
10

The ongoing revolutionary progress
of microelectronics is the driving force behind
the constant development of new technical
products that have markedly improved func-
tionality and higher performance, yet at a
lower cost. We expect this trend to continue
beyond the year 2015. The challenge lies in
mastering the resulting design complexity and
achieving economic viability for integrated sys-
tems with more than 100 million devices per
square centimeter. This requires system con-
cepts that both exhaust the possibilities of
semiconductor technology and reduce the
design and test complexity. Because of their
highly regular, modular structure, information
processing parallelism, inherent fault tolerance,
learning ability, and environmental adaptabil-
ity, artificial neural networks (ANNs) offer an
attractive alternate approach for ultra-large-
scale-integration (ULSI) systems. ANNs offer
a variety of techniques for use in resource-effi-
cient information processing architectures,
and, in particular, for cognitive systems. The
three approaches we examined are model-
specific integrated circuits for neural associative
memories, self-organizing feature maps, and
local cluster neural networks.

With structure sizes smaller than 0.1 micron,
semiconductor technology starts falling below
the level of biological structures forming the
brain. However, the brain efficiently uses all

three dimensions, whereas microelectronics can
use only the two physical dimensions of the sil-
icon die surface. Nevertheless, taking an area
of one square millimeter—roughly the square
dimension of a Purkinje cell (a type of neuron)
in the cerebellar cortex, shown in Figure 1a—
we can use 0.18-micron CMOS technology to
implement a digital artificial neuron (Figure
1b) with 170,000 8-bit weights (synapses) and
an 8-bit microprocessor as a neural processing
unit (Figure 1c). Weights are the practical
implementation (in hardware, software, theo-
ry) of (biological) synapses (contacts between
nerve cells).

Two approaches exist for supporting ANNs
in parallel computing architectures: general-
purpose neurocomputers for emulating a wide
range of neural network models, and special-
purpose ULSI systems dedicated to a specific
neural network model. General-purpose neu-
rocomputers offer a high degree of observ-
ability of the inner workings of neural
algorithms as well as flexibility. Special-pur-
pose ULSI designs offer resource-efficient
speed, size, and power consumption. Progress
continues in both approaches, and researchers
have realized many different architectures in
working hardware. There exists a variety of
architectures within these two approaches.
This is necessary to address the difficulty in
determining the best way to perform ANN

Ulrich Rückert
University of Paderborn

NO CLEAR CONSENSUS EXISTS ABOUT HOW TO EXPLOIT THE POTENTIAL FOR

MASSIVELY PARALLEL IMPLEMENTATIONS OF ARTIFICIAL NEURAL NETWORKS.

THREE HARDWARE IMPLEMENTATIONS DEMONSTRATE KEY ISSUES

SURROUNDING THEIR USE.

0272-1732/02/$17.00 2002 IEEE

ULSI ARCHITECTURES FOR
ARTIFICIAL NEURAL NETWORKS

calculations for any given application.1-3 Addi-
tionally, no one has given the problem of
benchmarking a full treatment or found a
commonly accepted adequate metric for per-
formance evaluation.

We developed our own approach to special-
purpose ULSI systems for neural networks.
The basic procedure for microelectronic imple-
mentation of specific ANN models is simple:

1. Select an artificial neuron model.
2. Implement this model by means of an

adapted (analog or digital) processing
unit together with the required memory
for the weights (synapses).

3. Make as many copies of this neuron
implementation as necessary, and con-
nect these neurons to the selected net-
work structure.

Table 1 shows that in respect to functionality,
we distinguish neural networks by association,
classification, and controlling or approxima-
tion. For each functionality, we selected a
neural network model well adapted to micro-
electronic implementation because of modu-
lar, regular architecture, required calculation
accuracy, scalability, and performance. All
chips were fabricated using the Europractice
Services, which are offered to European uni-
versities at reasonable costs.

Neural associative memory
The basic operation of an associative mem-

ory is to map between finite pattern sets X and
Y. The associative memory responds with out-
put vector y t to the input vector x t for every
pair (t = 1, … , z) stored in the associative
memory. This mode of operation is called pat-

11MAY–JUNE 2002

W1,1

X1

W2,1

X2

Wm,1

Y1

Xm

Th

(b) (c)(a)

1.0

0.8

0.6

0.4

0.2

(m
m

)

0.2 0.4 0.6 0.8 1.0

(mm)

1.0

0.8

0.6

0.4

0.2

(m
m

)

0.2 0.4 0.6 0.8 1.0

(mm)

171,000 8-bit synapses

Th
W

Each neuron’s threshold
Connection weights

X
Y

Inputs to network
Outputs of network

Table 1. Characteristic application fields for artificial neural networks.

 X→ANN→Y Task Evaluation Model

Discrete Discrete Association/memory Storage capacity Binary neural associative memory
Continuous Discrete Classification/quantization Error probability n-bit input, self-organizing map
Continuous Continuous Approximation/interpolation Distance measure Local cluster neural network

Figure 1. Principal structure of a biological neuron (a), an artificial model neuron (b), and a microelectronic implementation of
an artificial neuron (c).

tern mapping or hetero-associative recall. A
special case of this functionality is the autoas-
sociative recall (pattern completion) where the
stored pairs look like (x t , x t). Given a suffi-
ciently large part of x t, the memory responds
with the whole pattern x t (t is an index for the
stored pattern pairs [t = 1, … , z]). Palm and
others studied a very simple model of a neur-
al network performing this task efficiently.4 We
call this model the binary neural associative
memory (Binam) because the input, output,
and connection weights (synapses) are binary.

We designed ULSI architectures for the
Binam using digital, digital/analog, and ana-
log circuit techniques.5-7 For our implemen-
tation using serial associative RAM (Saram),
we integrated the memory and the processing
unit on one chip. We tested two digital imple-
mentations, which we will call Saram& and
Saram+, and one analog implementation,
Saram@. Both digital architectures are based
on a 16-Kbit on-chip static RAM; a neural
processing unit; a coding block, including
input/output logic; and an on-chip controller
providing 12 instructions for synchronizing,
controlling, and testing the modules.

Saram& uses a fixed threshold that is set by
default to the number of 1s (h bits)—the set
m without h of these bits is 0—in the input pat-
tern. The calculation unit of each neuron has

about 10 standard cells or 120
transistors. The Saram+ chip,
shown in Figure 2a and b, uses
a programmable threshold to
widen its applicability, but the
neurons are more complex
due to the implementation of
a counter instead of a few sim-
ple logic gates. Consequently,
the calculation unit of each
Saram+ neuron requires 38
standard cells or 432 transis-
tors. For both digital chips, an
association of a binary input
pattern having h of its m bits
set to 1 (the other bits are 0)
with a binary output pattern
having k of its n bits set to 1
takes 2h + k + 2 clock cycles.
The learning/programming of
such an association takes 3h +
k clock cycles. Applying the
maximum clock frequency we

designed and tested, 25 MHz, the digital chips
(Saram&, Saram+) have a typical association
rate (associated patterns per second) (h = 6, k =
2) of 1.56 × 106 patterns per second or 600 mil-
lion connections per second. The typical learn-
ing/programming rate in our tests is 1.25 × 106

patterns per second or 480 million connection
updates per second. The average power con-
sumption is 140 mW for Saram& and 170
mW for Saram+ for a 5-V power supply and a
25-MHz clock rate. These chips can store
about 1,200 associations (sparsely coded: h =
6, k = 2) reliably. See the “Binary neural asso-
ciative memory” sidebar for a detailed expla-
nation of Binam operations.

We implemented the connection matrix
(synapses) of the Binam model using a stan-
dard static memory macro. The matrix (and
the macro) has a 256-word × 64-bit complex-
ity. Hence, every input pattern is 256 bits and
every output pattern is 64 bits wide. Since
every weight of the connection matrix is bina-
ry, a standard six-transistor cell stores one
weight. If we use dynamic memory cells, only
two devices are necessary for each connection
weight. Both digital chips have nearly the same
die size of 25 sq. mm (made with standard cell,
1.0-micron CMOS technology), with a 64-
neuron × 256-synapse matrix size. Figure 2b
shows that the ratio between the memory area

12

ARTIFICIAL NEURAL NETWORKS

IEEE MICRO

W1,1

W2,1

Wm,1

Y1

Th

W1,n

W2,n

Wm,n

Yn

Th

(b)(a)

W1,2

X1

W2,2

X2

Wm,2

Y2

Xm

Th

Th
W

Each neuron’s threshold
Connection weights

X
Y

Inputs to network
Outputs of network

Figure 2. Architecture (a) and photograph (b) of the Saram+ chip.

(weights) and the standard cell area (calcula-
tion units) for these test chips is nearly one.
Increasing the width of the input patterns to m
> 8192 (where m is the dimension of the input
vector) would give a ratio of less than four per-
cent relative usage for the neural processing
unit. Furthermore, using full custom designs
for the neural processing units reduces the cir-
cuitry area by about 50 percent.

We used mixed-mode analog and digital cir-
cuits for the Saram@ hardware implementa-
tion.8 We used analog circuit techniques to
compute the weighted sum within the neuron
by current summing. For weight storage, we
modified a six-transistor static memory cell
with respect to transistor geometries. The ana-
log concept enhances the speed of the associa-
tion. In contrast, we achieved a lower accuracy
(than in the digital implementation) for sum-
ming up activated 1s in the matrix, but the
required accuracy for the analog circuitry grows
only with the number of active vector compo-
nents h = log(m) and not with the vector
dimensionality itself. The Saram@ test chip has
a 16 neuron × 16 synapse matrix at a 10-sq.-

mm die size (using 1.2-micron CMOS tech-
nology). We tested the chip up to a 1-MHz fre-
quency. During an association, the chip draws
a 1.4-mA current, hence power dissipation for
a 5-V supply voltage is about 7 mW.

The Saram chips can be scaled up on a chip
as well as cascaded with other chips to build
up larger Binams. For example, using 0.18-
micron CMOS technology, we can imple-
ment on a chip, 4,000 neurons, each having
16,000 inputs. Cascading four such chips
results in 16 K × 16 K Binams in which sev-
eral million patterns are associatively stored
and each pattern retrieved in about 10 ns.

Self-organizing maps
For classification tasks, we use self-organiz-

ing maps (SOM) as proposed by Kohonen9

for microelectronic implementation. SOMs
use an unsupervised learning algorithm to
form a nonlinear mapping from a given high-
dimensional input space to a lower-dimen-
sional map of neurons; see the
“Self-organizing maps” sidebar (next page) for
a detailed description. To ease the efficient

13MAY–JUNE 2002

The binary neural associative memory is a single layer feed-forward
neural network with n neurons having m inputs each. The input vectors
xt, the output vectors yt, and the weights wij take a binary form (t = 1, …,
z; i = 1, … , m; and j = 1, ... , n). The associative mapping is built up in the
following way: The input vector xt and the corresponding output vector yt

of every pair stored in the binary neural associative memory are applied
to the matrix simultaneously. Initially, all connection weights wij are zero.
Each weight wij at the intersection of an activated row and column (xt

i =
yt

j = 1) will be switched on, whereas all the other connection weights
remain unchanged. This clipped Hebb-like1 rule programs the connection
matrix and stores the information in a distributed way. Applying an input
vector to the neurons recalls the constructed mapping. For each neuron
we sum up the products of the input components xj and the correspond-
ing connection weights wij:

The associated binary output vector y is obtained by the following thresh-
old operation:

For an efficient application of the Binam, the input and output patterns
must be sparsely coded. This means only a few [h = log(m), k = log(n)]

input/output lines can be active (1) at any time. This simple system con-
cept has very attractive features for neural associative memories and
content addressable techniques:

• the asymptotic storage capacity is 0.69 n × m bits,
• the number of patterns that can be stored is approximately (0.69 n

× m) / (h × k) and hence much larger than the number of neurons n,
• the number of operations during association is O [log (m) × n] instead

of O (n × m), and
• the binary neural associative memory is well suited for ULSI imple-

mentation.

The application of Binams is attractive whenever requirements include
a fast response and fault-tolerant access to stored patterns in large data-
bases. Hence, the typical application area is information retrieval. Binams
have efficient storage capacity, access time, and power consumption as
long as special hardware is available. In addition, the Binam works more
efficiently as the size of the matrix increases.

References
1. D.O. Hebb, The Organization of Behavior: A Neuropsychological

Theory, Wiley, New York, 1949.

y

Th N
j =

> ∈

1
0
,
,
ifS
otherwise

j

S x wj j ij
j

m

= ×
=

∑
1

Binary neural associative memory

14

ARTIFICIAL NEURAL NETWORKS

IEEE MICRO

In general, a self-organizing map is a single layer of two-dimensionally
arranged artificial neurons, as Figure A1 shows. Each neuron receives the
same input vector x = (x1, ... , xn). First, the map has to learn a set of input
vectors (learning phase). The unsupervised learning process starts with
a suitable initialization of the connection weights of the neurons. If no
information about the input data is available, the weights are initialized
with random values. In several training epochs, all vectors of a training
data set are trained to the map. The training result is a nonlinear mapping
from the given high-dimensional input space to the two-dimensional map
of neurons. An example of a training result is shown in Figure A2. In this
case, six clusters of a four-dimensional input space are mapped to a SOM
with 40 × 40 neurons. The neighborhood of the clusters in the input space
is preserved on the map and cluster with a higher density of data points,
taking a larger area on the map.

For training a vector x the neuron that has the most similar weight vec-
tor m is determined:

The similarity between the input vector x and the so-called best-match
neuron mbm is often calculated based on the Euclidean distance. If n is
the dimension of the input and the weight vectors, the Euclidean distance
is defined as:

The best-match (or winning) neuron is adapted to the input vector by
applying the following learning rule:

This learning rule not only alters the winning neuron, but also neurons in
the neighborhood on the map. Therefore a neighborhood function hci is
defined:

The term |rbm−ri| estimates the topological distance between the
best-match neuron and neuron i on the map. The position of the best-
match neuron is rbm ∈ℜ2, and the position of the neuron i on the planar
map is ri ∈ℜ2. The function σ2(t) defines the width of the Gaussian
curve and α(t)the adaptation strength. Both are decreasing functions of
the time-discrete index t (training steps). After learning, the map recalls
for any given input vector the best-match neuron. In other words, the
map performs a classification of known as well as unknown input data.

The NBISOM chips simplify the original algorithm proposed by Koho-
nen1 to minimize the necessary chip area and maximize the number of
processing elements per chip. Therefore, the Manhattan distance replaces
the Euclidean distance to get rid of the multiplications:

The second simplification concerns the neighborhood function. This
function is restricted to a set of factors that can be realized by a simple
shift-register: hci∈{1, 1/2, 1/4, 1/8, 1/16, …}.

Reference
1. T. Kohonen, Self-Organizing Maps, Springer, Berlin, 1995.

d x j j

j

= − = −
=

∑x m
1

1

m
l

 h t eci

t
bm i

=
−

α
σ

()
()

×

−r r
2

22

 m m xi i ci it t h t t() () () ()+ = + −[]1 m

d x j j
j

n

= − = ()
=

∑x m
2

1

2

− m

x m x m− = −bm

i
imin

Self-organizing maps

Output
neuron

Input data

xn

x2

x1

40

30

20

10

0
0 10 20 30 40

Figure A. Self-organizing maps: architecture (1), visualization of a learning result (2).

(1) (2)

implementation of SOMs in parallel hard-
ware, we simplified the original algorithm to
create the n-bit input SOM (NBISOM) archi-
tecture.10 In particular, we used the Manhat-
tan distance to calculate the distance between
the input vector and the model vectors to
avoid the square root multiplication and cal-
culation required for the Euclidean distance
(which is typically used in SOM implemen-
tations). Restricting the values of the adapta-
tion factor replaces the multiplications
required for adaptation with shift operations.
Additionally, we set the accuracy of the input
vector components and model vectors to 8
bits. We have run a large number of simula-
tions to prove the quality of the simplified
algorithm.

The given simplifications lead to a mas-
sively parallel hardware implementation,
offering one processing element with inter-
nal memory for every neuron of the SOM.
Thus, every processing element must have
the capability to perform the calculations
required for learning and recall. We devel-
oped an application-specific integrated cir-
cuit, NBISOM_25, which integrates 25
processing elements arranged in a 5 × 5
array, as shown in Figure 3a. Apart from the
required calculation units and some inter-
face logic, every chip contains a RAM block
capable of storing 64 vector components.
We implemented a controller for the inter-
pretation of eight different commands and
for communication between the processing
elements themselves and with an external
controller. The chip is fabricated using a 1.0-

micron CMOS process with a die size of
74.3 sq. mm.

We built a board with 16 NBISOM_25
chips (Figure 3b) that integrates a self-orga-
nizing map in our VMEbus system. Thus, we
can realize map sizes up to 20 × 20 elements
with 64 vector components. For interfacing
with the VMEbus and for controlling the
array of processing elements, we used two
field-programmable gate arrays (FPGAs). We
store the input and output data in a dual-port
RAM to decouple data transfer via the VME-
bus from the onboard communication. Fig-
ure 3b is a photograph of the VMEbus board
containing 16 NBISOM_25 chips. The max-
imum performance of the NBISOM_25
chips is 4,096 million connections per second
during recall and 2,382 million connection
updates per second during learning for a 20
× 20 matrix.11 The classification rate is
160,000 patterns per second.

To improve the functionality of the NBI-
SOM_25 chips we developed the NBX
chip.12 This successor to the NBISOM has
an internal structure with lower area require-
ments combined with enhanced features.
For instance, the best-match search is opti-
mized. In spite of the integrated enhance-
ments, the clock speed can be more than 40
MHz. The first NBX test chip integrates 16
processor elements, and each element holds
128 vector components with 8 bits per com-
ponent in two static RAM banks with 128
× 64 bits. The chip is fabricated in a 0.8-
micron CMOS process with a die size of
28.58 sq. mm.

15MAY–JUNE 2002

(a) (b)

Figure 3. Self-organizing maps: photograph of NBISOM_25 chip (a), and a VMEbus-board with 16 NBI-
SOM_25 chips (b).

Local cluster neural network
A third class of neural networks for hard-

ware implementation is function approxima-
tors. This kind of network maps a given input
vector from a continuous input space to a con-
tinuous output space. We examined both ana-

log and digital hardware implementations of
these network types, although in this article,
we will examine only the analog approach.
Other authors have discussed the digital
implementation of a radial basis function net-
work with an FPGA.13

16

ARTIFICIAL NEURAL NETWORKS

IEEE MICRO

Li

X1

ri

Li +1

ri +1

Xn

 y(x)

Subtraction
Multiplication
Transfer function

Cluster output
Position vector of local cluster
Inputs to LCNN
Network output

L
r

X
y(x)

(a) (b)

Figure 4. Architecture (a) and chip photograph (b) of a local cluster neural network.

The LCNN is a two-layer feed-forward network developed by Sitte and
Geva.1 Similar to radial basis function networks, the LCNN uses local func-
tions for approximating a given complex function. The approximation is done
by placing several local functions in its input space. The basic idea is to super-
impose sigmoid functions in such a way that they only respond to a finite
region in input space. The network accomplishes this by first constructing a
ridge function for every input signal x by comparing two sigmoids. The ridge
function is: l(w,r,k,x) = σ [k,wT (x − r) + 1] − σ [k,wT (x − r) − 1].

The orientation and width of the ridge is determined by the orienta-
tion of w and its length. The position of the ridge is given by the position
of the vector r. The sigmoid is chosen to be the logistic function with
steepness k: σ(k,h) = 1 ⁄ 1 + e − k h . A local function is obtained by adding
the ridge function of all the components in the input signal vector. All
ridges have a different orientation but the same center:

where w is now an n × n matrix made out of n ridge (column) vectors wi.
This function has a bump around the common center r and ridges ema-
nating to infinity in as many directions as there are dimensions. These

ridges have to be removed to make the function local. Application of a
properly biased sigmoid σ0 to the function ƒ(w,r,k,x) cuts out the ridges
smoothly. The local function made out of a cluster of sigmoids is L(w,r,k,x)
= σ0 [ƒ(w,r,k,x) − b].

A local cluster network consists of an array of local cluster functions
all receiving the same inputs. The network output is a weighted sum of
the local cluster outputs:

The LCNN makes use of the computational advantages of localized func-
tions for training and application. It also has the advantage of relatively
simple weighted sums and sigmoids for analog VLSI implementation,
instead of calculating more complicated Euclidean distances.

References
1. S. Geva, K. Malmstrom, and J. Sitte, “Cluster Neural Net:

Architecture, Training and Applications,” Neurocomputing 20,
1998, pp. 35-56.

y x v L W r x
m

() = ()
=

∑ µ µ µ
µ

, ,
1

f w r k x l w r k xi

i

n

(, , ,) (, , ,)=
=

∑
1

Local cluster neural network

The local cluster neural network
(LCNN)14 is a two-layer feed-forward net-
work, which we implemented in analog
hardware.15 The network uses dot products
and sigmoidal transfer functions, which are
generated efficiently in analog hardware. See
the “Local cluster neural network” sidebar
for a detailed description of the operations
of this network. Figure 4a shows the archi-
tecture of the analog LCNN. We imple-
mented the LCNN using a 0.8-micron
CMOS process from Austria Microsystems.
The chip has a total area of 10 sq. mm, but
the analog part only used 0.5 sq. mm. The
rest of the area is used for the weights, which
are stored in digital shift registers and con-
verted with digital-to-analog converters. We
placed two local clusters with six inputs and
one output each on the chip, as shown in
Figure 4b.

We chose current as the information car-
rier because most operations such as addi-
tions, subtractions, and multiplications can
be implemented in current mode techniques.
Furthermore, we can combine these circuits
easily. The maximum output current is about
10 mA and the maximum input frequency of
the chip is limited to 50 KHz for a supply
voltage of 3 V. Control tasks, especially motor
control in small autonomous systems, are the
main application area of this LCNN chip.
Therefore, we preferred low energy con-
sumption instead of a high-frequency
response.

Applications
Our proposed neural network hardware

models offer a wide range of applications. The
chips are suitable for use in information
retrieval (associative memory), exploratory
data analysis (self-organizing maps), automa-
tion, and autonomous systems.

Depending on the restrictions of a certain
application, we can emphasize different
aspects of the chip. First, we can operate in
real time using neural hardware. Examples
include automation with online identification
and control using neural algorithms.13 The
NBISOM system offers advantages in the
analysis of huge data sets. This system offers
a significant computation time speed-up com-
pared with a software implementation; not
only in self-organizing networks, but also

compared with conventional methods (cluster
analysis for example).

Second, our hardware allows the develop-
ment of resource-efficient systems with min-
imal total energy consumption combined
with a small size and fault-tolerant behavior.
To examine the use of neural concepts in
autonomous systems, we embedded the devel-
oped neural hardware in the minirobot Khep-
era (shown in Figure 5) from K-Team,
Switzerland.16

The design goal for autonomous systems is
the generation of reasonable reflex-like behav-
ior, based on the available sensor data. In par-
ticular, for sensor calibration we embedded
concepts and methods of self-organizing fea-
ture maps into the robot’s system control
structure.16 The robot can adjust sensor devi-
ations (inevitably caused during manufacture)
in a self-optimizing way. We used associative
memory for user-adaptive and fault-tolerant
behavior mapping. In this application, a sen-
sor input acts as the input vector for the mem-
ory matrix. The associated output is
interpreted as motor stimuli to achieve an ade-
quate motion.

Benefits
There are three main reasons for the con-

centration on model-specific implementa-

17MAY–JUNE 2002

Figure 5. The minirobot Khepera.

tions such as those we have examined. First,
because of the modular and regular archi-
tecture of the selected ANN models, the
microelectronic implementation can be per-
formed efficiently. Second, only a small
amount of additional software is necessary
to embed these chips in a given system envi-
ronment. This is crucial for both hardware
platforms used in our laboratory, that is, the
stationary VMEbus/PCIbus system for
simulating large ANNs in real time and the
mobile autonomous robot Khepera. Third,
special-purpose hardware ANN implemen-
tations are efficient in speed, area, and power
consumption.

We made the ANN solutions resource effi-
cient for suitability in real-time applications
with extremely low energy requirements, and
even for the smallest device sizes. Further-
more, due to the modular architecture, our
chip implementations are easily adapted to
new technologies without enormous design
and test complexity. Thus, these architec-
tures will benefit more from future develop-
ments in microelectronics than would
software microprocessor solutions. Addi-
tionally, the system features (storage capaci-
ty, classification quality, approximation
accuracy) improve noticeably as the size of
the network increases.

Progress in microelectronics provides a
powerful framework for implementing

large ANNs in hardware. Microelectronics
will still dominate the field of ANN imple-
mentation at least for the next decade. How-
ever, the discussion is open about the best
ways to achieve very large neural systems and,
in the long term, how to produce so-called
artificial brains. We are still a long way from
fully comprehending the functional mecha-
nisms of the brain; and the construction of
an artificial brain will remain for a very long
time, if not forever, a fantasy. Nevertheless,
we do have something to learn from nature
about resource-efficient technical systems.
This is why a hardware realization of neural
networks does not aim for an exact repro-
duction of nervous systems, but simply for
the efficient use of technologies for solving
technical problems. Today we use microelec-
tronics; we are keenly awaiting the technolo-
gy we can use tomorrow. M I C R O

Acknowledgment
This work was partly supported by the

Deutsche Forschungsgemeinschaft (German
Research Council) DFG GR 948/14-3, DFG
RU 477/2-3 and the Graduate Centre Paral-
lele Rechnernetzwerke in der Produktin-
stechnik.

References
1. U. Ramacher and U. Rückert, eds., VLSI

Design of Neural Networks, Kluwer Acade-
mic, Boston, 1991.

2. IEEE Micro (Special Issue on Approximat-
ing Solutions: Fuzzy Systems and Neural
Networks), vol. 15, no. 3, June 1995.

3. P. Inne, “Digital Connectionist Hardware:
Current Problems and Future Challenges,”
Biological and Artificial Computation: From
Neuroscience to Technology, Lecture Notes
in Computer Science, vol. 1240, Springer,
Berlin, 1997, pp. 688-713.

4. G. Palm et al., “Neural Associative Memo-
ries,” Associative Processing and Proces-
sors, A. Krikelis and C.C. Weems, eds., IEEE
CS Press, Los Alamitos, Calif., 1997, pp.
307-326.

5. U. Rückert, A. Funke, and C. Pintaske,
“Acceleratorboard for Neural Associative
Memories,” Neurocomputing 5, 1993, pp.
39-49.

6. U. Rückert, “An Associative Memory with
Neural Architecture and its VLSI Implemen-
tation,” Proc. Hawaii Int’l Conf. System Sci-
ences (HICSS-24), IEEE CS Press, Los
Alamitos, Calif., 1991, pp. 212-218.

7. A. Heittmann et al., “Digital VLSI Imple-
mentation of a Neural Associative Memory,”
Proc. 6th Int’l Conf. Microelectronics for
Neural Networks, Evolutionary and Fuzzy
Systems, Univ. of Technology, Dresden,
Germany, 1997, pp. 280-285.

8. A. Heittmann and U. Rückert, “Mixed Mode
VLSI Implementation of a Neural Associative
Memory,” Proc. 7th Int’l Conf. Microelec-
tronics for Neural Networks, Evolutionary
and Fuzzy Systems, Univ. of Technology,
Dresden, Germany, 1999, pp. 205-211.

9. T. Kohonen, Self-Organizing Maps, Springer,
Berlin, 1995.

10. S. Rüping, K. Goser, and U. Rückert, “A Chip
for Self-Organizing Feature Maps,” IEEE
Micro, vol. 15, no. 3, 1995, pp. 57-59.

11. S. Rüping, M. Porrmann, and U Rückert,

18

ARTIFICIAL NEURAL NETWORKS

IEEE MICRO

“SOM Hardware-Accelerator,” Proc. Work-
shop Self-Organizing Maps (WSOM 97),
Helsinki Univ. of Technology, Helsinki, Fin-
land, 1997, pp. 136-141.

12. S. Rüping, M. Porrmann, and U Rückert,
“SOM Hardware with Acceleration Module
for Graphical Representation of the Learning
Process,” Proc. 7th Int’l Conf. Microelec-
tronics for Neural Networks, Evolutionary
and Fuzzy Systems, 1999, pp. 380-386.

13. U. Witkowski et al., “System Identification
Using Self-Organizing Feature Maps,” Proc.
5th Int’l Conf. Artificial Neural Networks
(ANN 97), IEEE CS Press, Los Alamitos,
Calif., 1997, pp. 100-105.

14. S. Geva, K. Malmstrom, and J. Sitte, “Clus-
ter Neural Net: Architecture, Training and
Applications,” Neurocomputing 20, 1998,
pp. 35-56.

15. T. Körner, Analog VLSI Implementation of a
Local Cluster Neural Net, doctoral disserta-
tion, no. 77, Heinz Nixdorf Inst., Univ. of
Paderborn, Germany, 2000.

16. U. Rückert, J. Sitte, and U. Witkowski,
“Autonomous Minirobots for Research and
Edutainment,” Proc. 5th Int’l Heinz Nixdorf
Symp., no. 97, Heinz Nixdorf Inst., Pader-
born, Germany, 2001.

Ulrich Rückert is a professor of electrical engi-
neering and holds the System and Circuit
Technology chair at the Heinz Nixdorf Insti-
tute at the University of Paderborn, Germany.
His research interests include the design of
microelectronic systems for massively parallel
and resource-efficient information processing.
Rückert received the diploma degree (M.Sc.)
in computer science and the Dr. -Ing. degree
in electrical engineering from the University
of Dortmund, Germany. He is a member of
the IEEE and the International Neural Net-
work Society.

Direct questions and comments about this
article to Ulrich Rückert, Heinz Nixdorf Insti-
tute, University of Paderborn, Fuerstenallee
11, 33102 Paderborn, Germany; rueckert@
hni.upb.de.

For further information on this or any other
computing topic, visit our Digital Library at
http://computer.org/publications/dlib.

19MAY–JUNE 2002

Coming
Next
Issue

JULY-AUGUST 2002

Critical
Embedded
Automotive
Networks

Guest Editor Philip Koopman (Carnegie
Mellon University) presents articles on
protocol alternatives and approaches to
X-by-wire design methodology in auto-
motive networks. Topics will include

• Model-Based System Development:
An Approach to Building X-by-Wire
Applications,

• CAN for Critical Embedded Automo-
tive Networks,

• The FTT-CAN Protocol: Improving
Flexibility in Safety-Critical Systems,

• Design and Analysis of a Robust Real-
Time Engine Control Network, and

• The Time-Triggered Architecture:
A Consistent Computing Platform.

IEEE Micro
serves your interests

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

