read data and accumulate it to previously read data

■ Move data and accumulate it to previously read data

■ Read two data values, perform an arithmetic or logical operation, and store the result

This functionality can be used to handle many service operations required by peripherals, which nor-
mally would be performed through an interrupt service routine via the CPU, with all the overhead in-
volved. Here are some application examples for use of the PCP:

■ Reload a peripheral register with a constant (e.g., reload a timer)

■ Modify a bit or bit field in a peripheral register (e.g., start or stop a timer or the A/D converter)

■ Accumulate values retrieved from peripherals (e.g., accumulate pulse period measurements)

■ Move data only if its value matches predefined limits (e.g., monitor certain voltage limits on ana-
log inputs)

■ Add values to peripheral registers (e.g., calculate next compare event for PWM generation, etc.)

In addition, you can use the PCP to perform check operations on the CPU or peripherals. Calculation
results from the CPU can be checked against predefined ranges with the use of the DMA/PCP. The
integrity of peripheral control registers can also be monitored for example, by comparing their con-
tents to a predefined table stored in memory) with the use of the PCP.

The Service Request Unit performs the arbitration of the different source’s requests and grants ser-
vice to the request that has the highest priority at a given time. The Bus Interface Unit provides the
proper connection to the FPI Bus. The PCP channel control code may be stored locally to the PCP
or to any memory accessible via the FPI bus.

8.4 Debug/Emulation Module

The Debug/Emulation Module provides on-chip debug support for your TriCore design. It easily con-
nects to your design via the FPI bus (see Figure 17).
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Figure 17: On-Chip Debug Support

The basic components of the Debug module are:

■ Support mechanism in the core for breakpoints

■ Debug port that provides access to breakpoint mechanism and system resources

■ Real-time trace port

The Debug/Emulation module provides a mechanism for communicating with the design during sim-
ulation. The breakpoint mechanism allows you to view register and memory contents at various op-
erating stages. The operation of the TriCore core, DMA, and Debug interface can be traced in real
time via the TriCore real-time trace output.
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9 TriCore Software Development Tools

The TriCore architecture is well supported by a robust set of hardware and software development
tools (see Figure 18). These tools include the TriCore Instruction Set Simulator (TSIM), compiler-as-
sembler debugger tool chain, real-time operating systems, and emulators. The instruction set archi-
tecture was developed in close consultation with the third party providers of these tools. The TriCore
Instruction Set Simulator (TSIM) is bundled together with complete (debugger-compiler-assembler-
linker-loader) tool chains from several vendors. Refer to the TriCore Development Tools brochure for
the vendor names.

Their evaluation kits (both PC and UNIX versions) are available free of cost to qualified customers.
System designers can not only perform price-performance trade-offs on this instruction accurate sim-
ulator, but can also begin their software development and debugging.

Figure 18: TriCore Development Tools

TSIM is a configurable, instruction-accurate model of the TriCore-1 core architecture that is integrat-
ed into all supported source-level debuggers. TSIM provides a simulation environment that models
the TriCore core, memory configuration, and interrupt mechanism. TSIM is useful for performance
and trade-off analysis and for developing and debugging your customized design.

You can reprogram the TriCore-1 core to evaluate your implementation approach by changing the
memory parameters in the TSIM memory configuration file (MConfig ). You can also specify interrupt
events in the TSIM interrupt configuration file (IConfig ) to evaluate interrupt operation and perfor-
mance. The TSIM peripheral configuration file (PConfig ) tells your program how to communicate
with the external peripherals used in this implementation.

Figure 19 shows an overview of the simulation environment.
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Figure 19: TSIM Simulation Environment

Refer to Siemens Semiconductor’s TriCore Instruction Set Simulator User’s Guide for more informa-
tion.

Source Level
Debugger

TSIM

GDI TSIM Output File

Compiled/Assembled
Application Test Program

Memory Configuration TSIM
MConfig If Used

Interrupt Configuration TSIM
IConfig If Used

Peripheral Configuration TSIM
PConfig (must be used)



TriCore-1 Implementation Example

33

ë

02/22/99, v. 1.2.1

TriCore Architecture Overview

10 TriCore-1 Implementation Example

TriCore’s convergent microcontroller-DSP architecture enables the lowest system cost design of em-
bedded systems by offering “true” single-chip solutions with on-chip, high-density memories as well
as peripherals and customer-specific logic.

Figure 20 shows a generic block diagram of Siemens’ first silicon chip, a typical TriCore-1 implemen-
tation example. This superscalar implementation contains instruction and data caches, a DMA/PCP
module, an interrupt request module, a debug/emulation module, and two miscellaneous peripheral
modules. The core and the modules are interconnected via the FPI bus, with up to 32 address bits
and 64 data bits, and a peak throughput of 800 Mbytes/s at 100 MHz.

Figure 20: TriCore Chip Example

The DMA accesses to the data memory are cached. The instruction fetch from the FPI Bus is
cached. This is necessary because the program is run very often from memories that are connected
to the FPI or even the external bus.

Cache

Program Memory

Scratchpad RAM

Fetch

Address ALU
Coprocessor

GP Address Registers

ALU

System Registers

TriCore Core

Data Memory

Data Switch

FP
IB

us
In

te
rfa

ce

Interrupt Control Unit

Peripheral Module C

PCP Module

External Bus Interface

Scratchpad RAM

Program Switch

Cache

Bit Manipulation

MAC

GP Data Registers

Control
Address Generator

32 bit64 bit64 bit

64 bit = 2 to 4 instructions

32 bit

Peripheral Module A

32 bit

32 bit

16 bit

8 bit

32 bit

Peripheral Module B

OCDS JTAG



TriCore-1 Implementation Example ë

34

02/22/99, v. 1.2.1

TriCore Architecture Overview

The debug mechanism provides easy hardware-software integration through breakpoint support in
the core, the debug port that offers access to the breakpoint, other system resources, and the real-
time trace port.
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11 DSP Example

The TriCore 1 superscalar architecture consists of three units, the Integer Execution Unit, the Load/
Store Unit and the Loop Unit, allowing the issue of up to three instructions per clock cycle. Figure 21
shows the different possible instruction issue combinations. The highest issue rate is achieved when
a load/store, integer and loop instruction are all available. This issue rate is easy to reach during the
inner loop of of many DSP routines, allowing TriCore to deliver a sustained DSP throughput of 2
16x16 MACs per clock. The example below shows how this works.

Figure 21: Superscalar Instruction Issue

This superscalar implementation can process two 16x16 Multiply-Accumulates per clock cycle. For
example, assume the following equation needs to be calculated:
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Taking the case for n=255 (as in a 256-tap filter), the table below summarizes the execution unit uti-
lization, assuming 16-bit fixed point data. In this example, eight 16x16 MACs are calculated for each
loop iteration:

In this example, 16-bit operands are moved four-at-a-time into two 32-bit registers using 64-bit load
operations. Eight operands are moved into four registers, then two dual-MAC operations process
them. In parallel with this processing, the next 8 operands are moved into four other registers.
These other registers are then used in the next two MAC operations. While the next two MACs are
being performed, the first set of registers is loaded with the next 8 operands. Thus the loads and
MACs are interleaved, with loads "ping-ponging" between two sets of registers. Sustained dual-MAC
DSP throughput is thus obtained.

Clock Integer Unit Load/Store Unit Loop Unit

clock 1 - Load C0, C1, C2, C3 -

clock 2 - Load X0, X1, X2, X3 -

clock 3 MAC C0X0, MAC C1X1 Load C4, C5, C6, C7 Loop Start

clock 4 MAC C2X2,, MAC C3X3 Load X4, X5, X6, X7 -

clock 5 MAC C4X4, MAC C5X5 Load C8, C9, C10, C11 -

clock 6 MAC C6X6,,MAC C7X7 Load X8, X9, X10, X11 Loop

... ... ... -

clock 130 MAC C254X254, MAC C255X255 - -

clock 131 - Store Result -
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Global PartnerChip for Systems on Silicon
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Total Quality Management

Quality takes on an all-encompassing significance at the Siemens Semiconductor Group. For us it
means living up to each and every one of your demands in the best possible way. So we are not only
concerned with product quality. We direct our efforts equally at quality of supply and logistics, service
and support, as well as all the other ways in which we advise and attend to you.

Part of Siemens’ quality is the very special attitude of our staff. Total Quality in thought and deed, to-
wards co-workers, suppliers and you, our customer. Our guideline is “do everything with zero de-
fects”, in an open manner that is demonstrated beyond your immediate workplace, and to constantly
improve. Throughout the corporation, we also think in terms of Time Optimized Processes (TOP),
greater speed on our part to give you that decisive competitive edge.

Give us the chance to prove the best of performance through the best of quality—you will be con-
vinced.
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