
A Web Caching Primer

Brian D. Davison
Department of Computer Science

Rutgers, The State University of New Jersey (USA)
http://www.cs.rutgers.edu/˜davison/

davison@cs.rutgers.edu

c©IEEE. Reprinted from IEEE Internet Computing, Volume 5, Number 4, July/August
2001, pages 38-45.

This material is posted here with permission of the IEEE. Internal or personal use
of this material is permitted. However, permission to reprint/republish this mate-
rial for advertising or promotional purposes or for creating new collective works
for resale or redistribution must be obtained from the IEEE by sending an email
message to pubs-permissions@ieee.org.

Brian D. Davison

Rutgers,The State University

of New Jersey

A Web Caching
Primer

Now a significant part of the Web’s infrastructure, Web

resource caching can reduce network latencies and

bandwidth demands transparently.

W
hen the Web was new, a sin-

gle entity could (and did) list

and index all of the Web

pages available, and searching was just

an application of the Unix egrep com-

mand over an index of 110,000 docu-

ments.1 Today, even though the larger

search engines index billions of docu-

ments, any one engine is likely to see

only a fraction of the content available.2

Moreover, with the widespread commer-

cialization of the Web, exceeding the

“eight-second rule” for downloading a

Web page can mean a significant loss of

revenue as many users will move on to a

new site if they are unsatisfied with the

performance of the current one.3 Finally,

as increased Web use necessitates larger

and more expensive connections to the

Internet, concern for efficient use of those

connections similarly increases.

This article provides a primer on Web

resource caching, one technology used to

make the Web scalable. Web caching can

reduce bandwidth usage, decrease user-

perceived latencies, and reduce Web serv-

er loads transparently. As a result,

caching has become a significant part of

the Web’s infrastructure. Caching has

even spawned a new industry: content

delivery networks, which are also grow-

ing at a fantastic rate.

Readers familiar with relatively

advanced Web caching topics such as the

Internet Cache Protocol (ICP),4 invalida-

tion, and interception proxies are not

likely to learn much here. Instead, this

article is designed for the general audi-

ence of Web users. Rather than a how-to

guide to caching technology deployment,

it is a high-level argument for the value

of Web caching to content consumers and

producers. The article defines caching,

explains how it applies to the Web, and

describes when and why it is useful.

Though I provide several topical refer-

ences, readers interested in survey papers

should look elsewhere (see the sidebar,

“Web Caching Resources” on page 43).

Caching in Memory
Systems
Memory architectures use caching to

improve computer performance.5 Because

central processing units operate at very

high speeds while memory systems oper-

ate at a slower rate, CPU designers pro-

vide one or more levels of cache — a

38 JULY • AUGUST 2001 http://computer.org/internet/ 1089-7801/01/$10.00 ©2001 IEEE IEEE INTERNET COMPUTING

S
c
a
la

b
le

 I
n
t
e
r
n
e
t
 S

e
r
v
ic

e
s

small amount of memory that operates at, or close

to, the speed of the CPU. When the CPU finds the

information it needs in the cache, a hit, it doesn’t

have to slow down. When it fails to find the

requested object in the cache, a miss, it must fetch

the object directly and incur the associated per-

formance cost.

Typically, when a cache miss occurs, the CPU

places the fetched object in the cache, assuming

temporal locality — that a recently requested

object is more likely than others to be requested

in the future. Memory systems also typically

retrieve multiple consecutive memory addresses

and place them in the cache in a single operation,

assuming spatial locality — that nearby objects

are more likely to be requested during a certain

time span.

At some point the cache will become full and

the system will use a replacement algorithm to

make room for new objects, for example, first-

in/first-out (FIFO), least recently used (LRU), or

least frequently used (LFU). The goal is to optimize

cache performance (for example, to maximize the

likelihood of a cache hit for typical memory archi-

tectures).

Mechanics of a Web Request
In its simplest form, the Web is a set of servers and

clients (such as Web browsers, or any other soft-

ware used to make a request of a Web server). To

retrieve a particular Web resource, the client

attempts to communicate over the Internet to the

origin Web server, as depicted in Figure 1. To con-

nect to the server, the client needs the host’s

numerical identifier. It queries the domain name

system (DNS) to translate the hostname (for exam-

ple, www.web-caching.com) to its Internet Proto-

col (IP) address (209.182.1.122), with which it can

establish a connection to the server and request

the content. Once the Web server has received and

examined the client’s request, it can generate and

transmit the response. As Figure 2 shows, each

step in this process takes time.

The hypertext transfer protocol (HTTP) specifies

the interaction among Web clients, servers, and

intermediaries. Requests and responses are encod-

ed as headers that precede optional bodies con-

taining content. Figure 3 (next page) shows one

set of request and response headers. The first

request header shows the method used (GET), the

resource requested (“/”), and the version of HTTP

supported (1.1). Another commonly used method

is POST, which allows clients to send content with

a request (for instance, to carry variables from an

HTML form). The first line of the response header

shows the HTTP version supported and a response

code with standard values.

The headers of an HTTP transaction also speci-

fy aspects relevant to an object’s cacheability. The

relevant headers from the example in Figure 3

include Date, Last-Modified, ETag, Cache-Con-

trol, and Expires. For example, in HTTP GET

requests that include an If-Modified-Since head-

er, Web servers use the Last-Modified date on the

current content to return the object only if the

object changed after the date of the cached copy.

The origin server needs an accurate clock to cal-

culate and present modification and expiration

times in the other tags.

An ETag (entity tag) represents a signature for

the object and allows for a stronger test than If-

Modified-Since: If the signature of the current

object at this URL matches the signature of the

IEEE INTERNET COMPUTING http://computer.org/internet/ JULY • AUGUST 2001 39

Web Caching

Browser Origin Web server

Internet

Time

ServerClient

Establish
connection

Generate
response

HTTP
response

HTTP
request

Open

1 Round-trip
time (RTT)

1 RTT +
Transmit
(request)

Transmit
(response)

Response
received

Figure 1. A simplistic view of the Web. At its most basic, the Web
consists of a set of servers and clients and the infrastructure that
connects them.

Figure 2. HTTP transfer timing costs with a new
connection.The amount of time to retrieve a
resource when a new connection is required can
be approximated by two round-trip times plus the
time to transmit the response (plus DNS resolu-
tion delays, if necessary).

cached one, the objects are considered equivalent.

The Expires and Cache-Control: max-age

headers specify how long the object can be con-

sidered valid. For slowly or never-changing

resources, an explicit expiration date tells caches

how long they can keep the object (without

requiring the cache to contact the origin server to

validate it).

Caching Web Resources
Web caching is similar to memory system caching

— a Web cache stores Web resources in anticipa-

tion of future requests. However, significant dif-

ferences between memory system and Web

caching result from the nonuniformity of Web

object sizes, retrieval costs, and cacheability.

To address object size, cache operators and

designers track both the overall object hit rate (per-

centage of requests served from cache) and the

overall byte hit rate (percentage of bytes served

from cache). Traditional replacement algorithms

often assume a fixed object size, so variable sizes

can affect their performance. Retrieval cost varies

with object size, distance traveled, network con-

gestion, and server load. Finally, some Web

resources cannot or should not be cached, for

example, because the resource is personalized to a

particular client or is constantly updated.

Caching is performed in various locations

throughout the Web, including at the two end-

points known to a typical user — the Web brows-

er and Web server. Figure 4 shows a possible

chain of caches through which a request and

response might flow. Proxy caches, intermediary

caches between the client machine and the origin

server, will generate new requests on behalf of

users if they cannot satisfy the requests them-

selves. If a response captured in a browser cache

does not satisfy a user, the request might be

passed to a department- or organization-wide

proxy cache. If a valid response is not present

there, a proxy cache operated by the client’s ISP

might receive the request. If the ISP cache does

not contain the requested response, it will likely

attempt to contact the origin server. However,

reverse proxy caches operated by the content

provider’s ISP or CDN might instead respond to

the request. If they do not have the requested

information, the request might ultimately arrive

at the origin server. Even at the origin server,

content, or portions of content, can be stored in

a server-side cache to reduce the server load (for

instance, by reducing the need for redundant

computations or database retrievals).

The response flows through the reverse path

back to the client. Each step in Figure 4 has mul-

tiple arrows, signifying relationships with mul-

tiple entities at each level. For example, the

reverse proxy (sometimes called an HTTP accel-

erator), operated by the content provider’s ISP or

CDN, can serve as a proxy cache for the content

from multiple origin servers, and can receive

requests from multiple downstream clients

(including forward caches operated by others, as

shown in Figure 4).

In general, a cache need not talk only to the

clients below it and the server above it. In fact, to

scale to large numbers of clients, multiple caches

might be necessary. In a hierarchical caching

structure, each cache serves many clients, which

can be users or other caches.6 When a local cache

cannot serve a request, it passes the request to a

higher level in the hierarchy. If the request misses

at a root cache (which has no parent), the cache

requests the object from the origin server.

Figure 5 (see page 6) shows an alternative

cooperative caching architecture in which caches

communicate with peers using an intercache pro-

tocol such as ICP. In this form, on a miss, a cache

asks a predetermined set of peers whether they

have the missing object. If they do, the cache

routes the request to the first responding peer

cache. Otherwise, the cache attempts to retrieve

the object directly from the origin server. This

approach can prevent storage of multiple copies

and reduce origin server retrievals, but exacts a

40 JULY • AUGUST 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Scalable Internet Services

Request Header:

GET / HTTP/1.1

Host: www.web-caching.com

Referer: http://vancouver-webpages.com/CacheNow/

User-Agent: Mozilla/4.04 [en] (X11; I; SunOS

5.5.1 sun4u)

Accept: */*

Connection: close

Response Header:

HTTP/1.1 200 OK

Date: Mon, 18 Dec 2000 21:25:23 GMT

Server: Apache/1.3.12 (Unix) mod_perl/1.18

PHP/4.0B2

Cache-Control: max-age=86400

Expires: Tue, 19 Dec 2000 21:25:23 GMT

Last-Modified: Mon, 18 Dec 2000 14:54:21 GMT

ETag: “838b2-4147-3a3e251d”

Accept-Ranges: bytes

Content-Length: 16711

Connection: close

Content-Type: text/html

Figure 3. Sample HTTP request and response headers. Headers
identify client and server capabilities as well as describe the
response content.

penalty in the form of increased intercache com-

munication. In another variation, peers periodi-

cally receive a summary of the contents of each

cache, which can significantly reduce communi-

cation overhead.7

Variations and combinations of these approach-

es have been proposed. Current thinking limits

cooperative caching to smaller client populations,

but both cooperative caching and combinations

are used in real-world sites, particularly where net-

work access is expensive.

A client may or may not know about interme-

diate proxy caches. If a client is configured to

use a proxy cache directly, it sends all requests

not satisfied by its built-in cache to the proxy.

Otherwise, the client has to look up the IP

address of the origin host. If the content provider

is using a CDN, the DNS servers may be cus-

tomized to return the IP address of the server (or

proxy cache) closest to the client (where “clos-

est” likely reflects network distance and addi-

tional information to avoid overloaded servers

or networks). In this way, a reverse proxy server

can operate as if it were the origin server, imme-

diately answering any cached requests, and for-

warding the rest.

Even when the client has the IP address of the

origin server it should contact, it might never

reach it. Along the network path between the

client and the server, there might be a network

switch or router that directs all Web requests

transparently to an interception proxy cache. This

approach can be used at any of the proxy cache

locations shown in Figure 4. In this scenario, the

client believes it has contacted the origin server,

but instead the interception proxy serves the con-

tent either from cache, or by first fetching it from

the origin server.

Benefits of Web Caching
Web caching works because of popularity — the

more popular a resource is, the more likely it is to

be requested in the future. In one study spanning

more than a month, out of all the objects request-

ed by individual users, on average close to 60 per-

cent of those objects were requested more than

once by the same user.8 Likewise, much content is

of value to more than one user. In fact, of the hits

recorded in another caching study, up to 85 per-

cent were the result of multiple users requesting

the same object.9

Three features of Web caching make it attrac-

tive to all Web participants, including end users,

network managers, and content creators. Caching

� reduces network bandwidth usage, which can

save money for both content consumers and

creators;

� lessens user-perceived delays, which increases

user-perceived value; and

� lightens loads on the origin servers, saving

hardware and support costs for content

providers and providing consumers a shorter

response time for noncached resources.

When a request is satisfied by a cache, the content

no longer has to travel across the Internet from the

origin Web server to the cache, saving bandwidth

IEEE INTERNET COMPUTING http://computer.org/internet/ JULY • AUGUST 2001 41

Web Caching

Origin server plus
server-side cache

Server's ISP or CDN
reverse proxy cache

Client's ISP
forward proxy cache

Organization
forward proxy cache

Browser plus cache

Figure 4. Caches in the World Wide Web. Starting
in a browser, a Web request can travel through
multiple caching systems on its way to the origin
server. At any point in the sequence a response
can be served if the request matches a valid
response in the cache.

for the cache owner as well as the origin server. TCP,

the network protocol used by HTTP, has a fairly

high overhead for connection establishment and

sends data slowly at first. This, combined with the

fact that most requests on the Web are for relative-

ly small resources, means that reducing the number

of necessary connections and holding them open

(making them persistent) so that future requests can

use the improves client performance.

Specifically, a client of a forward proxy can

save time because it can retain a persistent con-

nection to the proxy instead of establishing new

connections with each origin server a user visits

during a session. Persistent connections are par-

ticularly beneficial to clients suffering from high-

latency network service (for example, clients con-

nected to the Internet via dial-up modems).

Furthermore, busy proxies can use persistent

connections to send requests for multiple clients

to the same server, reducing connection establish-

ment times to servers as well. Therefore, a proxy

cache supporting persistent connections can cache

connections on both client and server sides (avoid-

ing the initial round-trip time for a new HTTP con-

nection shown in Figure 2).

Potential Problems
There are a number of potential problems associ-

ated with Web caching. Most significant from the

perspective of both the content consumer and the

content provider is the possibility of the end user

seeing stale (that is, old or out-of-date) content,

compared to fresh content available on the ori-

gin server. HTTP does not ensure strong consis-

tency and thus there is a real potential for data to

be cached too long. The likelihood of this is a

trade-off that the content provider can explicitly

manage.

Second, caching tends to improve the latency

only for cached responses that are subsequently

requested (that is, hits). Misses that are processed

by a cache generally have decreased speed, as

each system through which the transaction pass-

es will increase the latency experienced by a small

amount. Thus, a cache only benefits requests for

content already stored in it. Caching is also lim-

ited by the frequency with which popular Web

resources change, and, importantly, the fact that

many resources will be requested only once.

Finally, some responses cannot or should not be

cached.

Content Cacheability

Not every Web resource is cacheable. Of those that

are, some can be cached for long periods by any

cache, while others have restrictions such as

caching for short periods or to certain kinds of

caches (for instance, nonproxy caches). This flex-

ibility maximizes the opportunity for caching indi-

vidual resources. The cacheability of a Web site

affects both its user-perceived performance and

the scalability of a particular hosting solution.

Instead of taking seconds or minutes to load, a

cached object can appear almost instantaneously.

Regardless of how much the hosting costs, a

cache-friendly design will allow a server to serve

more pages before it needs to upgrade to a more

expensive solution.

Fortunately, the content provider determines its

resources’ cacheability. The Web server software

sets and sends the HTTP headers that determine

cacheability, according to the server’s caching pol-

icy for that data. To maximize a Web site’s

cacheability, all static content (buttons, graphics,

audio and video files, and pages that rarely change)

are typically given expiration dates far in the future

so that they can be cached for weeks or months at

a time. (Note that HTML meta tags cannot validly

specify caching properties and are ignored by most

proxy caching products since proxies do not exam-

ine the contents of an object — that is, they do not

see the HTML source of a Web page.)

By setting an expiration date far into the

future, the content provider trades the potential

of caching stale data for reduced bandwidth usage

and improved user-perceived response time. A

shorter expiration date reduces the chance that the

user sees stale content, but increases the number

of times that caches will need to validate the

42 JULY • AUGUST 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Scalable Internet Services

Internet

Browsers

Forward
proxy
caches

Figure 5. Cooperative caching. Caches communicate
with peers before making requests over the Web.

resource. Currently, most caches use a client

polling approach that favors revalidation for

objects that have recently changed.10 Because this

can generate significant overhead (especially for

popular content), a better approach might be for

the origin server to invalidate the cached

objects,11 but only recently has this approach been

considered for nonproprietary networks. The Web

cache invalidation protocol (WCIP),12 currently in

development, lets Web caches subscribe to inval-

idation channels corresponding to content in

which they are interested. This protocol is intend-

ed to allow large numbers of frequently changing

Web objects to be cached and distributed with

freshness guarantees.

Dynamically generated objects are typically

considered uncacheable, although they are not

necessarily so. Examples of dynamically generat-

ed objects include fast-changing content like stock

quotes, personalized pages, query results (such as

from search engines), and e-commerce shopping

carts. Rarely would it be desirable for any of these

objects to be cached at an intermediate proxy,

although some might be cached in the client

browser cache (such as personalized resources that

don’t change often).

However, dynamically generated objects con-

stitute an increasing fraction of the Web. One way

to allow for the caching of dynamic content is to

cache programs (such as applets) that generate or

modify the content.13 Another is to enable the

server to cache portions of documents to optimize

server-side operations (for example, server-side

products from SpiderCache, http://www.

spidercache.com/; Persistence, http://www.

persistence.com/; and XCache, http://www.xcache.

com/). Since most dynamic pages include much

static content, sending the differences between

pages or between versions of a page,14,15 or break-

ing documents into separately cacheable pieces

and reassembling them at the client16 are possible

solutions. Akamai’s EdgeSuite (http://www.akamai.

com/) and more generally the new open protocol

called Edge Side Includes (http://www.edge-deliv-

ery.org/) are essentially examples of this last solu-

tion, except that the Web pages are assembled at

edge servers rather than at the client.

Cache Latency

Caching can provide only a limited benefit

(object hit rates typically reach 40 percent to 50

percent with sufficient traffic), as a cache can

only provide objects that have been previously

requested. If future requests can be anticipated,

objects can be obtained in advance. Once avail-

able in a local cache, those objects can be

retrieved with minimal delay, enhancing the user

experience.

Although prefetching shows promise, it is diffi-

cult to evaluate and has not been widely imple-

mented in commercial systems. Some browser

add-ons and workgroup proxy caches will prefetch

the links of the current page, or periodically

prefetch the pages in a user’s bookmarks. One sig-

nificant difficulty is accurately predicting which

resources will be needed next to minimize mis-

takes that result in wasted bandwidth and

increased server loads. Another concern is deter-

mining what content can be prefetched safely, as

some Web requests have potentially undesirable

side effects, such as adding items to an online

shopping cart.17

Recently, Cohen and Kaplan proposed tech-

niques that do everything but prefetch.18 In par-

ticular, they demonstrated the usefulness of

IEEE INTERNET COMPUTING http://computer.org/internet/ JULY • AUGUST 2001 43

Web Caching

Web Sites

IETF Working Group on Web Replication and Caching •

http://www.wrec.org/

Information Resource Caching FAQ • http://www.ircache.net/FAQ/

Squid: Open Source Proxy Cache Software •

http://www.squid-cache.org/

Standards work on Web Cache Invalidation Protocol (WCIP) •

http://www.content-signaling.org/

Web Caching and Content Delivery Resources (news, tutorials, tips,

tools, discussions, and links) • http://www.web-caching.com/

W3C HTTP Protocol Page • http://www.w3.org/Protocols/

W3C HTTP Specifications and Drafts •

http://www.w3.org/Protocols/Specs.html

W3C’s Propagation, Caching, and Replication on the Web •

http://www.w3.org/Propagation/

Survey Articles

G. Barish and K. Obraczka,“World Wide Web Caching:Trends and

Techniques,” IEEE Comm. Internet Technology Series, vol. 38, no. 5, May

2000, pp. 178–184.

J.C. Mogul,“Squeezing More Bits out of HTTP Caches,” IEEE Network,

vol. 14, no. 3, May/June 2000, pp. 6-14.

J.Wang,“A Survey of Web Caching Schemes for the Internet,” ACM

Computer Comm. Rev., vol. 29, no. 5, Oct. 1999, pp. 36-46.

Books

B. Krishnamurthy and J. Rexford, Web Protocols and Practice: HTTP 1.1,

Networking Protocols, Caching, and Traffic Measurement, Addison

Wesley Longman, Reading, Mass., 2001.

D.Wessels, Web Caching, O’Reilly & Associates, Sebastopol, Calif., 2001.

Web Caching Resources

� preresolving (performing DNS lookup in

advance),

� preconnecting (opening a TCP connection in

advance), and

� prewarming (sending a dummy HTTP request

to the origin server).

These techniques can be implemented in both

proxies and browsers, and could significantly

reduce latencies without prefetching content.

Conclusion
Given the choices of caching products on the

market today, how do you select one? The

process involves determining the features (man-

ageability, failure tolerance, scalability, and so

on), and performance level (such as requests per

second, bandwidth saved, and average latency,

often measured by cache benchmarking services)

you require. Likewise, as caches and content

delivery services replace origin servers in serv-

ing Web traffic, content developers should con-

sider how to maximize the usefulness of these

technologies.

Acknowledgments

Thanks are due to Haym Hirsh, Vincenzo Liberatore, and

anonymous reviewers for comments that greatly improved this

tutorial. This work has been supported in part by the U.S.

National Science Foundation under grant ANI 9903052.

References

1. O.A. McBryan, “GENVL and WWW: Tools for Taming the

Web,” Proc. First Int’l World Wide Web Conf., Elsevier, New

York, 1994, pp. 79-90.

2. S. Lawrence and C.L. Giles, “Accessibility of Information on

the Web,” Nature, vol. 400, July 1999, pp. 107–109; http://

www.neci.nj.nec.com/homepages/lawrence/papers.html.

3. “The Economic Impacts of Unacceptable Web Site Download

Speeds,” white paper, Zona Research, 1999; available at

http://www.zonaresearch.com/deliverables/white_papers/

wp17/index.htm.

4. D. Wessels and K. Claffy, “Internet Cache Protocol (ICP),”

version 2, Internet Eng. Task Force RFC 2186, Sept. 1997,

available at http://ftp.isi.edu/in-notes/rfc2186.txt.

5. A.J. Smith, “Cache Memories,” ACM Computing Surveys,

vol. 14, no. 3, Sept. 1982, pp. 473–530.

6. A. Chankhunthod et al., “A Hierarchical Internet Object

Cache,” Proc. Usenix 1996 Ann. Technical Conf., Usenix

Assoc., Berkeley, Calif., 1996, pp. 153-163.

7. A. Rousskov and D. Wessels, “Cache Digests,” Computer

Networks and ISDN Systems, vol. 30, no. 22–23, Nov. 1998,

pp. 2155–2168.

8. L. Tauscher and S. Greenberg, “How People Revisit Web

Pages: Empirical Findings and Implications for the Design

of History Systems,” Int’l J. Human Computer Studies, vol.

47, no. 1, 1997, pp. 97–138.

9. B.M. Duska, D. Marwood, and M.J. Feely, “The Measured

Access Characteristics of World-Wide-Web Client Proxy

Caches,” Proc. Usenix Symp. Internet Technologies and

Systems (USITS 97), Usenix Assoc., Berkeley, Calif., 1997,

pp. 23-36.

10. J. Gwertzman and M. Seltzer, “World-Wide Web Cache

Consistency,” Proc. Usenix 1996 Ann. Technical Conf.,

Usenix Assoc., Berkeley, Calif., 1996, pp. 141-151.

11. C. Liu and P. Cao, “Maintaining Strong Cache Consistency

for the World-Wide Web,” IEEE Trans. Computers, vol. 47,

no. 4, Apr. 1998, pp. 445–457.

12. D. Li, P. Cao, and M. Dahlin, “WCIP: Web Cache Invalidation

Protocol,” IETF Internet draft, work in progress, Mar. 2001.

13. P. Cao, J. Zhang, and K. Beach, “Active Cache: Caching

44 JULY • AUGUST 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Scalable Internet Services

Caching helps bridge the performance gap between local activity and

remote content. In the short term, caching helps to improve Web perfor-

mance by reducing the cost and end-user latency for Web access. In the

long term, even as bandwidth costs continue to drop and higher end-user

speeds become available, caching will continue to reap benefits for the fol-

lowing reasons:

� Bandwidth will always have some cost.The cost of bandwidth will never

reach zero, even though increased competition, a growing market, and

economies of scale reduce end-user costs.The cost of bandwidth at

the core has stayed relatively stable, requiring ISPs to implement

methods such as caching to stay competitive and reduce core

bandwidth usage so that edge bandwidth costs can be low.

� Nonuniform bandwidth and latencies will persist. Because of physical

limitations such as environment and location as well as financial

constraints, there will always be variations in bandwidth and latencies.

Caching can help to smooth these effects.

� Network distances are increasing. Firewalls, other proxies for security

and privacy, and virtual private networks for telecommuters increase

the number of hops through which content must travel and slow Web

response times.

� Bandwidth demands continue to increase. Growth in the user base, in

popularity of high-bandwidth media, and in user expectations of faster

performance guarantee that demand for bandwidth will not end.

� Hot spots in the Web will continue. Intelligent load balancing can alleviate

problems when high user demand for a site is predictable, but a Web

site’s popularity can also come as a result of current events, desirable

content,or word of mouth.Distributed Web caching can help alleviate

these “hot spots” resulting from flash traffic loads.

� Communication costs exceed computational costs.Communication is likely

to always be more expensive (to some extent) than computation.We

use memory caches because CPUs are much faster than main

memory.Likewise,we will continue to use caches as computer systems

and network connectivity both get faster.

The Need for Web Caching

Dynamic Contents on the Web,” Distributed Systems Eng.,

vol. 6, no. 1, 1999, pp. 43–50.

14. B.C. Housel and D.B. Lindquist, “WebExpress: A System

for Optimizing Web Browsing in a Wireless Environ-

ment,” Proc. Second Ann. Int’l Conf. Mobile Computing

and Networking (MobiCom 96), ACM Press, New York,

Nov. 1996, pp. 108–116.

15. J. Mogul et al., “Potential Benefits of Delta-Encoding and

Data Compression for HTTP,” Proc. ACM SIGCOMM, ACM

Press, New York, 1997, pp. 181–194. An extended and

corrected version appears as Research Report 97/4a, Dig-

ital Equipment Corp. Western Research Laboratory, Dec.

1997.

16. F. Douglis, A. Haro, and M. Rabinovich, “HPP: HTML

Macro-Preprocessing to Support Dynamic Document

Caching,” Proc. Usenix Symp. Internet Technologies and

Systems (USITS 97), Usenix Assoc., Berkeley, Calif., Dec.

1997, pp. 83–94.

17. B.D. Davison, “Assertion: Prefetching with GET is Not

Good,” Proc. Sixth Int’l Workshop Web Caching and Con-

tent Distribution, Elsevier, Boston, June 2001.

18. E. Cohen and H. Kaplan, “Prefetching the Means for Doc-

ument Transfer: A New Approach for Reducing Web Laten-

cy,” Proc. IEEE INFOCOM, IEEE Press, Piscataway, N.J.,

Mar. 2000.

Brian D. Davison is currently a PhD candidate in computer sci-

ence at Rutgers University, but will join Lehigh University

in September as an assistant professor of computer science

and engineering. He earned a BS in computer engineering

from Bucknell University and an MS in computer science

from Rutgers. His research interests include Web perfor-

mance technologies, information retrieval, and machine

learning. He is a member of the AAAI, the ACM, and the

IEEE Computer and Communications Societies. He also cre-

ated and maintains www.web-caching.com. For more on

Davison’s work, see http://www.cs.rutgers.edu/~davison/.

Readers can contact the author at Department of Computer Sci-

ence, Rutgers, The State University of New Jersey, 110 Frelinghuy-

sen Road, Piscataway, NJ 08854-8019, davison@web-caching.com.

For further information on this or any other computing topic,

please visit our Digital Library at http://computer.org/

publications/dlib/.

IEEE INTERNET COMPUTING http://computer.org/internet/ JULY • AUGUST 2001 45

Web Caching

Get access
to individual IEEE Computer Society

documents online.

More than 57,000 articles

and conference papers available!

US$5 per article for members

US$10 for nonmembers

http://computer.org/publications/dlib

