

6

8

Multiprocessors and
Thread-Level Parallelism 9
The turning away from the conventional organization came in the middle 1960s, when the
law of diminishing returns began to take effect in the effort to increase the operational
speed of a computer. … Electronic circuits are ultimately limited in their speed of
operation by the speed of light… and many of the circuits were already operating in the
nanosecond range.

Bouknight et al., The Illiac IV System [1972]

… sequential computers are approaching a fundamental physical limit on their potential
computational power. Such a limit is the speed of light...

A. L. DeCegama, The Technology of Parallel Processing, Volume I (1989)

… today’s multiprocessors… are nearing an impasse as technologies approach the speed
of light. Even if the components of a sequential processor could be made to work this fast,
the best that could be expected is no more than a few million instructions per second.

Mitchell, The Transputer: The Time Is Now [1989]

6.1 Introduction 635

6.2 Characteristics of Application Domains 649

6.3 Symmetric Shared-Memory Architectures 658

6.4 Performance of Symmetric Shared-Memory Multiprocessors 670

6.5 Distributed Shared-Memory Architectures 687

6.6 Performance of Distributed Shared-Memory Multiprocessors 697

6.7 Synchronization 705

6.8 Models of Memory Consistency: An Introduction 719

6.9 Multithreading: Exploiting Thread-Level Parallelism within a Processor 723

6.10 Crosscutting Issues 728

6.11 Putting It All Together: Sun’s Wildfire Prototype 735

6.13 Another View: Embedded Multiprocessors 751

6.14 Fallacies and Pitfalls 752

6.15 Concluding Remarks 758

6.16 Historical Perspective and References 765

Exercises 780
Major changes

1. split up the longest sections

2. clearer discussion of the concept of thread and process

3. SMT and multithreading section

4. two another views

5. reordered the cross cutting issues--no big changes, just reordered

As the quotations that open this chapter show, the view that advances in uni-
processor architecture were nearing an end has been widely held at varying
times. To counter this view, we observe that during the period 1985–2000, uni-

6.1 Introduction

636 Chapter 6 Multiprocessors and Thread-Level Parallelism

processor performance growth, driven by the microprocessor, was at its highest
rate since the first transistorized computers in the late 1950s and early 1960s.

On balance, though, your authors believe that parallel processors will definite-
ly have a bigger role in the future. This view is driven by three observations.
First, since microprocessors are likely to remain the dominant uniprocessor tech-
nology, the logical way to improve performance beyond a single processor is by
connecting multiple microprocessors together. This combination is likely to be
more cost-effective than designing a custom processor. Second, it is unclear
whether the pace of architectural innovation that has been based for more than
fifteen years on increased exploitation of instruction-level parallelism can be sus-
tained indefinitely. As we saw in Chapters 3 and 4, modern multiple-issue
processors have become incredibly complex, and the increases achieved in
performance for increasing complexity, increasing silicon, and increasing power
seem to be diminishing. Third, there appears to be slow but steady progress on
the major obstacle to widespread use of parallel processors, namely software.
This progress is probably faster in the server and embedded markets, as we dis-
cussed in Chapter 3 and 4. Server and embedded applications exhibit natural par-
allelism that can be exploited without some of the burdens of rewriting a gigantic
software base. This is more of a challenge in the desktop space.

Your authors, however, are extremely reluctant to predict the death of ad-
vances in uniprocessor architecture. Indeed, we believe that the rapid rate of per-
formance growth will continue at least for the next five years. Whether this pace
of innovation can be sustained longer is difficult to predict but hard to bet against.
Nonetheless, if the pace of progress in uniprocessors does slow down, multipro-
cessor architectures will become increasingly attractive.

That said, we are left with two problems. First, multiprocessor architecture is
a large and diverse field, and much of the field is in its youth, with ideas coming
and going and, until very recently, more architectures failing than succeeding.
Given that we are already on page 636, full coverage of the multiprocessor design
space and its trade-offs would require another volume. (Indeed, Culler, Singh,
and Gupta [1999] cover only multiprocessors in their 1000 page book!) Second,
such coverage would necessarily entail discussing approaches that may not stand
the test of time, something we have largely avoided to this point. For these rea-
sons, we have chosen to focus on the mainstream of multiprocessor design: mul-
tiprocessors with small to medium numbers of processors (≤128). Such designs
vastly dominate in terms of both units and dollars. We will pay only slight atten-
tion to the larger-scale multiprocessor design space (≥128 processors). At the
present, the future architecture of such multiprocessors is unsettled and even the
viability of that marketplace is in doubt. We will return to this topic briefly at the
end of the chapter, in section 6.15.

6.1 Introduction 637

A Taxonomy of Parallel Architectures

We begin this chapter with a taxonomy so that you can appreciate both the
breadth of design alternatives for multiprocessors and the context that has led to
the development of the dominant form of multiprocessors. We briefly describe
the alternatives and the rationale behind them; a longer description of how these
different models were born (and often died) can be found in the historical per-
spectives at the end of the chapter.

The idea of using multiple processors both to increase performance and to im-
prove availability dates back to the earliest electronic computers. About 30 years
ago, Flynn proposed a simple model of categorizing all computers that is still
useful today. He looked at the parallelism in the instruction and data streams
called for by the instructions at the most constrained component of the multipro-
cessor, and placed all computers in one of four categories:

1. Single instruction stream, single data stream (SISD)—This category is the un-
iprocessor.

2. Single instruction stream, multiple data streams (SIMD)—The same instruc-
tion is executed by multiple processors using different data streams. Each pro-
cessor has its own data memory (hence multiple data), but there is a single
instruction memory and control processor, which fetches and dispatches in-
structions. The multimedia extensions we considered in Chapter 2 are a limit-
ed form of SIMD parallelism. Vector architectures are the largest class of
processors of this type.

3. Multiple instruction streams, single data stream (MISD)—No commercial
multiprocessor of this type has been built to date, but may be in the future.
Some special purpose stream processors approximate a limited form of this
(there is only a single data stream that is operated on by successive functional
units).

4. Multiple instruction streams, multiple data streams (MIMD)—Each processor
fetches its own instructions and operates on its own data. The processors are
often off-the-shelf microprocessors.

This is a coarse model, as some multiprocessors are hybrids of these categories.
Nonetheless, it is useful to put a framework on the design space.

As discussed in the historical perspectives, many of the early multiprocessors
were SIMD, and the SIMD model received renewed attention in the 1980s, and
except for vector processors, was gone by the mid 1990s. MIMD has clearly
emerged as the architecture of choice for general-purpose multiprocessors. Two
factors are primarily responsible for the rise of the MIMD multiprocessors:

638 Chapter 6 Multiprocessors and Thread-Level Parallelism

1. MIMDs offer flexibility. With the correct hardware and software support,
MIMDs can function as single-user multiprocessors focusing on high perfor-
mance for one application, as multiprogrammed multiprocessors running
many tasks simultaneously, or as some combination of these functions.

2. MIMDs can build on the cost/performance advantages of off-the-shelf
microprocessors. In fact, nearly all multiprocessors built today use the same
microprocessors found in workstations and single-processor servers.

With an MIMD, each processor is executing its own instruction stream. In
many cases, each processor executes a different process. Recall from the last
chapter, that a process is an segment of code that may be run independently, and
that the state of the process contains all the information necessary to execute that
program on a processor. In a multiprogrammed environment, where the proces-
sors may be running independent tasks, each process is typically independent of
the processes on other processors.

It is also useful to be able to have multiple processors executing a single pro-
gram and sharing the code and most of their address space. When multiple pro-
cesses share code and data in this way, they are often called threads. Today, the
term thread is often used in a casual way to refer to multiple loci of execution that
may run on different processors, even when they do not share an address space.

To take advantage of an MIMD multiprocessor with n processors, we must
usually have at least n threads or processes to execute. The independent threads
are typically identified by the programmer or created by the compiler. Since the
parallelism in this situation is contained in the threads, it is called thread-level
parallelism.

Threads may vary from large-scale, independent processes–for example, inde-
pendent programs running in a multiprogrammed fashion on different proces-
sors–to parallel iterations of a loop, automatically generated by a compiler and
each executing for perhaps less than a thousand instructions. Although the size of
a thread is important in considering how to exploit thread-level parallelism effi-
ciently, the important qualitative distinction is that such parallelism is identified
at a high-level by the software system and that the threads consist of hundreds to
millions of instructions that may be executed in parallel. In contrast, instruction-
level parallelism is identified by primarily by the hardware, though with software
help in some cases, and is found and exploited one instruction at a time.

Existing MIMD multiprocessors fall into two classes, depending on the num-
ber of processors involved, which in turn dictate a memory organization and in-
terconnect strategy. We refer to the multiprocessors by their memory
organization, because what constitutes a small or large number of processors is
likely to change over time.

6.1 Introduction 639

The first group, which we call centralized shared-memory architectures, have
at most a few dozen processors in 2000. For multiprocessors with small processor
counts, it is possible for the processors to share a single centralized memory and
to interconnect the processors and memory by a bus. With large caches, the bus
and the single memory, possibly with multiple banks, can satisfy the memory de-
mands of a small number of processors. By replacing a single bus with multiple
buses, or even a switch, a centralized shared memory design can be scaled to a
few dozen processors. Although scaling beyond that is technically conceivable,
sharing a centralized memory, even organized as multiple banks, becomes less at-
tractive as the number of processors sharing it increases.

Because there is a single main memory that has a symmetric relationship to all
processors and a uniform access time from any processor, these multiprocessors
are often called symmetric (shared-memory) multiprocessors (SMPs), and this
style of architecture is sometimes called UMA for uniform memory access. This
type of centralized shared-memory architecture is currently by far the most popu-
lar organization. Figure 6.1 shows what these multiprocessors look like. The ar-
chitecture of such multiprocessors is the topic of section 6.3.

FIGURE 6.1 Basic structure of a centralized shared-memory multiprocessor. Multiple
processor-cache subsystems share the same physical memory, typically connected by a bus.
In larger designs, multiple buses, or even a switch may be used, but the key architectural
property: uniform access time o all memory from all processors remains.

Processor

One or
more levels
of cache

ProcessorProcessor Processor

Main memory I/O system

One or
more levels
of cache

One or
more levels
of cache

One or
more levels
of cache

640 Chapter 6 Multiprocessors and Thread-Level Parallelism

The second group consists of multiprocessors with physically distributed
memory. To support larger processor counts, memory must be distributed among
the processors rather than centralized; otherwise the memory system would not be
able to support the bandwidth demands of a larger number of processors without
incurring excessively long access latency. With the rapid increase in processor per-
formance and the associated increase in a processor’s memory bandwidth require-
ments, the scale of multiprocessor for which distributed memory is preferred over
a single, centralized memory continues to decrease in number (which is another
reason not to use small and large scale). Of course, the larger number of proces-
sors raises the need for a high bandwidth interconnect, of which we saw examples
in Chapter 7. Both direct interconnection networks (i.e., switches) and indirect
networks (typically multidimensional meshes) are used. Figure 6.2 shows what

these multiprocessors look like.
Distributing the memory among the nodes has two major benefits. First, it is a

cost-effective way to scale the memory bandwidth, if most of the accesses are to
the local memory in the node. Second, it reduces the latency for accesses to the
local memory. These two advantages make distributed memory attractive at
smaller processor counts as processors get ever faster and require more memory

FIGURE 6.2 The basic architecture of a distributed-memory multiprocessor consists
of individual nodes containing a processor, some memory, typically some I/O, and an
interface to an interconnection network that connects all the nodes. Individual nodes
may contain a small number of processors, which may be interconnected by a small bus or a
different interconnection technology, which is less scalable than the global interconnection
network.

Memory I/O

Interconnection network

Memory I/O Memory I/O

Processor
+ cache

Processor
+ cache

Processor
+ cache

Processor
+ cache

Memory I/O

Memory I/O Memory I/O Memory I/O Memory I/O

Processor
+ cache

Processor
+ cache

Processor
+ cache

Processor
+ cache

6.1 Introduction 641

bandwidth and lower memory latency. The key disadvantage for a distributed
memory architecture is that communicating data between processors becomes
somewhat more complex and has higher latency, at least when there is no conten-
tion, because the processors no longer share a single centralized memory. As we
will see shortly, the use of distributed memory leads to two different paradigms
for interprocessor communication.

Typically, I/O as well as memory is distributed among the nodes of the multi-
processor, and the nodes may be small SMPs (2–8 processors). Although the use
of multiple processors in a node together with a memory and a network interface
may be quite useful from a cost-efficiency viewpoint, it is not fundamental to
how these multiprocessors work, and so we will focus on the one-processor-per-
node design for most of this chapter.

Models for Communication and Memory Architecture

As discussed earlier, any large-scale multiprocessor must use multiple memories
that are physically distributed with the processors. There are two alternative ar-
chitectural approaches that differ in the method used for communicating data
among processors.

In the first method, communication occurs through a shared address space.
That is, the physically separate memories can be addressed as one logically
shared address space, meaning that a memory reference can be made by any pro-
cessor to any memory location, assuming it has the correct access rights. These
multiprocessors are called distributed shared-memory (DSM) architectures. The
term shared memory refers to the fact that the address space is shared; that is, the
same physical address on two processors refers to the same location in memory.
Shared memory does not mean that there is a single, centralized memory. In con-
trast to the symmetric shared-memory multiprocessors, also known as UMAs
(uniform memory access), the DSM multiprocessors are also called NUMAs,
non-uniform memory access, since the access time depends on the location of a
data word in memory.

Alternatively, the address space can consist of multiple private address spaces
that are logically disjoint and cannot be addressed by a remote processor. In such
multiprocessors, the same physical address on two different processors refers to
two different locations in two different memories. Each processor-memory mod-
ule is essentially a separate computer; therefore these parallel processors have
been called multicomputers. As pointed out in the previous chapter, a multicom-
puter can even consist of completely separate computers connected on a local
area network, which, today, are popularly called clusters. For applications that re-
quire little or no communication and can make use of separate memories, such
clusters of processors, whether using a standardized or customized interconnect,
can form a very cost-effective approach (see Section 7.x).

642 Chapter 6 Multiprocessors and Thread-Level Parallelism

With each of these organizations for the address space, there is an associated
communication mechanism. For a multiprocessor with a shared address space,
that address space can be used to communicate data implicitly via load and store
operations; hence the name shared memory for such multiprocessors. For a multi-
processor with multiple address spaces, communication of data is done by explic-
itly passing messages among the processors. Therefore, these multiprocessors are
often called message passing multiprocessors.

In message passing multiprocessors, communication occurs by sending mes-
sages that request action or deliver data just as with the network protocols dis-
cussed in section 7.2. For example, if one processor wants to access or operate on
data in a remote memory, it can send a message to request the data or to perform
some operation on the data. In such cases, the message can be thought of as a
remote procedure call (RPC). When the destination processor receives the mes-
sage, either by polling for it or via an interrupt, it performs the operation or ac-
cess on behalf of the remote processor and returns the result with a reply
message. This type of message passing is also called synchronous, since the initi-
ating processor sends a request and waits until the reply is returned before
continuing. Software systems have been constructed to encapsulate the details of
sending and receiving messages, including passing complex arguments or return
values, presenting a clean RPC facility to the programmer.

Communication can also occur from the viewpoint of the writer of data rather
than the reader, and this can be more efficient when the processor producing data
knows which other processors will need the data. In such cases, the data can be
sent directly to the consumer process without having to be requested first. It is of-
ten possible to perform such message sends asynchronously, allowing the sender
process to continue immediately. Often the receiver will want to block if it tries to
receive the message before it has arrived; in other cases, the reader may check
whether a message is pending before actually trying to perform a blocking re-
ceive. Also the sender must be prepared to block if the receiver has not yet con-
sumed an earlier message and no buffer space is available. The message passing
facilities offered in different multiprocessors are fairly diverse. To ease program
portability, standard message passing libraries (for example, message passing in-
terface, or MPI) have been proposed. Such libraries sacrifice some performance
to achieve a common interface.

Performance Metrics for Communication Mechanisms
Three performance metrics are critical in any communication mechanism:

1. Communication bandwidth—Ideally the communication bandwidth is limited
by processor, memory, and interconnection bandwidths, rather than by some
aspect of the communication mechanism. The bisection bandwidth (see Sec-
tion 7.x) is determined by the interconnection network. The bandwidth in or

6.1 Introduction 643

out of a single node, which is often as important as bisection bandwidth, is af-
fected both by the architecture within the node and by the communication
mechanism. How does the communication mechanism affect the communica-
tion bandwidth of a node? When communication occurs, resources within the
nodes involved in the communication are tied up or occupied, preventing other
outgoing or incoming communication. When this occupancy is incurred for
each word of a message, it sets an absolute limit on the communication band-
width. This limit is often lower than what the network or memory system can
provide. Occupancy may also have a component that is incurred for each com-
munication event, such as an incoming or outgoing request. In the latter case,
the occupancy limits the communication rate, and the impact of the occupancy
on overall communication bandwidth depends on the size of the messages.

2. Communication latency—Ideally the latency is as low as possible. As we will
see in Chapter 8, communication latency is equal to

Sender overhead + Time of flight + Transmission time + Receiver overhead

Time of flight is fixed and transmission time is determined by the interconnec-
tion network. The software and hardware overheads in sending and receiving
messages are largely determined by the communication mechanism and its
implementation. Why is latency crucial? Latency affects both performance
and how easy it is to program a multiprocessor. Unless latency is hidden, it di-
rectly affects performance either by tying up processor resources or by causing
the processor to wait. Overhead and occupancy are closely related, since many
forms of overhead also tie up some part of the node, incurring an occupancy
cost, which in turn limits bandwidth. Key features of a communication mech-
anism may directly affect overhead and occupancy. For example, how is the
destination address for a remote communication named, and how is protection
implemented? When naming and protection mechanisms are provided by the
processor, as in a shared address space, the additional overhead is small. Al-
ternatively, if these mechanisms must be provided by the operating system for
each communication, this increases the overhead and occupancy costs of com-
munication, which in turn reduce bandwidth and increase latency.

3. Communication latency hiding—How well can the communication mecha-
nism hide latency by overlapping communication with computation or with
other communication? Although measuring this is not as simple as measuring
the first two metrics, it is an important characteristic that can be quantified by
measuring the running time on multiprocessors with the same communication
latency but different support for latency hiding. We will see examples of la-
tency hiding techniques for shared memory in sections 6.8 and 6.10. Although
hiding latency is certainly a good idea, it poses an additional burden on the
software system and ultimately on the programmer. Furthermore, the amount
of latency that can be hidden is application dependent. Thus, it is usually best
to reduce latency wherever possible.

644 Chapter 6 Multiprocessors and Thread-Level Parallelism

Each of these performance measures is affected by the characteristics of the
communications needed in the application. The size of the data items being com-
municated is the most obvious, since it affects both latency and bandwidth in a di-
rect way, as well as affecting the efficacy of different latency hiding approaches.
Similarly, the regularity in the communication patterns affects the cost of naming
and protection, and hence the communication overhead. In general, mechanisms
that perform well with smaller as well as larger data communication requests, and
irregular as well as regular communication patterns, are more flexible and efficient
for a wider class of applications. Of course, in considering any communication
mechanism, designers must consider cost as well as performance.

Advantages of Different Communication Mechanisms
Each of these two primary communication mechanisms has its advantages. For
shared-memory communication, advantages include

n Compatibility with the well-understood mechanisms in use in centralized
multiprocessors, which all use shared-memory communication.

n Ease of programming when the communication patterns among processors are
complex or vary dynamically during execution. Similar advantages simplify
compiler design.

n The ability to develop applications using the familiar shared-memory model,
focusing attention only on those accesses that are performance critical.

n Lower overhead for communication and better use of bandwidth when commu-
nicating small items. This arises from the implicit nature of communication and
the use of memory mapping to implement protection in hardware, rather than
through the I/O system.

n The ability to use hardware-controlled caching to reduce the frequency of re-
mote communication by supporting automatic caching of all data, both shared
and private. As we will see, caching reduces both latency and contention for ac-
cessing shared data. This advantage also comes with a disadvantage, which we
mention below.

The major advantages for message-passing communication include

n The hardware can be simpler, especially by comparison with a scalable shared-
memory implementation that supports coherent caching of remote data.

n Communication is explicit, which means it is simpler to understand; in shared
memory models, it can be difficult to know when communication is occurring
and when it is not, as well as how costly the communication is.

6.1 Introduction 645

n Explicit communication focuses programmer attention on this costly aspect of
parallel computation, sometimes leading to improved structure in a multipro-
cessor program.

n Synchronization is naturally associated with sending messages, reducing the
possibility for errors introduced by incorrect synchronization.

n It makes it easier to use sender-initiated communication, which may have some
advantages in performance,

Of course, the desired communication model can be created on top of a hard-
ware model that supports either of these mechanisms. Supporting message passing
on top of shared memory is considerably easier: Because messages essentially
send data from one memory to another, sending a message can be implemented by
doing a copy from one portion of the address space to another. The major difficul-
ties arise from dealing with messages that may be misaligned and of arbitrary
length in a memory system that is normally oriented toward transferring aligned
blocks of data organized as cache blocks. These difficulties can be overcome ei-
ther with small performance penalties in software or with essentially no penalties,
using a small amount of hardware support.

Supporting shared memory efficiently on top of hardware for message passing
is much more difficult. Without explicit hardware support for shared memory, all
shared-memory references need to involve the operating system to provide ad-
dress translation and memory protection, as well as to translate memory referenc-
es into message sends and receives. Loads and stores usually move small
amounts of data, so the high overhead of handling these communications in soft-
ware severely limits the range of applications for which the performance of soft-
ware-based shared memory is acceptable. An ongoing area of research is the
exploration of when a software-based model is acceptable and whether a soft-
ware-based mechanism is usable for the highest level of communication in a hier-
archically structured system. One possible direction is the use of virtual memory
mechanisms to share objects at the page level, a technique called shared virtual
memory; we discuss this approach in section 6.10.

In distributed-memory multiprocessors, the memory model and communica-
tion mechanisms distinguish the multiprocessors. Originally, distributed-memory
multiprocessors were built with message passing, since it was clearly simpler and
many designers and researchers did not believe that a shared address space could
be built with distributed memory. Shared-memory communication has been sup-

646 Chapter 6 Multiprocessors and Thread-Level Parallelism

ported in virtually every multiprocessor designed since 1995. What hardware
communication mechanisms will be supported in the very largest multiprocessors
(called massively parallel processors, or MPPs), which typically have far more
than 100 processors, is unclear; shared memory, message passing, and hybrid ap-
proaches are all contenders. Despite the symbolic importance of the MPPs, such
multiprocessors are a small portion of the market and have little or no influence
on the mainstream multiprocessors with tens of processors. We will return to a
discussion of the possibilities and trends for MPPs in the concluding remarks and
historical perspectives at the end of this chapter.

SMPs, which we focus on in Section 6.3, vastly dominate DSM multiproces-
sors in terms of market size (both units and dollars), and SMPs will probably be
the architecture of choice for on-chip multiprocessors. For moderate scale multi-
processors (>8 processors) long-term technical trends favor distributing memory,
which is also likely to be the dominant approach when on-chip SMPs are used as
the building blocks in the future. These distributed shared-memory multiproces-
sors are a natural extension of the centralized multiprocessors that dominate the
market, so we discuss these architectures in section 6.5. In contrast, multicomput-
ers or message-passing multiprocessors build on advances in network technolo-
gy, as we discussed in the last chapter. Since the technologies employed were
well described in the last chapter, we focus our attention on shared-memory ap-
proaches in the rest of this chapter.

Challenges of Parallel Processing

Two important hurdles, both explainable with Amdahl’s Law, make parallel pro-
cessing challenging. The first has to do with the limited parallelism available in
programs and the second arises from the relatively high cost of communications.
Limitations in available parallelism make it difficult to achieve good speedups in
any parallel processor, as our first Example shows.

E X A M P L E Suppose you want to achieve a speedup of 80 with 100 processors. What
fraction of the original computation can be sequential?

A N S W E R Amdahl’s Law is

For simplicity in this example, assume that the program operates in only
two modes: parallel with all processors fully used, which is the enhanced

Speedup =
1

Fractionenhanced
Speedupenhanced
--- (1 – Fractionenhanced)+

--

6.1 Introduction 647

mode, or serial with only one processor in use. With this simplification, the
speedup in enhanced mode is simply the number of processors, while the
fraction of enhanced mode is the time spent in parallel mode. Substituting
into the equation above:

Simplifying this equation yields

Thus to achieve a speedup of 80 with 100 processors, only 0.25% of orig-
inal computation can be sequential. Of course, to achieve linear speedup
(speedup of n with n processors), the entire program must usually be par-
allel with no serial portions. (One exception to this is superlinear speedup
that occurs due to the increased memory and cache available when the
processor count is increased. This effect is usually not very large and
rarely scales linearly with processor count.) In practice, programs do not
just operate in fully parallel or sequential mode, but often use less than
the full complement of the processors when running in parallel mode.
Exercise 6.2 asks you to extend Amdahl’s Law to deal with such a case.

n

The second major challenge in parallel processing involves the large latency
of remote access in a parallel processor. In existing shared-memory multiproces-
sors, communication of data between processors may cost anywhere from 100
clock cycles to over 1,000 clock cycles, depending on the communication mecha-
nism, the type of interconnection network, and the scale of the multiprocessor.
Figure 6.3 shows the typical round-trip delays to retrieve a word from a remote
memory for several different shared-memory parallel processors.

The effect of long communication delays is clearly substantial. Let’s consider
a simple Example.

E X A M P L E Suppose we have an application running on a 32-processor multiproces-
sor, which has a 400 ns time to handle reference to a remote memory. For
this application, assume that all the references except those involving
communication hit in the local memory hierarchy, which may be only

80 1
Fractionparallel

100
------------------------------------ (1 – Fractionparallel)+

---=

0.8 Fractionparallel× 80 (1 – Fractionparallel×)+ 1=

80 79.2 Fractionparallel×– 1=

Fractionparallel
80 1–
79.2

---------------=

Fractionparallel 0.9975=

648 Chapter 6 Multiprocessors and Thread-Level Parallelism

slightly pessimistic. Processors are stalled on a remote request, and the
processor clock rate is 1GHz. If the base IPC (assuming that all referenc-
es hit in the cache) is 2, how much faster is the multiprocessor if there is
no communication versus if 0.2% of the instructions involve a remote
communication reference?

A N S W E R It is simpler to first calculate the CPI. The effective CPI for the multipro-
cessor with 0.2% remote references is

The Remote request cost is

Hence we can compute the CPI:

CPI = 0.5 + 0.8 = 1.3

The multiprocessor with all local references is 1.3/0.5 = 2.6 times faster.
In practice, the performance analysis is much more complex, since some
fraction of the noncommunication references will miss in the local hierar-
chy and the remote access time does not have a single constant value.
For example, the cost of a remote reference could be quite a bit worse,
since contention caused by many references trying to use the global in-
terconnect can lead to increased delays. n

These problems—insufficient parallelism and long latency remote communi-

Multiprocessor
Year

shipped
SMP or
NUMA

Max.
processors

Interconnection
network

Typical remote
memory access time

Sun Starfire servers 1996 SMP 64 Multiple buses 500 ns

SGI Origin 3000 1999 NUMA 512 Fat hypercube 500 ns

Cray T3E 1996 NUMA 2,048 2-way 3D torus 300 ns

HP V series 1998 SMP 32 8x8 crossbar 1000 ns

Compaq Alphaserver GS 1999 SMP 32 Switched busses 400 ns

FIGURE 6.3 Typical remote access times to retrieve a word from a remote memory in shared-memory multipro-
cessors.

CPI Base CPI Remote request rate Remote request cost×+=

1
Base IPC
---------------------- 0.2% Remote request cost×+=

0.5 0.2% Remote request cost×+=

Remote access cost
Cycle time

-- 400ns
1 ns

--------------= 400 cycles=

6.2 Characteristics of Application Domains 649

cation—are the two biggest challenges in using multiprocessors. The problem of
inadequate application parallelism must be attacked primarily in software with
new algorithms that can have better parallel performance. Reducing the impact of
long remote latency can be attacked both by the architecture and by the program-
mer. For example, we can reduce the frequency of remote accesses with either
hardware mechanisms, such as caching shared data, or with software mecha-
nisms, such as restructuring the data to make more accesses local. We can try to
tolerate the latency by using prefetching or multithreading, which we examined
in Chapters 4 and 5.

Much of this chapter focuses on techniques for reducing the impact of long re-
mote communication latency. For example, sections 6.3 and 6.5 discuss how
caching can be used to reduce remote access frequency, while maintaining a co-
herent view of memory. Section 6.7 discusses synchronization, which, because it
inherently involves interprocessor communication, is an additional potential bot-
tleneck. Section 6.8 talks about latency hiding techniques and memory consisten-
cy models for shared memory. Before we wade into these topics, it is helpful to
have some understanding of the characteristics of parallel applications, both for
better comprehension of the results we show using some of these applications
and to gain a better understanding of the challenges in writing efficient parallel
programs.

In earlier chapters, we examined the performance and characteristics of applica-
tions with only a small amount of insight into the structure of the applications.
For understanding the key elements of uniprocessor performance, such as caches
and pipelining, general knowledge of an application is often adequate, although
we saw that deeper application knowledge was necessary to exploit higher levels
of ILP.

In parallel processing, the additional performance-critical characteristics—
such as load balance, synchronization, and sensitivity to memory latency—typi-
cally depend on high-level characteristics of the application. These characteris-
tics include factors like how data is distributed, the structure of a parallel
algorithm, and the spatial and temporal access patterns to data. Therefore at this
point we take the time to examine the three different classes of workloads.

The three different domains of multiprocessor workloads we explore are a
commercial workload, consisting of transaction processing, decision support, and
web searching; a multiprogrammed workload with operating systems behavior
included; and a workload consisting of individual parallel programs from the
technical computing domain.

6.2 Characteristics of Application Domains

650 Chapter 6 Multiprocessors and Thread-Level Parallelism

A Commercial Workload

Our commercial workload consists of three applications:

1. An online transaction processing workload (OLTP) modeled after TPC-B
(which has similar memory behavior to its newer cousin TPC-C) and using
Oracle 7.3.2 as the underlying database. The workload consists of a set of cli-
ent processes that generate requests and a set of servers that handle them. The
server processes consume 85% of the user time, with the remaining going to
the clients. Although the I/O latency is hidden by careful tuning and enough
requests to keep the CPU busy, the server processes typically block for I/O af-
ter about 25,000 instructions.

2. A decision support system (DSS) workload based on TPC-D and also using
Oracle 7.3.2 as the underlying database. The workload includes only six of the
17 read queries in TPC-D, although the six queries examined in the benchmark
span the range of activities in the entire benchmark. To hide the I/O latency,
parallelism is exploited both within queries, where parallelism is detected dur-
ing a query formulation process, and across queries. Blocking calls are much
less frequent than in the OLTP benchmark; the six queries average about 1.5
million instructions before blocking.

3. A web index search (Altavista) benchmark based on a search of a memory
mapped version of the Altavista database (200 GB). The inner loop is heavily
optimized. Because the search structure is static, little synchronization is need-
ed among the threads.

The fraction of time spent in user mode, in the kernel, and in the idle loop are
shown in Figure 6.4. The frequency of I/O increases both the kernel time and the
idle time (see the OLTP entry, which has the largest I/O to computation ratio).
Altavista, which maps the entire search database into memory and has been ex-
tensively tuned, shows the least kernel or idle time.

Benchmark % Time User Mode % Time Kernel % Time CPU Idle

OLTP 71% 18% 11%

DSS (range for the six queries) 82–94% 3–5% 4–13%

DSS (average across all queries) 87% 3.7% 9.3%

Altavista > 98% < 1% <1%

FIGURE 6.4 The distribution of execution time in the commercial workloads. The OLTP benchmark has the largest
fraction of both OS time and CPU idle time (which is I/O wait time). The DSS benchmark shows much less OS time, since
it does less I/O, but still more than 9% idle time. The extensive tuning of the Altavista search engine is clear in these mea-
surement. The data for this workload were collected by Barroso et. al. [1998] on a 4-processor Alphaserver 4100.

6.2 Characteristics of Application Domains 651

Multiprogramming and OS Workload

For small-scale multiprocessors we will also look at a multiprogrammed work-
load consisting of both user activity and OS activity. The workload used is two
independent copies of the compile phase of the Andrew benchmark. The compile
phase consists of a parallel make using eight processors. The workload runs for
5.24 seconds on eight processors, creating 203 processes and performing 787
disk requests on three different file systems. The workload is run with 128 MB of
memory, and no paging activity takes place.

The workload has three distinct phases: compiling the benchmarks, which in-
volves substantial compute activity; installing the object files in a library; and re-
moving the object files. The last phase is completely dominated by I/O and only
two processes are active (one for each of the runs). In the middle phase, I/O also
plays a major role and the CPU is largely idle.

Because both CPU idle time and instruction cache performance are important
in this workload, we examine these two issues here, focusing on the data cache
performance later in the chapter. For the workload measurements, we assume the
following memory and I/O systems:

Figure 6.5 shows how the execution time breaks down for the eight processors
using the parameters just listed. Execution time is broken into four components:
idle—execution in the kernel mode idle loop; user—execution in user code; syn-
chronization—execution or waiting for synchronization variables; and kernel—
execution in the OS that is neither idle nor in synchronization access.

Unlike the parallel scientific workload, this multiprogramming workload has a
significant instruction cache performance loss, at least for the OS. The instruction
cache miss rate in the OS for a 64-byte block size, two set-associative cache varies
from 1.7% for a 32-KB cache to 0.2% for a 256-KB cache. User-level, instruction
cache misses are roughly one-sixth of the OS rate, across the variety of cache sizes.

I/O system Memory

Level 1 instruction cache 32K bytes, two-way set associative with a 64-byte block,
one clock cycle hit time

Level 1 data cache 32K bytes, two-way set associative with a 32-byte block,
one clock cycle hit time

Level 2 cache 1M bytes unified, two-way set associative with a 128-byte
block, hit time 10 clock cycles

Main memory Single memory on a bus with an access time of 100 clock
cycles

Disk system Fixed access latency of 3 ms (less than normal to reduce
idle time)

652 Chapter 6 Multiprocessors and Thread-Level Parallelism

Scientific/Technical Applications

Our scientific/technical parallel workload consists of two applications and two
computational kernels. The kernels are an FFT (fast Fourier transformation) and
an LU decomposition, which were chosen because they represent commonly
used techniques in a wide variety of applications and have performance charac-
teristics typical of many parallel scientific applications. In addition, the kernels
have small code segments whose behavior we can understand and directly track
to specific architectural characteristics. Like many scientific application, I/O is
essentially nonexistent in this workload.

The two applications that we use in this chapter are Barnes and Ocean, which
represent two important but very different types of parallel computation. We
briefly describe each of these applications and kernels and characterize their ba-
sic behavior in terms of parallelism and communication. We describe how the
problem is decomposed for a distributed shared-memory multiprocessor; certain
data decompositions that we describe are not necessary on multiprocessors that
have a single centralized memory.

The FFT Kernel
The fast Fourier transform (FFT) is the key kernel in applications that use spec-
tral methods, which arise in fields ranging from signal processing to fluid flow to
climate modeling. The FFT application we study here is a one-dimensional ver-
sion of a parallel algorithm for a complex-number FFT. It has a sequential execu-
tion time for n data points of n log n. The algorithm uses a high radix (equal to

) that minimizes communication. The measurements shown in this chapter are
collected for a million-point input data set.

There are three primary data structures: the input and output arrays of the data
being transformed and the roots of unity matrix, which is precomputed and only
read during the execution. All arrays are organized as square matrices. The six
steps in the algorithm are as follows:

1. Transpose data matrix.

User execution Kernel execution Synchronization
wait

CPU Idle
(waiting for I/O)

% instructions executed 27% 3% 1% 69%

% execution time 27% 7% 2% 64%

FIGURE 6.5 The distribution of execution time in the multiprogrammed parallel make workload. The high fraction
of idle time is due to disk latency when only one of the eight processes is active. These data and the subsequent measure-
ments for this workload were collected with the SimOS system [Rosenblum 1995]. The actual runs and data collection were
done by M. Rosenblum, S. Herrod, and E. Bugnion of Stanford University, using the SimOS simulation system.

n

6.2 Characteristics of Application Domains 653
2. Perform 1D FFT on each row of data matrix.

3. Multiply the roots of unity matrix by the data matrix and write the result in the
data matrix.

4. Transpose data matrix.

5. Perform 1D FFT on each row of data matrix.

6. Transpose data matrix.

The data matrices and the roots of unity matrix are partitioned among proces-
sors in contiguous chunks of rows, so that each processor’s partition falls in its
own local memory. The first row of the roots of unity matrix is accessed heavily
by all processors and is often replicated, as we do, during the first step of the al-
gorithm just shown. The data transposes ensure good locality during the individu-
al FFT steps, which would otherwise access nonlocal data.

The only communication is in the transpose phases, which require all-to-all
communication of large amounts of data. Contiguous subcolumns in the rows as-
signed to a processor are grouped into blocks, which are transposed and placed
into the proper location of the destination matrix. Every processor transposes one
block locally and sends one block to each of the other processors in the system.
Although there is no reuse of individual words in the transpose, with long cache
blocks it makes sense to block the transpose to take advantage of the spatial
locality afforded by long blocks in the source matrix.

The LU Kernel
LU is an LU factorization of a dense matrix and is representative of many dense
linear algebra computations, such as QR factorization, Cholesky factorization,
and eigenvalue methods. For a matrix of size n × n the running time is n3 and the
parallelism is proportional to n2. Dense LU factorization can be performed effi-
ciently by blocking the algorithm, using the techniques in Chapter 5, which leads
to highly efficient cache behavior and low communication. After blocking the al-
gorithm, the dominant computation is a dense matrix multiply that occurs in the
innermost loop. The block size is chosen to be small enough to keep the cache
miss rate low, and large enough to reduce the time spent in the less parallel parts
of the computation. Relatively small block sizes (8 × 8 or 16 × 16) tend to satisfy
both criteria.

Two details are important for reducing interprocessor communication. First,
the blocks of the matrix are assigned to processors using a 2D tiling: the
(where each block is B × B) matrix of blocks is allocated by laying a grid of size

 over the matrix of blocks in a cookie-cutter fashion until all the blocks are
allocated to a processor. Second, the dense matrix multiplication is performed by
the processor that owns the destination block. With this blocking and allocation
scheme, communication during the reduction is both regular and predictable. For

n
B
--- n

B
---×

p p×

654 Chapter 6 Multiprocessors and Thread-Level Parallelism
the measurements in this chapter, the input is a 512 × 512 matrix and a block of
16 × 16 is used.

A natural way to code the blocked LU factorization of a 2D matrix in a shared
address space is to use a 2D array to represent the matrix. Because blocks are
allocated in a tiled decomposition, and a block is not contiguous in the address
space in a 2D array, it is very difficult to allocate blocks in the local memories of
the processors that own them. The solution is to ensure that blocks assigned to a
processor are allocated locally and contiguously by using a 4D array (with the
first two dimensions specifying the block number in the 2D grid of blocks, and
the next two specifying the element in the block).

The Barnes Application
Barnes is an implementation of the Barnes-Hut n-body algorithm solving a
problem in galaxy evolution. N-body algorithms simulate the interaction among
a large number of bodies that have forces interacting among them. In this in-
stance the bodies represent collections of stars and the force is gravity. To reduce
the computational time required to model completely all the individual inter-
actions among the bodies, which grow as n2, n-body algorithms take advantage
of the fact that the forces drop off with distance. (Gravity, for example, drops off
as 1/d2, where d is the distance between the two bodies.) The Barnes-Hut algo-
rithm takes advantage of this property by treating a collection of bodies that are
“far away” from another body as a single point at the center of mass of the collec-
tion and with mass equal to the collection. If the body is far enough from any
body in the collection, then the error introduced will be negligible. The collec-
tions are structured in a hierarchical fashion, which can be represented in a tree.
This algorithm yields an n log n running time with parallelism proportional to n.

The Barnes-Hut algorithm uses an octree (each node has up to eight children)
to represent the eight cubes in a portion of space. Each node then represents the
collection of bodies in the subtree rooted at that node, which we call a cell. Be-
cause the density of space varies and the leaves represent individual bodies, the
depth of the tree varies. The tree is traversed once per body to compute the net
force acting on that body. The force-calculation algorithm for a body starts at the
root of the tree. For every node in the tree it visits, the algorithm determines if the
center of mass of the cell represented by the subtree rooted at the node is “far
enough away” from the body. If so, the entire subtree under that node is approxi-
mated by a single point at the center of mass of the cell, and the force this center
of mass exerts on the body is computed. On the other hand, if the center of mass
is not far enough away, the cell must be “opened” and each of its subtrees visited.
The distance between the body and the cell, together with the error tolerances,
determines which cells must be opened. This force calculation phase dominates
the execution time. This chapter takes measurements using 16K bodies; the crite-
rion for determining whether a cell needs to be opened is set to the middle of the
range typically used in practice.

6.2 Characteristics of Application Domains 655
Obtaining effective parallel performance on Barnes-Hut is challenging be-
cause the distribution of bodies is nonuniform and changes over time, making
partitioning the work among the processors and maintenance of good locality of
reference difficult. We are helped by two properties: the system evolves slowly;
and because gravitational forces fall off quickly, with high probability, each cell
requires touching a small number of other cells, most of which were used on the
last time step. The tree can be partitioned by allocating each processor a subtree.
Many of the accesses needed to compute the force on a body in the subtree will
be to other bodies in the subtree. Since the amount of work associated with a sub-
tree varies (cells in dense portions of space will need to access more cells), the
size of the subtree allocated to a processor is based on some measure of the work
it has to do (e.g., how many other cells does it need to visit), rather than just on
the number of nodes in the subtree. By partitioning the octree representation, we
can obtain good load balance and good locality of reference, while keeping the
partitioning cost low. Although this partitioning scheme results in good locality
of reference, the resulting data references tend to be for small amounts of data
and are unstructured. Thus this scheme requires an efficient implementation of
shared-memory communication.

The Ocean Application
Ocean simulates the influence of eddy and boundary currents on large-scale flow
in the ocean. It uses a restricted red-black Gauss-Seidel multigrid technique to
solve a set of elliptical partial differential equations. Red-black Gauss-Seidel is
an iteration technique that colors the points in the grid so as to consistently up-
date each point based on previous values of the adjacent neighbors. Multigrid
methods solve finite difference equations by iteration using hierarchical grids.
Each grid in the hierarchy has fewer points than the grid below, and is an approx-
imation to the lower grid. A finer grid increases accuracy and thus the rate of con-
vergence, while requiring more execution time, since it has more data points.
Whether to move up or down in the hierarchy of grids used for the next iteration
is determined by the rate of change of the data values. The estimate of the error at
every time-step is used to decide whether to stay at the same grid, move to a
coarser grid, or move to a finer grid. When the iteration converges at the finest
level, a solution has been reached. Each iteration has n2 work for an n × n grid
and the same amount of parallelism.

The arrays representing each grid are dynamically allocated and sized to the
particular problem. The entire ocean basin is partitioned into square subgrids (as
close as possible) that are allocated in the portion of the address space corre-
sponding to the local memory of the individual processors, which are assigned
responsibility for the subgrid. For the measurements in this chapter we use an in-
put that has 130 × 130 grid points. There are five steps in a time iteration. Since
data are exchanged between the steps, all the processors present synchronize at
the end of each step before proceeding to the next. Communication occurs when
the boundary points of a subgrid are accessed by the adjacent subgrid in nearest-
neighbor fashion.

656 Chapter 6 Multiprocessors and Thread-Level Parallelism
Computation/Communication for the Parallel Programs
A key characteristic in determining the performance of parallel programs is the
ratio of computation to communication. If the ratio is high, it means the applica-
tion has lots of computation for each datum communicated. As we saw in section
6.1, communication is the costly part of parallel computing; therefore high com-
putation-to-communication ratios are very beneficial. In a parallel processing
environment, we are concerned with how the ratio of computation to communica-
tion changes as we increase either the number of processors, the size of the prob-
lem, or both. Knowing how the ratio changes as we increase the processor count
sheds light on how well the application can be sped up. Because we are often in-
terested in running larger problems, it is vital to understand how changing the
data set size affects this ratio.

To understand what happens quantitatively to the computation-to-communica-
tion ratio as we add processors, consider what happens separately to computation
and to communication as we either add processors or increase problem size. Fig-
ure 6.6 shows that as we add processors, for these applications, the amount of
computation per processor falls proportionately and the amount of communica-
tion per processor falls more slowly. As we increase the problem size, the compu-
tation scales as the O() complexity of the algorithm dictates. Communication
scaling is more complex and depends on details of the algorithm; we describe the
basic phenomena for each application in the caption of Figure 6.6.

The overall computation-to-communication ratio is computed from the indi-
vidual growth rate in computation and communication. In general, this ratio rises
slowly with an increase in data set size and decreases as we add processors. This
reminds us that performing a fixed-size problem with more processors leads to
increasing inefficiencies because the amount of communication among proces-
sors grows. It also tells us how quickly we must scale data set size as we add pro-
cessors, to keep the fraction of time in communication fixed. The following
example illustrates this tradeoffs.

E X A M P L E Suppose we know that for a given multiprocessor the Ocean application
spends 20% of its execution time waiting for communication when run on
four processors. Assume that the cost of each communication event is in-
dependent on processor count, which is not true in general, since com-
munication costs rise with processor count. How much faster might we
expect Ocean to run on a 32-processor machine with the same problem
size? What fraction of the execution time is spent on communication in
this case? How much larger a problem should we run if we want the frac-
tion of time spent communicating to be the same?

A N S W E R The computation to communication ratio for Ocean is , so if the
problem size is the same, the communication frequency scales by .

n p⁄
p

6.2 Characteristics of Application Domains 657
This means that communication time increase by . We can use a variation on
Amdahl’s Law, recognizing that the computation is decreased but the communi-
cation time is increased. If T4 is the total execution time for 4 processors, then the
execution time for 32 processors is:

Hence the speed-up is:

And the fraction of time spent in communication goes from 20% to 0.57/
0.67 = 85%.

Application
Scaling of

computation
Scaling of

communication
Scaling of computation-

to-communication

FFT

LU

Barnes
Approximately Approximately

Ocean

FIGURE 6.6 Scaling of computation, of communication, and of the ratio are critical
factors in determining performance on parallel multiprocessors. In this table p is the in-
creased processor count and n is the increased data set size. Scaling is on a per-processor
basis. The computation scales up with n at the rate given by O() analysis and scales down
linearly as p is increased. Communication scaling is more complex. In FFT all data points
must interact, so communication increases with n and decreases with p. In LU and Ocean,
communication is proportional to the boundary of a block, so it scales with data set size at a
rate proportional to the side of a square with n points, namely ; for the same reason com-
munication in these two applications scales inversely to . Barnes has the most complex
scaling properties. Because of the fall-off of interaction between bodies, the basic number of
interactions among bodies, which require communication, scales as . An additional factor
of log n is needed to maintain the relationships among the bodies. As processor count is in-
creased, communication scales inversely to .

n nlog
p

-------------- n
p
--- nlog

n
p
--- n

p
------- n

p

n nlog
p

-------------- n nlog()
p

----------------------- n

p

n
p
--- n

p
------- n

p

n
p

n

p

8

T32 Compute time + Communicaton time=

0.8 T× 4
8

-------------------- 0.2 T× 4() 8×+=

0.1 T× 4 0.57 T× 4+= 0.67 T× 4=

Speedup
T4
T32

T4
0.67 T× 4
----------------------- 1.49= = =

658 Chapter 6 Multiprocessors and Thread-Level Parallelism
For the fraction of the communication time to remain the same, we
must keep the computation to communication ratio the same, so the prob-
lem size must scale at the same rate as the processor count. Notice that
because we have changed the problem size, we cannot measure of the
scaled problem. We will return to the critical issue of scaling applications
for multiprocessors in both in the Cross Cutting Issues and the Fallacies
and Pitfalls. n

Multis are a new class of computers based on multiple microprocessors. The small
size, low cost, and high performance of microprocessors allow design and con-
struction of computer structures that offer significant advantages in manufacture,
price-performance ratio, and reliability over traditional computer families....
Multis are likely to be the basis for the next, the fifth, generation of computers.
[p. 463]

Bell [1985]

As we saw in Chapter 5, the use of large, multilevel caches can substantially re-
duce the memory bandwidth demands of a processor. If the main memory band-
width demands of a single processor are reduced, multiple processors may be
able to share the same memory. Starting in the 1980s, this observation, combined
with the emerging dominance of the microprocessor, motivated many designers
to create small-scale multiprocessors where several processors shared a single
physical memory connected by a shared bus. This type of design is called sym-
metric shared memory, because each processor has the same relationship to one
single shared memory. Because of the small size of the processors and the signifi-
cant reduction in the requirements for bus bandwidth achieved by large caches,
such symmetric multiprocessors are extremely cost-effective, provided that a suf-
ficient amount of memory bandwidth exists. Early designs of such multiproces-
sors were able to place an entire CPU and cache subsystem on a board, which
plugged into the bus backplane. More recent designs have placed up to four pro-
cessors per board; and a recent announcement by IBM includes 2 processors on
the same die. Figure 6.1 on page 639 shows a simple diagram of such a multipro-
cessor.

Small-scale shared-memory machines usually support the caching of both
shared and private data. Private data is used by a single processor, while shared
data is used by multiple processors, essentially providing communication among
the processors through reads and writes of the shared data. When a private item is
cached, its location is migrated to the cache, reducing the average access time as
well as the memory bandwidth required. Since no other processor uses the data,

6.3 Symmetric Shared-Memory Architectures

6.3 Symmetric Shared-Memory Architectures 659
the program behavior is identical to that in a uniprocessor. When shared data are
cached, the shared value may be replicated in multiple caches. In addition to the
reduction in access latency and required memory bandwidth, this replication also
provides a reduction in contention that may exist for shared data items that are
being read by multiple processors simultaneously. Caching of shared data, how-
ever, introduces a new problem: cache coherence.

What Is Multiprocessor Cache Coherence?

As we saw in Chapter 6, the introduction of caches caused a coherence problem
for I/O operations, since the view of memory through the cache could be different
from the view of memory obtained through the I/O subsystem. The same problem
exists in the case of multiprocessors, because the view of memory held by two dif-
ferent processors is through their individual caches. Figure 6.7 illustrates the prob-
lem and shows how two different processors can have two different values for the
same location. This difficulty s generally referred to as the cache-coherence prob-
lem.

Informally, we could say that a memory system is coherent if any read of a
data item returns the most recently written value of that data item. This definition,
although intuitively appealing, is vague and simplistic; the reality is much more
complex. This simple definition contains two different aspects of memory system
behavior, both of which are critical to writing correct shared-memory programs.
The first aspect, called coherence, defines what values can be returned by a read.
The second aspect, called consistency, determines when a written value will be
returned by a read. Let’s look at coherence first.

A memory system is coherent if

Time Event

Cache
contents

for CPU A

Cache
contents for

CPU B

Memory
contents for
location X

0 1

1 CPU A reads X 1 1

2 CPU B reads X 1 1 1

3 CPU A stores 0 into X 0 1 0

FIGURE 6.7 The cache-coherence problem for a single memory location (X), read and
written by two processors (A and B). We initially assume that neither cache contains the
variable and that X has the value 1. We also assume a write-through cache; a write-back
cache adds some additional but similar complications. After the value of X has been written
by A, A’s cache and the memory both contain the new value, but B’s cache does not, and if
B reads the value of X, it will receive 1!

660 Chapter 6 Multiprocessors and Thread-Level Parallelism
1. A read by a processor, P, to a location X that follows a write by P to X, with
no writes of X by another processor occurring between the write and the read
by P, always returns the value written by P.

2. A read by a processor to location X that follows a write by another processor
to X returns the written value if the read and write are sufficiently separated in
time and no other writes to X occur between the two accesses.

3. Writes to the same location are serialized: that is, two writes to the same loca-
tion by any two processors are seen in the same order by all processors. For
example, if the values 1 and then 2 are written to a location, processors can
never read the value of the location as 2 and then later read it as 1.

The first property simply preserves program order—we expect this property to be
true even in uniprocessors. The second property defines the notion of what it
means to have a coherent view of memory: If a processor could continuously
read an old data value, we would clearly say that memory was incoherent.

The need for write serialization is more subtle, but equally important. Suppose
we did not serialize writes, and processor P1 writes location X followed by P2
writing location X. Serializing the writes ensures that every processor will see the
write done by P2 at some point. If we did not serialize the writes, it might be the
case that some processor could see the write of P2 first and then see the write of
P1, maintaining the value written by P1 indefinitely. The simplest way to avoid
such difficulties is to serialize writes, so that all writes to the same location are
seen in the same order; this property is called write serialization.

Although the three properties just described are sufficient to ensure coherence,
the question of when a written value will be seen is also important. To see why,
observe that we cannot require that a read of X instantaneously see the value
written for X by some other processor. If, for example, a write of X on one pro-
cessor precedes a read of X on another processor by a very small time, it may be
impossible to ensure that the read returns the value of the data written, since the
written data may not even have left the processor at that point. The issue of exact-
ly when a written value must be seen by a reader is defined by a memory consis-
tency model—a topic discussed in section 6.8.

Coherence and consistency are complementary: Coherence defines the behav-
ior of reads and writes to the same memory location, while consistency defines
the behavior of reads and writes with respect to accesses to other memory loca-
tions. For simplicity, and because we cannot explain the problem in full detail at
this point, assume that we require that a write does not complete until all proces-
sors have seen the effect of the write and that the processor does not change the
order of any write with any other memory access. This allows the processor to re-
order reads, but forces the processor to finish a write in program order. We will
rely on this assumption until we reach section 6.8, where we will see exactly the
meaning of this definition, as well as the alternatives.

6.3 Symmetric Shared-Memory Architectures 661
Basic Schemes for Enforcing Coherence

The coherence problem for multiprocessors and I/O, although similar in origin,
has different characteristics that affect the appropriate solution. Unlike I/O,
where multiple data copies are a rare event—one to be avoided whenever possi-
ble—a program running on multiple processors will normally have copies of the
same data in several caches. In a coherent multiprocessor, the caches provide
both migration and replication of shared data items.

Coherent caches provide migration, since a data item can be moved to a local
cache and used there in a transparent fashion. This migration reduces both the la-
tency to access a shared data item that is allocated remotely and the bandwidth
demand on the shared memory.

Coherent caches also provide replication for shared data that is being
simultaneously read, since the caches make a copy of the data item in the local
cache. Replication reduces both latency of access and contention for a read
shared data item. Supporting this migration and replication is critical to perfor-
mance in accessing shared data. Thus, rather than trying to solve the problem by
avoiding it in software, small-scale multiprocessors adopt a hardware solution by
introducing a protocol to maintain coherent caches.

The protocols to maintain coherence for multiple processors are called cache-
coherence protocols. Key to implementing a cache-coherence protocol is track-
ing the state of any sharing of a data block. There are two classes of protocols,
which use different techniques to track the sharing status, in use:

n Directory based—The sharing status of a block of physical memory is kept in
just one location, called the directory; we focus on this approach in section 6.5,
when we discuss scalable shared-memory architecture.

n Snooping—Every cache that has a copy of the data from a block of physical
memory also has a copy of the sharing status of the block, and no centralized
state is kept. The caches are usually on a shared-memory bus, and all cache
controllers monitor or snoop on the bus to determine whether or not they have
a copy of a block that is requested on the bus. We focus on this approach in this
section.

Snooping protocols became popular with multiprocessors using microproces-
sors and caches attached to a single shared memory because these protocols can
use a preexisting physical connection—the bus to memory—to interrogate the
status of the caches.

Snooping Protocols

There are two ways to maintain the coherence requirement described in the previ-
ous subsection. One method is to ensure that a processor has exclusive access to a
data item before it writes that item. This style of protocol is called a write invali-
date protocol because it invalidates other copies on a write. It is by far the most

662 Chapter 6 Multiprocessors and Thread-Level Parallelism
common protocol, both for snooping and for directory schemes. Exclusive access
ensures that no other readable or writable copies of an item exist when the write
occurs: all other cached copies of the item are invalidated.

Figure 6.8 shows an example of an invalidation protocol for a snooping bus
with write-back caches in action To see how this protocol ensures coherence,
consider a write followed by a read by another processor: Since the write requires
exclusive access, any copy held by the reading processor must be invalidated
(hence the protocol name). Thus, when the read occurs, it misses in the cache and
is forced to fetch a new copy of the data. For a write, we require that the writing
processor have exclusive access, preventing any other processor from being able
to write simultaneously. If two processors do attempt to write the same data si-
multaneously, one of them wins the race (we’ll see how we decide who wins
shortly), causing the other processor’s copy to be invalidated. For the other pro-
cessor to complete its write, it must obtain a new copy of the data, which must
now contain the updated value. Therefore, this protocol enforces write serializa-
tion.

The alternative to an invalidate protocol is to update all the cached copies of a
data item when that item is written. This type of protocol is called a write update
or write broadcast protocol. To keep the bandwidth requirements of this protocol
under control it is useful to track whether or not a word in the cache is shared—
that is, is contained in other caches. If it is not, then there is no need to broadcast
or update any other caches. Figure 6.8 shows an example of a write update proto-
col in operation. In the decade since these protocols were developed, invalidate
has emerged as the winner for the vast majority of designs. To understand why,
let’s look at the qualitative performance differences.

The performance differences between write update and write invalidate proto-
cols arise from three characteristics:

Processor activity Bus activity
Contents of

CPU A’s cache
Contents of

CPU B’s cache
Contents of memory

location X

0

CPU A reads X Cache miss for X 0 0

CPU B reads X Cache miss for X 0 0 0

CPU A writes a 1 to X Invalidation for X 1 0

CPU B reads X Cache miss for X 1 1 1

FIGURE 6.8 An example of an invalidation protocol working on a snooping bus for a single cache block (X) with
write-back caches. We assume that neither cache initially holds X and that the value of X in memory is 0. The CPU and
memory contents show the value after the processor and bus activity have both completed. A blank indicates no activity or
no copy cached. When the second miss by B occurs, CPU A responds with the value canceling the response from memory.
In addition, both the contents of B’s cache and the memory contents of X are updated. This update of memory, which occurs
when a block becomes shared, is typical in most protocols and simplifies the protocol, as we will see shortly.

6.3 Symmetric Shared-Memory Architectures 663
1. Multiple writes to the same word with no intervening reads require multiple
write broadcasts in an update protocol, but only one initial invalidation in a
write invalidate protocol.

2. With multiword cache blocks, each word written in a cache block requires a
write broadcast in an update protocol, although only the first write to any word
in the block needs to generate an invalidate in an invalidation protocol. An in-
validation protocol works on cache blocks, while an update protocol must
work on individual words (or bytes, when bytes are written). It is possible to
try to merge writes in a write broadcast scheme, just as we did for write buffers
in Chapter 5, but the basic difference remains.

3. The delay between writing a word in one processor and reading the written
value in another processor is usually less in a write update scheme, since the
written data are immediately updated in the reader’s cache (assuming that the
reading processor has a copy of the data). By comparison, in an invalidation
protocol, the reader is invalidated first, then later reads the data and is stalled
until a copy can be read and returned to the processor.

Because bus and memory bandwidth is usually the commodity most in de-
mand in a bus-based multiprocessor and invalidation protocols generate less bus
and memory traffic, invalidation has become the protocol of choice for almost all
multiprocessors. Update protocols also cause problems for memory consistency
models, reducing the potential performance gains of update, mentioned in point
3, even further. In designs with very small processor counts (2, or at most, 4)
where the processors are tightly coupled (perhaps even on the same chip), the
larger bandwidth demands of update may be acceptable. Nonetheless, given the
trends in increasing processor performance and the related increase in bandwidth

Processor activity Bus activity
Contents of

CPU A’s cache
Contents of

CPU B’s cache
Contents of memory

location X

0

CPU A reads X Cache miss for X 0 0

CPU B reads X Cache miss for X 0 0 0

CPU A writes a 1 to X Write broadcast of X 1 1 1

CPU B reads X 1 1 1

FIGURE 6.9 An example of a write update or broadcast protocol working on a snooping bus for a single cache
block (X) with write-back caches. We assume that neither cache initially holds X and that the value of X in memory is 0.
The CPU and memory contents show the value after the processor and bus activity have both completed. A blank indicates
no activity or no copy cached. When CPU A broadcasts the write, both the cache in CPU B and the memory location of X
are updated.

664 Chapter 6 Multiprocessors and Thread-Level Parallelism
demands, we can expect update schemes to be used very infrequently. For this
reason, we will focus only on invalidate protocols for the rest of the chapter.

Basic Implementation Techniques

The key to implementing an invalidate protocol in a small-scale multiprocessor is
the use of the bus to perform invalidates. To perform an invalidate the processor
simply acquires bus access and broadcasts the address to be invalidated on the
bus. All processors continuously snoop on the bus watching the addresses. The
processors check whether the address on the bus is in their cache. If so, the corre-
sponding data in the cache is invalidated.

The serialization of access enforced by the bus also forces serialization of
writes, since when two processors compete to write to the same location, one
must obtain bus access before the other. The first processor to obtain bus access
will cause the other processor’s copy to be invalidated, causing writes to be strict-
ly serialized. One implication of this scheme is that a write to a shared data item
cannot complete until it obtains bus access.

In addition to invalidating outstanding copies of a cache block that is being
written into, we also need to locate a data item when a cache miss occurs. In a
write-through cache, it is easy to find the recent value of a data item, since all
written data are always sent to the memory, from which the most recent value of a
data item can always be fetched. (Write buffers can lead to some additional com-
plexities, which are discussed in section 6.8.)

For a write-back cache, however, the problem of finding the most recent data
value is harder, since the most recent value of a data item can be in a cache rather
than in memory. Happily, write-back caches can use the same snooping scheme
both for caches misses and for writes: Each processor snoops every address
placed on the bus. If a processor finds that it has a dirty copy of the requested
cache block, it provides that cache block in response to the read request and caus-
es the memory access to be aborted. Since write-back caches generate lower
requirements for memory bandwidth, they are greatly preferable in a multi-
processor, despite the slight increase in complexity. Therefore, we focus on im-
plementation with write-back caches.

The normal cache tags can be used to implement the process of snooping, and
the valid bit for each block makes invalidation easy to implement. Read misses,
whether generated by an invalidation or by some other event, are also straightfor-
ward since they simply rely on the snooping capability. For writes we’d like to
know whether any other copies of the block are cached, because, if there are no
other cached copies, then the write need not be placed on the bus in a write-back
cache. Not sending the write reduces both the time taken by the write and the re-
quired bandwidth.

To track whether or not a cache block is shared we can add an extra state bit
associated with each cache block, just as we have a valid bit and a dirty bit. By
adding a bit indicating whether the block is shared, we can decide whether a
write must generate an invalidate. When a write to a block in the shared state oc-

6.3 Symmetric Shared-Memory Architectures 665
curs, the cache generates an invalidation on the bus and marks the block as pri-
vate. No further invalidations will be sent by that processor for that block. The
processor with the sole copy of a cache block is normally called the owner of the
cache block.

When an invalidation is sent, the state of the owner’s cache block is changed
from shared to unshared (or exclusive). If another processor later requests this
cache block, the state must be made shared again. Since our snooping cache also
sees any misses, it knows when the exclusive cache block has been requested by
another processor and the state should be made shared.

Every bus transaction must check the cache-address tags, which could poten-
tially interfere with CPU cache accesses. This potential interference is reduced
by one of two techniques: duplicating the tags or employing a multilevel cache
with inclusion, whereby the levels closer to the CPU are a subset of those further
away. If the tags are duplicated, then the CPU and the snooping activity may pro-
ceed in parallel. Of course, on a cache miss the processor needs to arbitrate for and
update both sets of tags. Likewise, if the snoop finds a matching tag entry, it
needs to arbitrate for and access both sets of cache tags (to perform an invalidate
or to update the shared bit), as well as possibly the cache data array to retrieve a
copy of a block. Thus with duplicate tags the processor only needs to be stalled
when it does a cache access at the same time that a snoop has detected a copy in
the cache. Furthermore, snooping activity is delayed only when the cache is deal-
ing with a miss.

If the CPU uses a multilevel cache with the inclusion property, then every en-
try in the primary cache is required to be in the secondary cache. Thus the snoop
activity can be directed to the second-level cache, while most of the processor’s
activity is directed to the primary cache. If the snoop gets a hit in the secondary
cache, then it must arbitrate for the primary cache to update the state and possi-
bly retrieve the data, which usually requires a stall of the processor. Since many
multiprocessors use a multilevel cache to decrease the bandwidth demands of
the individual processors, this solution has been adopted in many designs.
Sometimes it may even be useful to duplicate the tags of the secondary cache to
further decrease contention between the CPU and the snooping activity. We dis-
cuss the inclusion property in more detail in section 6.10 on page 728.

An Example Protocol

A bus-based coherence protocol is usually implemented by incorporating a finite
state controller in each node. This controller responds to requests from the pro-
cessor and from the bus, changing the state of the selected cache block, as well as
using the bus to access data or to invalidate it. Figure 6.10 shows the requests
generated by the processor-cache module in a node, in the top half of the table, as
well as those coming from the bus, in the bottom half of the table. For simplicity,

666 Chapter 6 Multiprocessors and Thread-Level Parallelism
the protocol we explain does not distinguish between a write hit and a write miss
to a shared cache block: in both cases, we treat such an access as a write miss.
When the write miss is placed on the bus, any processors with copies of the cache
block invalidate it. In a write-back cache, if the block is exclusive in just one
cache, that cache also writes back the block. Treating write hits to shared blocks
as cache misses reduces the number of different bus transactions and simplifies
the controller. In more sophisticated protocols, these “misses” are treated as up-
grade requests that generate a bus transaction and an invalidate, but do not actual-
ly transfer the data, since the copy in he cache is up-to-date.

Figure 6.11 shows a finite-state transition diagram for a single cache block us-
ing a write-invalidation protocol and a write-back cache. For simplicity, the three
states of the protocol are duplicated to represent transitions based on CPU re-
quests (on the left, which corresponds to the top half of the table in Figure 6.11),
as opposed to transitions based on bus requests (on the right, which corresponds

Request Source State of addressed
cache block

Function and explanation

Read hit Processor Shared or Exclusive Read data in cache

Read miss Processor Invalid Place read miss on bus.

Read miss Processor Shared Address conflict miss: place read miss on bus

Read miss Processor Exclusive Address conflict miss: write back block, then place read miss
on bus

Write hit Processor Exclusive Write data in cache.

Write hit Processor Shared Place write miss on bus.

Write miss Processor Invalid Place write miss on bus.

Write miss Processor Shared Address conflict miss: place write miss on bus

Write miss Processor Exclusive Address conflict miss: write back block, then place write miss
on bus

Read Miss Bus Shared No action; allow memory to service read miss.

Read Miss Bus Exclusive Attempt to share data: place cache block on bus and change
state to Shared.

Write miss Bus Shared Attempt to write shared block; invalidate the block.

Write miss Bus Exclusive Attempt to write block that is exclusive elsewhere: write back
the cache block and make its state Invalid.

FIGURE 6.10 The cache-coherence mechanism receives requests from both the processor and the bus and re-
sponds to these based on the type of request, whether it hits or misses in the cache, and the state of the cache
block specified in the request. For read or write misses snooped from the bus, an action is required only if the read or
write addresses matches a block in the cache and the block is valid. Placing a write miss on the bus when a write hits in the
Shared state, ensures an exclusive copy, though the data need not actually be transferred. This is referred to as an upgrade,
and some protocols distinguish it from a write miss to avoid the data transfer.

6.3 Symmetric Shared-Memory Architectures 667
to the bottom half of the table in Figure 6.11). Boldface type is used to distin-
guish the bus actions, as opposed to the conditions on which a state transition de-
pends. The state in each node represents the state of the selected cache block
specified by the processor or bus request.

All of the states in this cache protocol would be needed in a uniprocessor
cache, where they would correspond to the invalid, valid (and clean), and dirty

FIGURE 6.11 A write-invalidate, cache-coherence protocol for a write-back cache showing the states and state
transitions for each block in the cache. The cache states are shown in circles with any access permitted by the CPU with-
out a state transition shown in parenthesis under the name of the state. The stimulus causing a state change is shown on
the transition arcs in regular type, and any bus actions generated as part of the state transition are shown on the transition
arc in bold. The stimulus actions apply to a block in the cache, not to a specific address in the cache. Hence, a read miss to
a block in the shared state is a miss for that cache block but for a different address. The left side of the diagram shows state
transitions based on actions of the CPU associated with this cache; the right side shows transitions based on operations on
the bus. A read miss in the exclusive or shared state and a write miss in the exclusive state occur when the address request-
ed by the CPU does not match the address in the cache block. Such a miss is a standard cache replacement miss. An at-
tempt to write a block in the shared state always generates a miss, even if the block is present in the cache, since the block
must be made exclusive. Whenever a bus transaction occurs, all caches that contain the cache block specified in the bus
transaction take the action dictated by the right half of the diagram. The protocol assumes that memory provides data on a
read miss for a block that is clean in all caches. In actual implementations, these two sets of state diagrams are combined.
This protocol is somewhat simpler than those in use in existing multiprocessors.

Invalid

Exclusive
(read/write)

Write miss for
this block

Write miss
for this block

CPU write hit
CPU read hit

Cache state transitions based
on requests from the bus

CPU write

P
la

ce
 w

ri
te

m
is

s
o

n
 b

u
s

CPU re
ad

 m
iss

W
rit

e-
bac

k b
lo

ck

Pla
ce

 w
rit

e
m

is
s

on b
us

Plac
e r

ea
d m

iss
 o

n b
us CPU w

rit
e

Place read miss on bus

Place read
miss on bus

W
ri

te
-b

ac
k

b
lo

ck
;

ab
o

rt
 m

em
o

ry
ac

ce
ss

W
rit

e-
bac

k b
lo

ck
; a

bort

m
em

ory
 ac

ce
ss

CPU read

Cache state transitions
based on requests from CPU

Shared
(read only)

Exclusive
(read/write)

CPU read hit

CPU write miss

Write-back cache block
Place write miss on bus

CPU
read
miss

Read miss
for this block

Invalid
Shared

(read only)

668 Chapter 6 Multiprocessors and Thread-Level Parallelism
states. All of the state changes indicated by arcs in the left half of Figure 6.11
would be needed in a write-back uniprocessor cache; the only difference in a
multiprocessor with coherence is that the controller must generate a write miss
when the controller has a write hit for a cache block in the shared state. The state
changes represented by the arcs in the right half of Figure 6.11 are needed only
for coherence and would not appear at all in a uniprocessor cache controller.

In reality, there is only one finite-state machine per cache, with stimuli coming
either from the attached CPU or from the bus. Figure 6.12 shows how the state

transitions in the right half of Figure 6.11 are combined with those in the left half
of the figure to form a single state diagram for each cache block.

FIGURE 6.12 Cache-coherence state diagram with the state transitions induced by
the local processor shown in black and by the bus activities shown in gray. As in
Figure 6.11, the activities on a transition are shown in bold.

Exclusive
(read/write)

CPU write hit
CPU read hit

Write miss
for block

CPU write

P
la

ce
 w

ri
te

 m
is

s
o

n
 b

u
s

Rea
d

m
iss

 fo
r b

loc
k

CPU re
ad

 m
iss

W
rit

e-
bac

k b
lo

ck

Plac
e w

rit
e m

iss
 o

n b
us

CPU w
rit

e

Place read miss on bus

Place read
miss on bus

CPU read

CPU read hit

CPU write miss

Write-back data
Place write miss on bus

CPU
read
miss

Invalid

Write miss for this block

W
rit

e-
bac

k d
at

a;
 p

lac
e r

ea
d m

iss
 o

n b
us

Shared
(read only)

W
ri

te
-b

ac
k

b
lo

ck

6.3 Symmetric Shared-Memory Architectures 669
To understand why this protocol works, observe that any valid cache block is
either in the shared state in multiple caches or in the exclusive state in exactly one
cache. Any transition to the exclusive state (which is required for a processor to
write to the block) requires a write miss to be placed on the bus, causing all
caches to make the block invalid. In addition, if some other cache had the block
in exclusive state, that cache generates a write back, which supplies the block
containing the desired address. Finally, if a read miss occurs on the bus to a block
in the exclusive state, the owning cache also makes its state shared, forcing a sub-
sequent write to require exclusive ownership.

The actions in gray in Figure 6.12, which handle read and write misses on the
bus, are essentially the snooping component of the protocol. One other property
that is preserved in this protocol, and in most other protocols, is that any memory
block in the shared state is always up to date in the memory. This simplifies the
implementation, as we will see in detail in section 6.7.

Although our simple cache protocol is correct, it omits a number of complica-
tions that make the implementation much trickier. The most important of these is
that the protocol assumes that operations are atomic—that is, an operation can be
done in such a way that no intervening operation can occur. For example, the pro-
tocol described assumes that write misses can be detected, acquire the bus, and
receive a response as a single atomic action. In reality this is not true. Similarly, if
we used a split transaction bus (see Chapter 6, section 6.3), as most modern bus-
based multiprocessors do, then even read misses would also not be atomic.

Nonatomic actions introduce the possibility that the protocol can deadlock,
meaning that it reaches a state where it cannot continue. Appendix E deals with
these complex issues, showing how the protocol can be modified to deal with
nonatomic writes without introducing deadlock.

As stated earlier, this coherence protocol is actually simpler than those used in
practice. There are two major simplifications. First, in this protocol all transitions
to the exclusive state generate a write miss on the bus, and we assume that the re-
questing cache always fills the block with the contents returned. This simplifies
the detailed implementation. Most real protocols distinguish between a write
miss and a write hit, which can occur when the cache block is initially in the
shared state. Such misses are called ownership or upgrade misses, since they
involve changing the state of the block, but do not actually require a data fetch.
To support such state changes, the protocol uses an invalidate operation, in addi-
tion to a write miss. With such operations, however, the actual implementation of
the protocol becomes slightly more complex.

The second major simplification is that many multiprocessors distinguish be-
tween a cache block that is really shared and one that exists in the clean state in
exactly one cache. This addition of a “clean and private” state eliminates the need
to generate a bus transaction on a write to such a block. Another enhancement in
wide use allows other caches to supply data on a miss to a shared block.

670 Chapter 6 Multiprocessors and Thread-Level Parallelism
Constructing small (2-4) processor bus-based multiprocessors has become
very easy. Many modern microprocessors provide basic support for cache coher-
ency and also allow the construction of a shared memory bus by direct connec-
tion of the external memory bus of two processors. These capabilities reduce the
number of chips required to build a small-scale multiprocessor. For example, the
Intel Pentium III Xeon and Pentium 4 Xeon processors are designed for use in
cache coherent multiprocessors and have an external interface that supports
snooping and allows two processors to be directly connected. They also have
larger on-chip caches to reduce bus utilization. A system chip set containing an
external memory controller is used to connect the shared processor memory bus
with a set of memory chips. The memory controller also implements the coheren-
cy protocol. Since different size multiprocessors generate different demands for
bus bandwidth, Intel has two different system chip sets designed for dual proces-
sor systems and for midrange range systems (2-4 processors). A small-scale mul-
tiprocessor may be built with only two additional system chips: the memory
controller memory controller mentioned above and an I/O hub chip that interfac-
es standard I/O buses, such as PCI, to the memory bus.

The next part of this section examines the performance of these protocols for
our parallel and multiprogrammed workloads; the value of these extensions to a
basic protocol will be clear when we examine the performance.

In a bus-based multiprocessor using an invalidation protocol, several different
phenomena combine to determine performance. In particular, the overall cache
performance is a combination of the behavior of uniprocessor cache miss traffic
and the traffic caused by communication, which results in invalidations and sub-
sequent cache misses. Changing the processor count, cache size, and block size
can affect these two components of the miss rate in different ways, leading to
overall system behavior that is a combination of the two effects.

In Chapter 5, we saw how breaking the uniprocessor miss rate into the 3C
classification could provide insight into both application behavior and potential
improvements to the cache design. Similarly, the misses that arise from interpro-
cessor communication, which are often called coherence misses, can be broken
into two separate sources.

The first source are the so-called true sharing misses that arise from the com-
munication of data through the cache coherence mechanism. In an invalidation-
based protocol, the first write by a processor to a shared cache block causes an in-
validation to establish ownership of that block. Additionally, when another pro-
cessor attempts to read a modified word in that cache block, a miss occurs and the

6.4 Performance of Symmetric Shared-Memory
Multiprocessors

6.4 Performance of Symmetric Shared-Memory Multiprocessors 671
resultant block is transferred. Both these misses are classified as true sharing
misses since they directly arise from the sharing of data among processors.

The second effect, called false sharing, arises from the use of an invalidation-
based coherence algorithm with a single valid bit per cache block. False sharing
occurs when a block is invalidated (and a subsequent reference causes a miss) be-
cause some word in the block, other than the one being read, is written into. If the
word written into is actually used by the processor that received the invalidate,
then the reference was a true sharing reference and would have caused a miss in-
dependent of the block size or position of words. If, however, the word being
written and the word read are different and the invalidation does not cause a new
value to be communicated, but only causes an extra cache miss, then it is a false
sharing miss. In a false sharing miss, the block is shared, but no word in the cache
is actually shared, and the miss would not occur if the block size were a single
word. The following Example makes the sharing patterns clear.

E X A M P L E Assume that words x1 and x2 are in the same cache block, which is in the
shared state in the caches of P1 and P2. Assuming the following se-
quence of events, identify each miss as a true sharing miss, a false shar-
ing miss, or a hit. Any miss that would occur if the block size were one
word is designated a true sharing miss.

A N S W E R Here are classifications by time step:

1. This event is a true sharing miss, since x1 was read by P2 and needs
to be invalidated from P2.

2. This event is a false sharing miss, since x2 was invalidated by the
write of x1 in P1, but that value of x1 is not used in P2.

3. This event is a false sharing miss, since the block containing x1 is
marked shared due to the read in P2, but P2 did not read x1. The
cache block containing x1 will be in the shared state after the read by
P2; a write miss is required to obtain exclusive access to the block.
In some protocols this will be handled as an upgrade request, which

Time P1 P2

1 Write x1

2 Read x2

3 Write x1

4 Write x2

5 Read x2

672 Chapter 6 Multiprocessors and Thread-Level Parallelism
generates a bus invalidate, but does not transfer the cache block.

4. This event is a false sharing miss for the same reason as step 3.

5. This event is a true sharing miss, since the value being read was
written by P2. n

True sharing and false sharing miss rates can be affected by a variety of
changes in the cache architecture. Thus, we will find it useful to decompose not
only the uniprocessor and multiprocessor miss rates, but also the true-sharing and
false-sharing miss rates.

Performance Measurements of the Commercial Workload

The performance measurements of the commercial workload, which we examine
in this section, were taken either on a Alphaserver 4100, or using a configurable
simulator modeled after the Alphaserver 4100. The Alphaserver 4100 used for
these measurements has four processors, each of which is an Alpha 21164 run-
ning at 300 MHz. Each processor has a three-level cache hierarchy:

n L1 consist of a pair of 8 KB direct-mapped on-chip caches, one for instruction
and one for data. The block size is 32-bytes, and the data cache is write-through
to L2, using a write buffer.

n L2 is a 96 KB on-chip unified 3-way set associative cache with a 32-byte block
size, using write-back.

n L3 is an off-chip, combined, direct-mapped 2 MB caches with 64-byte blocks
also using write-back.

The latency for an access to L2 is 7 cycles, to L3 it is 21 cycles, and to main
memory it is 80 clock cycles (typical without contention). Cache to cache trans-
fers, which occur on a miss to an exclusive block held in another cache, require
125 clock cycles. All the measurement shown in this section were collected by
Barroso, Gharachorloo, and Bugnion [1998].

We start by looking at the overall CPU execution for these benchmarks on the
4-processor system; as discussed on page 650, these benchmarks include sub-
stantial I/O time, which is ignored in the CPU time measurements. We group the
six DSS queries as a single benchmark, reporting the average behavior. The ef-
fective CPI varies widely for these benchmarks, from a CPI of 1.3 for the Altavis-
ta web search to an average CPI of 1.6 for the DSS workload, to 7.0 for the OLTP
workload. Figure 6.13 shows how the execution time breaks down into instruc-
tion execution, cache and memory system access time, and other stalls (which are
primarily pipeline resource stalls, but also include TLB and branch mispredict
stalls). Although the performance of the DSS and Altavista workloads is reason-
able, the performance of the OLTP workload is very poor, due to a poor perfor-
mance of the memory hierarchy.

6.4 Performance of Symmetric Shared-Memory Multiprocessors 673
Since the OLTP workload demands the most from the memory system with
large numbers of expensive L3 misses, we focus on examining the impact of L3
cache size, processor count, and block size on the OLTP benchmark. Figure 6.14
shows the effect of increasing the cache size, using 2-way set associative caches,
which reduces the large number of conflict misses. The execution time is im-
proved as the L3 cache grows due to the reduction in L3 misses. The idle time
also grows, reducing some of the performance gains. This growth occurs because
with fewer memory system stalls, more server processes are needed to cover the
I/O latency. The workload could be retuned to increase the computation/commu-
nication balance, holding the idle time in check.

To better understand how the L3 miss rate responds, we ask: What factors con-
tribute to the L3 miss rate and how do they change as the L3 cache grows? Figure
6.15 shows this data, displaying the number of memory access cycles contributed
per instruction from five sources. The two largest sources of memory access cy-
cles (due to L3 misses) with a 1 MB L3 are instruction and capacity/conflict
misses. With a larger L3 these two sources shrink to be minor contributors. Un-

FIGURE 6.13 The execution time breakdown for the three programs (OLTP, DSS, and Altavista) in the commercial
workload. The DSS numbers are the average across six different queries. The CPI varies widely from a low of 1.3 for Al-
tavista, to 1.61 for the DSS queries, to 7.0 for Oracle. (Individually, the DSS queries show a CPI range of 1.3 to 1.9.) Other
stalls includes: resource stalls (implemented with replay traps on the 21164), branch mispredict, memory barrier, and TLB
misses. For these benchmarks resource-based pipeline stalls are the dominant factor.This data combines the behavior of
user and kernel accesses. Only OLTP has a significant fraction of kernel accesses, and the kernel accesses tend to be better
behaved than the user accesses!

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

OLTP DSS A V

Other stalls
Memory Access
L3 Access
L2 Access
Instruction execution

674 Chapter 6 Multiprocessors and Thread-Level Parallelism
fortunately, the cold, false sharing, and true sharing misses are unaffected by a
larger L3. Thus, at 4 and 8 MB, the true sharing misses generate the dominant
fraction of the misses.

Clearly, increasing the cache size eliminates most of the uniprocessor misses,
while leaving the multiprocessor misses untouched. How does increasing the pro-
cessor count affect different types of misses? Figure 6.16 shows this data assum-
ing a base configuration with a 2 MB, 2-way set associative L3 cache. As we
might expect, the increase in the true sharing miss rate, which is not compensated
for by any decrease in the uniprocessor misses, leads to an overall increase in the
memory access cycles per instruction.

The final question we examine is whether increasing the block size, which
should decrease the instruction and cold miss rate and, within limits, also reduce
the capacity/ conflict miss rate, is helpful for this workload. Figure 6.17 shows

FIGURE 6.14 The relative performance of the OLTP workload as the size of the L3 cache, which is set as 2-way set
associative, is grown from 1 MB to 8MB. Interestingly, the performance of the 1 MB, 2-way set associative cache is very
similar to the direct-mapped 2 MB cache that is used in the Alphaserver 4100.

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

100

1 MB 2 MB 4 MB 8MB

L3 Cache Size

Idle
PAL Code
Memory Access
L2/L3 Cache Access
Instruction Execution

6.4 Performance of Symmetric Shared-Memory Multiprocessors 675
the number of misses per one-thousand instructions as the block size is increased
from 32 to 256. Increasing the block size from 32 to 256 affects four of the miss
rate components:

n the true sharing miss rate decreases by more than a factor of 2, indicating lo-
cality in the true sharing patterns,

n the cold start miss rate significantly decreases, as we would expect,

n the conflict/capacity misses show a small decrease (a factor of 1.26 compared
to a factor of 8 increase in block size), indicating that the spatial locality is not
high in the uniprocessor misses, and

n the false sharing miss rate. although small in absolute terms, nearly doubles.

The lack of a significant effect on the instruction miss rate is startling and clearly
indicates that the large instruction footprint has very poor spatial locality! Over-

FIGURE 6.15 The contributing causes of memory access cycles shift as the cache size is increased. The L3 cache
is simulated as 2-way set associative.

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

1 MB 2 MB 4 MB 8 MB

Cache size

Instruction
Capacity/Conflict
Cold
False Sharing
True Sharing

676 Chapter 6 Multiprocessors and Thread-Level Parallelism
all, increasing the block size of the of the third-level cache to 128 or possibly 256
bytes seems appropriate.

Performance of the Multiprogramming and OS Workload

In this subsection we examine the cache performance of the multiprogrammed
workload as the cache size and block size are changed. The workload remains the
same as described in the previous section: two independent parallel makes, each
using up to eight processors. Because of differences between the behavior of the
kernel and that of the user processes, we keep these two components separate.
Remember, though, that the user processes execute more than eight times as
many instructions, so that the overall miss rate is determined primarily by the
miss rate in user code, which, as we will see, is often one-fifth of the kernel miss
rate.

Figure 6.18 shows the data miss rate versus data cache size for the kernel and
user components. The misses can be broken into three significant classes:

n Compulsory, or cold, misses represent the first access to this block by this pro-

FIGURE 6.16 The contribution to memory access cycles increases as processor count increases primarily due to
increased true sharing. The cold misses slightly increase since each processor must now handle more cold misses.

0

0.5

1

1.5

2

2.5

3

1 2 4 6 8

Processor count

Instruction
Conflict/Capacity
Cold
False Sharing
True Sharing

6.4 Performance of Symmetric Shared-Memory Multiprocessors 677
cessor and are significant in this workload.

n Coherence misses represent misses due to invalidations.

n Normal capacity misses include misses caused by interference between the OS
and the user process and between multiple user processes. Conflict misses are
included in this category.

For this workload the behavior of the operating system is more complex than
the user processes. This is for two reasons. First, the kernel initializes all pages
before allocating them to a user, which significantly increases the compulsory
component of the kernel’s miss rate. Second, the kernel actually shares data and
thus has a nontrivial coherence miss rate. In contrast, user processes cause coher-
ence misses only when the process is scheduled on a different processor; this
component of the miss rate is small. Figure 6.19 shows the breakdown of the ker-
nel miss rate as the cache size is increased.

Increasing the block size is likely to have beneficial effects for this workload,
since a larger fraction of the misses arise from compulsory and capacity, both of
which can be potentially improved with larger block sizes. Since coherence miss-
es are relatively more rare, the negative effects of increasing block size should be

FIGURE 6.17 The number of misses per one-thousand instructions drops steadily as the block size of the L3 cache
is increased making a good case for an L3 block size of at least 128 bytes. The L3 cache is a 2MB, 2-way set associa-
tive,

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

32 64 128 256

lock size in bytes

Insruction
Capacity/Conflict
Cold
False Sharing
True Sharing

678 Chapter 6 Multiprocessors and Thread-Level Parallelism
FIGURE 6.18 The data miss rate drops faster for the user code than for the kernel code as the data cache is in-
creased from 32 KB to 256 KB with a 32-byte block. Although the user level miss rate drops by a factor of 3, the kernel
level miss rate drops only by a factor of 1.3. As Figure 6.19 shows, this is due to a higher rate of compulsory misses and
coherence misses. This multiprogramming workload is run on eight processors.

FIGURE 6.19 The components of the kernel data miss rate change as the data cache size is increased from 32KB
to 256 KB, when the multiprogramming workload is run on eight processors. The compulsory miss rate component
stays constant, since it is unaffected by cache size. The capacity component drops by more than a factor of two, while the
coherence component nearly doubles. The increase in coherence misses occurs because the probability of a miss being
caused by an invalidation increases with cache size, since fewer entries are bumped due to capacity.

7%

4%

5%

6%

3%

2%

1%

Miss rate

0%

Cache size (KB)

32 64 128 256

Kernel miss rate

User miss rate

Miss rate

0%

2%

4%

6%

5%

3%

1%

32 64 128

Cache size (KB)

256

7%

Compulsory Coherence Capacity

6.4 Performance of Symmetric Shared-Memory Multiprocessors 679
small. Figure 6.20 shows how the miss rate for the kernel and user references
changes as the block size is increased, assuming a 32 KB two-way set-associative
data cache. Figure 6.21 confirms that, for the kernel references, the largest im-

provement is the reduction of the compulsory miss rate. The absence of large in-
creases in the coherence miss rate as block size is increased means that false
sharing effects are insignificant.

If we examine the number of bytes needed per data reference, as in Figure
6.22, we see that the e kernel has a higher traffic ratio that grows quickly with
block size. This is despite the significant reduction in compulsory misses; the
smaller reduction in capacity and coherence misses drives an increase in total
traffic. The user program has a much smaller traffic ratio that grows very slowly.

For the multiprogrammed workload, the OS is a much more demanding user
of the memory system. If more OS or OS-like activity is included in the work-
load, it will become very difficult to build a sufficiently capable memory system.

FIGURE 6.20 Miss rate for the multiprogramming workload drops steadily as the
block size is increased for a 32-KB two-way set-associative data cache and an eight-
CPU multiprocessor. As we might expect based on the higher compulsory component in the
kernel, the improvement in miss rate for the kernel references is larger (almost a factor of 4
for the kernel references when going from 16-byte to 128-byte blocks versus just under a fac-
tor of 3 for the user references).

10%

6%

7%

8%

9%

4%

5%

3%

1%

2%

Miss rate

0%

Block size (bytes)

16 32 64 128

Kernel miss rate

User miss rate

680 Chapter 6 Multiprocessors and Thread-Level Parallelism
Performance for the Scientific/Technical Workload

In this section, we use a simulator to study the performance of our four scientific
parallel programs. For these measurements, the problem sizes are as follows:

n Barnes-Hut—16K bodies run for six time steps (the accuracy control is set to
1.0, a typical, realistic value);

n FFT—1 million complex data points

n LU—A 512 × 512 matrix is used with 16 × 16 blocks

n Ocean—A 130 × 130 grid with a typical error tolerance

In looking at the miss rates as we vary processor count, cache size, and block
size, we decompose the total miss rate into coherence misses and normal unipro-
cessor misses. The normal uniprocessor misses consist of capacity, conflict, and
compulsory misses. We label these misses as capacity misses, because that is the
dominant cause for these benchmarks. For these measurements, we include as a
coherence miss any write misses needed to upgrade a block from shared to exclu-
sive, even though no one is sharing the cache block. This measurement reflects a
protocol that does not distinguish between a private and shared cache block.

FIGURE 6.21 As we would expect, the increasing block size substantially reduces the
compulsory miss rate in the kernel references. It also has a significant impact on the ca-
pacity miss rate, decreasing it by a factor of 2.4 over the range of block sizes. The increased
block size has a small reduction in coherence traffic, which appears to stabilize at 64 bytes,
with no change in the coherence miss rate in going to 128-byte lines. Because there are not
significant reductions in the coherence miss rate as the block size increases, the fraction of
the miss rate due to coherence grows from about 7% to about 15%.

Miss rate

0%

2%

4%

9%

8%

7%

6%

5%

3%

1%

16 32 64

Block size (bytes)

128

10%

Compulsory Coherence Capacity

6.4 Performance of Symmetric Shared-Memory Multiprocessors 681
Figure 6.23 shows the data miss rates for our four applications, as we increase
the number of processors from one to sixteen, while keeping the problem size
constant. As we increase the number of processors, the total amount of cache in-
creases, usually causing the capacity misses to drop. In contrast, increasing the
processor count usually causes the amount of communication to increase, in turn
causing the coherence misses to rise. The magnitude of these two effects differs
by application.

In FFT, the capacity miss rate drops (from nearly 7% to just over 5%) but the
coherence miss rate increases (from about 1% to about 2.7%), leading to a con-
stant overall miss rate. Ocean shows a combination of effects, including some
that relate to the partitioning of the grid and how grid boundaries map to cache
blocks. For a typical 2D grid code the communication-generated misses are pro-
portional to the boundary of each partition of the grid, while the capacity misses
are proportional to the area of the grid. Therefore, increasing the total amount of
cache while keeping the total problem size fixed will have a more significant ef-
fect on the capacity miss rate, at least until each subgrid fits within an individual
processor’s cache. The significant jump in miss rate between one and two proces-

FIGURE 6.22 The number of bytes needed per data reference grows as block size is
increased for both the kernel and user components. It is interesting to compare this chart
against the same chart for the parallel program workload shown in Figure 6.26.

3.5

2.0

2.5

3.0

1.5

1.0

0.5

Memory traffic
measured as bytes
per data reference

0.0

Block size (bytes)

16 32 64 128

Kernel traffic

User traffic

682 Chapter 6 Multiprocessors and Thread-Level Parallelism
FIGURE 6.23 Data miss rates can vary in nonobvious ways as the processor count is increased from one to six-
teen. The miss rates include both coherence and capacity miss rates. The compulsory misses in these benchmarks are all
very small and are included in the capacity misses. Most of the misses in these applications are generated by accesses to
data that is potentially shared, although in the applications with larger miss rates (FFT and Ocean), it is the capacity misses
rather than the coherence misses that comprise the majority of the miss rate. Data is potentially shared if it is allocated in a
portion of the address space used for shared data. In all except Ocean, the potentially shared data is heavily shared, while
in Ocean only the boundaries of the subgrids are actually shared, although the entire grid is treated as a potentially shared
data object. Of course, since the boundaries change as we increase the processor count (for a fixed-size problem), different
amounts of the grid become shared. The anomalous increase in capacity miss rate for Ocean in moving from one to two
processors arises because of conflict misses in accessing the subgrids. In all cases except Ocean, the fraction of the cache
misses caused by coherence transactions rises when a fixed-size problem is run on an increasing number of processors. In
Ocean, the coherence misses initially fall as we add processors due to a large number of misses that are write ownership
misses to data that is potentially, but not actually, shared. As the subgrids begin to fit in the aggregate cache (around 16
processors), this effect lessens. The single processor numbers include write upgrade misses, which occur in this protocol
even if the data is not actually shared, since it is in the shared state. For all these runs, the cache size is 64 KB, two-way set
associative, with 32-byte blocks. Notice that the scale on the y-axis for each benchmark is different, so that the behavior of
the individual benchmarks can be seen clearly.

Miss rate

0%

3%

2%

1%

1 2 4

Processor count

FFT

8 16

8%

4%

7%

6%

5%

Miss rate

0%

6%

4%

2%

1 2 4

Processor count

Ocean

8 16

16%
18%

20%

8%

14%

12%

10%

Miss rate

0%

1%

1 2 4

Processor count

LU

8 16

2%

Miss rate

0%
1 2 4

Processor count

Barnes

8 16

1%

Coherence miss rate Capacity miss rate

6.4 Performance of Symmetric Shared-Memory Multiprocessors 683
sors occurs because of conflicts that arise from the way in which the multiple
grids are mapped to the caches. This conflict is present for direct-mapped and
two-way set associative caches, but fades at higher associativities. Such conflicts
are not unusual in array-based applications, especially when there are multiple
grids in use at once. In Barnes and LU the increase in processor count has little
effect on the miss rate, sometimes causing a slight increase and sometimes caus-
ing a slight decrease.

Increasing the cache size usually has a beneficial effect on performance, since
it reduces the frequency of costly cache misses. Figure 6.24 illustrates the change
in miss rate as cache size is increased for 16 processors, showing the portion of
the miss rate due to coherence misses and to uniprocessor capacity misses. Two
effects can lead to a miss rate that does not decrease—at least not as quickly as
we might expect—as cache size increases: inherent communication and plateaus
in the miss rate. Inherent communication leads to a certain frequency of coher-
ence misses that are not significantly affected by increasing cache size. Thus if
the cache size is increased while maintaining a fixed problem size, the coherence
miss rate eventually limits the decrease in cache miss rate. This effect is most ob-
vious in Barnes, where the coherence miss rate essentially becomes the entire
miss rate.

A less important effect is a temporary plateau in the capacity miss rate that
arises when the application has some fraction of its data present in cache but
some significant portion of the data set does not fit in the cache or in caches that
are slightly bigger. In LU, a very small cache (about 4 KB) can capture the pair of
16 × 16 blocks used in the inner loop; beyond that the next big improvement in
capacity miss rate occurs when both matrices fit in the caches, which occurs
when the total cache size is between 4 MB and 8 MB. This effect, sometimes
called a working set effect, is partly at work between 32 KB and 128 KB for FFT,
where the capacity miss rate drops only 0.3%. Beyond that cache size, a faster
decrease in the capacity miss rate is seen, as a major data structure begins to re-
side in the cache. These plateaus are common in programs that deal with large ar-
rays in a structured fashion.

Increasing the block size is another way to change the miss rate in a cache. In
uniprocessors, larger block sizes are often optimal with larger caches. In multi-
processors, two new effects come into play: a reduction in spatial locality for
shared data and a potential increase in miss rate due to false sharing. Several
studies have shown that shared data have lower spatial locality than unshared da-
ta. Poorer locality means that for shared data, fetching larger blocks is less effec-
tive than in a uniprocessor, because the probability is higher that the block will be
replaced before all its contents are referenced. Likewise, increasing the basic size
also increases the potential frequency of false sharing, increasing the miss rate.

Figure 6.25 shows the miss rates as the cache block size is increased for a 16-
processor run with a 64-KB cache. The most interesting behavior is in Barnes,
where the miss rate initially declines and then rises due to an increase in the num-

684 Chapter 6 Multiprocessors and Thread-Level Parallelism
ber of coherence misses, which probably occurs because of false sharing. In the
other benchmarks, increasing the block size decreases the overall miss rate. In
Ocean and LU, the block size increase affects both the coherence and capacity
miss rates about equally. In FFT, the coherence miss rate is actually decreased at
a faster rate than the capacity miss rate. This reduction occurs because the com-
munication in FFT is structured to be very efficient. In less optimized programs,
we would expect more false sharing and less spatial locality for shared data, re-
sulting in more behavior like that of Barnes.

Although the drop in miss rates with longer blocks may lead you to believe
that choosing a longer block size is the best decision, the bottleneck in bus-based

FIGURE 6.24 The miss rate usually drops as the cache size is increased, although co-
herence misses dampen the effect. The block size is 32 bytes and the cache is two-way
set-associative. The processor count is fixed at 16 processors. Observe that the scale for
each graph is different.

Miss rate

0%

4%

2%

32 64 128

Cache size (KB)

FFT

256

10%

6%

8%

Miss rate

0%

1%

1%

32 64 128

Cache size (KB)

LU

256

2%

2%

Miss rate

0%

6%

2%

4%

32 64 128

Cache size (KB)

Ocean

256

14%

10%

8%

12%

Miss rate

0%

1%

32 64 128

Cache size (KB)

 Barnes

256

2%

1%

Coherence miss rate Capacity miss rate

6.4 Performance of Symmetric Shared-Memory Multiprocessors 685
multiprocessors is often the limited memory and bus bandwidth. Larger blocks
mean more bytes on the bus per miss. Figure 6.26 shows the growth in bus traffic
as the block size is increased. This growth is most serious in the programs that
have a high miss rate, especially Ocean. The growth in traffic can actually lead to
performance slowdowns due both to longer miss penalties and to increased bus
contention.

Summary: Performance of Snooping Cache Schemes

In this section we examined the cache performance of three very different work-
loads. We saw that the coherence traffic can introduce new behaviors in the mem-
ory system that do not respond as easily to changes in cache size or block size
that are normally used to improve uniprocessor cache performance.

FIGURE 6.25 The data miss rate drops as the cache block size is increased. All these
results are for a 16-processor run with a 64-KB cache and two-way set associativity. Once
again we use different scales for each benchmark.

Miss rate

0%

6%

4%

2%

16 32 64

Block size (bytes)

FFT

128

14%

10%

8%

12%

Miss rate

0%

2%

1%

16 32 64

Block size (bytes)

LU

128

4%

3%

Miss rate

0%

6%

2%

4%

16 32 64

Block size (bytes)

Ocean

128

14%

10%

8%

12%

Miss rate

0%
16 32 64

Block size (bytes)

Barnes

128

1%

Coherence miss rate Capacity miss rate

686 Chapter 6 Multiprocessors and Thread-Level Parallelism
In the commercial workload, the performance of the web searching and DSS
benchmarks is reasonable (CPI of 1.3 and 1.6, respectively), while the OLTP
benchmark is much worse (CPI=7.0). For OLTP, the large instruction working set
demands a large cache to achieve acceptable performance. Increasing the cache
size reduces the execution time, but is limited by the true and false sharing miss-
es, which do not decrease as the cache grows. Similarly, increasing the processor
counts increases true and false sharing, leading to an increase in memory access
cycles. Fortunately, this workload responds favorably to an increase in block size,
although the instruction miss rate remains similar. For these large workloads, it
appears that very large (≥4 MB) off-chip caches with large block sizes (64-128
bytes) could work reasonably well.

In the multiprogrammed workload, the user and OS portions perform very dif-
ferently, although neither has significant coherence traffic. In the OS portion, the
compulsory and capacity contributions to the miss rate are much larger, leading
to overall miss rates that are comparable to the worst programs in the parallel

FIGURE 6.26 Bus traffic for data misses climbs steadily as the block size in the data
cache is increased. The factor of 3 increase in traffic for Ocean is the best argument against
larger block sizes. Remember that our protocol treats ownership or upgrade misses the same
as other misses, slightly increasing the penalty for large cache blocks; in both Ocean and FFT
this simplification accounts for less than 10% of the traffic.

7.0

4.0

5.0

6.0

3.0

2.0

1.0

Memory traffic
measured as bytes
per data reference

0.0

Block size (bytes)

16 32 64 128

FFT LU Barnes Ocean

6.5 Distributed Shared-Memory Architectures 687
program workload. User cache performance, on the other hand, is very good and
compares to the best programs in the parallel program workload.

Coherence requests are a significant but not overwhelming component in the
scientific processing workload. We can expect, however, that coherence requests
will be more important in parallel programs that are less optimized.

The question of how these cache miss rates affect CPU performance depends
on the rest of the memory system, including the latency and bandwidth of the in-
terconnect and memory, a topic we return to in Section 6.11.

A scalable multiprocessor supporting shared memory could choose to exclude or
include cache coherence. The simplest scheme for the hardware is to exclude
cache coherence, focusing instead on a scalable memory system. Several compa-
nies have built this style of multiprocessor; the Cray T3D/E is best-known exam-
ple. In such multiprocessors, memory is distributed among the nodes and all
nodes are interconnected by a network. Access can be either local or remote—a
controller inside each node decides, on the basis of the address, whether the data
resides in the local memory or in a remote memory. In the latter case a message is
sent to the controller in the remote memory to access the data.

These systems have caches, but to prevent coherence problems, shared data is
marked as uncacheable and only private data is kept in the caches. Of course,
software can still explicitly cache the value of shared data by copying the data
from the shared portion of the address space to the local private portion of the
address space that is cached. Coherence is then controlled by software. The
advantage of such a mechanism is that little hardware support is required, al-
though support for features such as block copy may be useful, since remote
accesses fetch only single words (or double words) rather than cache blocks.

There are several disadvantages to this approach. First, compiler mechanisms
for transparent software cache coherence are very limited. The techniques that
currently exist apply primarily to programs with well-structured loop-level paral-
lelism or a very strict form of object-oriented programming, and these techniques
have significant overhead arising from explicitly copying data. For irregular prob-
lems or problems involving dynamic data structures and pointers (including oper-
ating systems, for example), compiler-based software cache coherence is
currently impractical. The basic difficulty is that software-based coherence algo-
rithms must be conservative: every block that might be shared must be treated as

6.5 Distributed Shared-Memory Architectures

688 Chapter 6 Multiprocessors and Thread-Level Parallelism
if it is shared. Being conservative results in excess coherence overhead, because
the compiler cannot predict the actual sharing accurately enough. Due to the
complexity of the possible interactions, asking programmers to deal with coher-
ence is unworkable.

Second, without cache coherence, the multiprocessor loses the advantage of
being able to fetch and use multiple words in a single cache block for close to the
cost of fetching one word. The benefits of spatial locality in shared data cannot be
leveraged when single words are fetched from a remote memory for each refer-
ence. Support for a DMA mechanism among memories can help, but such mech-
anisms are often either costly to use (since they may require OS intervention) or
expensive to implement since special-purpose hardware support and a buffer are
needed. For message-passing programs, however, such mechanisms can be ex-
tremely useful, since programmers can overcome the usage penalties by using
large messages.

Third, mechanisms for tolerating latency such as prefetch are more useful
when they can fetch multiple words, such as a cache block, and where the fetched
data remain coherent; we will examine this advantage in more detail later.

These disadvantages are magnified by the large latency of access to remote
memory versus a local cache. For example, on the Cray T3E a local cache access
has a latency of two cycles and is pipelined. A remote memory access takes up to
400 processor clock cycles for a remote memory using the 450 MHz Alpha pro-
cessor in the T3E-900.

For these reasons, cache coherence is an accepted requirement in small-scale
multiprocessors. For larger-scale architectures, there are new challenges to ex-
tending the cache-coherent shared-memory model. Although the bus can certain-
ly be replaced with a more scalable interconnection network (the SUN Enterprise
servers use up to four buses, e.g.), and we could certainly distribute the memory
so that the memory bandwidth could also be scaled, the lack of scalability of the
snooping coherence scheme needs to be addressed.

A snooping protocol requires communication with all caches on every cache
miss, including writes of potentially shared data. The absence of any centralized
data structure that tracks the state of the caches is both the fundamental advan-
tage of a snooping-based scheme, since it allows it to be inexpensive, as well as
its Achilles’ heel when it comes to scalability. For example, with only 16 proces-

6.5 Distributed Shared-Memory Architectures 689
sors and a block size of 64 bytes and a 512 KB data cache, the total bus band-
width demand (ignoring stall cycles) for the four programs in the scientific/
technical workload ranges from about 1 GB/sec (for Barnes) to about 42 GB/sec
(for FTT), assuming a processor that sustains a data reference every 1 ns, which
is what a 2000 superscalar processor with nonblocking caches might generate. In
comparison, the Sun Enterprise system with the Starfire interconnect, the highest
bandwidth SMP system in 2000, can support about 12 GB/sec of random access-
es for the 16x16 crossbar and has a maximum bandwidth of 21.3 GB/sec at the
memory system. Although the cache size used in these simulations is moderate
(though large enough to eliminate much of the uniprocessor miss traffic), so is the
problem size.

Alternatively, we could build scalable shared-memory architectures that in-
clude cache coherency. The key is to find an alternative coherence protocol to the
snooping protocol. One alternative protocol is a directory protocol. A directory
keeps the state of every block that may be cached. Information in the directory in-
cludes which caches have copies of the block, whether it is dirty, and so on. (Sec-
tion 6.11 on page 735 describes a hybrid approach that uses directories to extend
a snooping protocol.)

Existing directory implementations associate an entry in the directory with
each memory block. In typical protocols, the amount of information is propor-
tional to the product of the number of memory blocks and the number of proces-
sors. This overhead is not a problem for multiprocessors with less than about two
hundred processors, because the directory overhead will be tolerable. For larger
multiprocessors, we need methods to allow the directory structure to be efficient-
ly scaled. The methods that have been proposed either try to keep information for
fewer blocks (e.g., only those in caches rather than all memory blocks) or try to
keep fewer bits per entry.

To prevent the directory from becoming the bottleneck, directory entries can
be distributed along with the memory, so that different directory accesses can go
to different locations, just as different memory requests go to different memories.
A distributed directory retains the characteristic that the sharing status of a block
is always in a single known location. This property is what allows the coherence
protocol to avoid broadcast. Figure 6.27 shows how our distributed-memory mul-
tiprocessor looks with the directories added to each node.

Directory-Based Cache-Coherence Protocols: The Basics

Just as with a snooping protocol, there are two primary operations that a directory
protocol must implement: handling a read miss and handling a write to a shared,

690 Chapter 6 Multiprocessors and Thread-Level Parallelism
clean cache block. (Handling a write miss to a shared block is a simple combina-
tion of these two.) To implement these operations, a directory must track the state
of each cache block. In a simple protocol, these states could be the following:

n Shared—One or more processors have the block cached, and the value in mem-
ory is up to date (as well as in all the caches).

n Uncached—No processor has a copy of the cache block.

n Exclusive—Exactly one processor has a copy of the cache block and it has writ-
ten the block, so the memory copy is out of date. The processor is called the
owner of the block.

In addition to tracking the state of each cache block, we must track the proces-
sors that have copies of the block when it is shared, since they will need to be in-
validated on a write. The simplest way to do this is to keep a bit vector for each
memory block. When the block is shared, each bit of the vector indicates whether
the corresponding processor has a copy of that block. We can also use the bit vec-

FIGURE 6.27 A directory is added to each node to implement cache coherence in a
distributed-memory multiprocessor. Each directory is responsible for tracking the caches
that share the memory addresses of the portion of memory in the node. The directory may
communicate with the processor and memory over a common bus, as shown, or it may have
a separate port to memory, or it may be part of a central node controller through which all
intranode and internode communications pass.

Interconnection network

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Memory

Directory

Processor
+ cache

Processor
+ cache

Processor
+ cache

Processor
+ cache

Memory I/O Memory MemoryI/O I/O Memory I/O

Directory Directory Directory Directory

6.5 Distributed Shared-Memory Architectures 691
tor to keep track of the owner of the block when the block is in the exclusive
state. For efficiency reasons, we also track the state of each cache block at the in-
dividual caches.

The states and transitions for the state machine at each cache are identical to
what we used for the snooping cache, although the actions on a transition are
slightly different. We make the same simplifying assumptions that we made in
the case of the snooping cache: attempts to write data that is not exclusive in the
writer’s cache always generate write misses, and the processors block until an ac-
cess completes. Since the interconnect is no longer a bus and since we want to
avoid broadcast, there are two additional complications. First, we cannot use the
interconnect as a single point of arbitration, a function the bus performed in the
snooping case. Second, because the interconnect is message oriented (unlike the
bus, which is transaction oriented), many messages must have explicit responses.

Before we see the protocol state diagrams, it is useful to examine a catalog of
the message types that may be sent between the processors and the directories.
Figure 6.28 shows the type of messages sent among nodes. The local node is the
node where a request originates. The home node is the node where the memory
location and the directory entry of an address reside. The physical address space
is statically distributed, so the node that contains the memory and directory for a
given physical address is known. For example, the high-order bits may provide
the node number, while the low-order bits provide the offset within the memory
on that node. The local node may also be the home node. The directory must be
accessed when the home node is the local node, since copies may exist in yet a
third node, called a remote node.

A remote node is the node that has a copy of a cache block, whether exclusive
(in which case it is the only copy) or shared. A remote node may be the same as
either the local node or the home node. In such cases, the basic protocol does not
change, but interprocessor messages may be replaced with intraprocessor
messages.

In this section, we assume a simple model of memory consistency. To mini-
mize the type of messages and the complexity of the protocol, we make an as-
sumption that messages will be received and acted upon in the same order they
are sent. This assumption may not be true in practice, and can result in additional
complications, some of which we address in section 6.8 when we discuss mem-
ory consistency models. In this section, we use this assumption to ensure that in-
validates sent by a processor are honored immediately.

692 Chapter 6 Multiprocessors and Thread-Level Parallelism
An Example Directory Protocol

The basic states of a cache block in a directory-based protocol are exactly like
those in a snooping protocol, and the states in the directory are also analogous to
those we showed earlier. Thus we can start with simple state diagrams that show

Message type Source Destination
Message
contents Function of this message

Read miss Local cache Home
directory

P, A Processor P has a read miss at address A;
request data and make P a read sharer.

Write miss Local cache Home
directory

P, A Processor P has a write miss at address A; —
request data and make P the exclusive owner.

Invalidate Home
directory

Remote cache A Invalidate a shared copy of data at address A.

Fetch Home
directory

Remote cache A Fetch the block at address A and send it to its
home directory; change the state of A in the
remote cache to shared.

Fetch/invalidate Home
directory

Remote cache A Fetch the block at address A and send it to its
home directory; invalidate the block in the
cache.

Data value reply Home
directory

Local cache D Return a data value from the home memory.

Data write back Remote
cache

Home
directory

A, D Write back a data value for address A.

FIGURE 6.28 The possible messages sent among nodes to maintain coherence are shown with the source and
destination node, the contents (where P=requesting processor number), A=requested address, and D=data con-
tents), and the function of the message. The first two messages are miss requests sent by the local cache to the home.
The third through fifth messages are messages sent to a remote cache by the home when the home needs the data to satisfy
a read or write miss request. Data value replies are used to send a value from the home node back to the requesting node.
Data value write backs occur for two reasons: when a block is replaced in a cache and must be written back to its home
memory, and also in reply to fetch or fetch/invalidate messages from the home. Writing back the data value whenever the
block becomes shared simplifies the number of states in the protocol, since any dirty block must be exclusive and any shared
block is always available in the home memory.

6.5 Distributed Shared-Memory Architectures 693
the state transitions for an individual cache block and then examine the state dia-
gram for the directory entry corresponding to each block in memory. As in the
snooping case, these state transition diagrams do not represent all the details of a
coherence protocol; however, the actual controller is highly dependent on a num-
ber of details of the multiprocessor (message delivery properties, buffering struc-
tures, and so on). In this section we present the basic protocol state diagrams. The
knotty issues involved in implementing these state transition diagrams are exam-
ined in Appendix E, along with similar problems that arise for snooping caches.

694 Chapter 6 Multiprocessors and Thread-Level Parallelism
Figure 6.29 shows the protocol actions to which an individual cache responds.

We use the same notation as in the last section, with requests coming from out-
side the node in gray and actions in bold. The state transitions for an individual
cache are caused by read misses, write misses, invalidates, and data fetch re-
quests; these operations are all shown in Figure 6.29. An individual cache also
generates read and write miss messages that are sent to the home directory. Read

FIGURE 6.29 State transition diagram for an individual cache block in a directory-
based system. Requests by the local processor are shown in black and those from the home
directory are shown in gray. The states are identical to those in the snooping case, and the
transactions are very similar, with explicit invalidate and write-back requests replacing the
write misses that were formerly broadcast on the bus. As we did for the snooping controller,
we assume that an attempt to write a shared cache block is treated as a miss; in practice,
such a transaction can be treated as an ownership request or upgrade request and can de-
liver ownership without requiring that the cache block be fetched.

Exclusive
(read/write)

CPU write hit
CPU read hit

Fetch
invalidate

CPU write

S
en

d
 w

ri
te

 m
is

s
m

es
sa

g
e

Fet
ch

CPU re
ad

 m
iss

Dat
a w

rit
e-

bac
k

Sen
d w

rit
e m

iss
 m

es
sa

ge
CPU w

rit
e

Send read miss message

Read miss

CPU read

CPU read hit

CPU write miss

Data write-back
Write miss

CPU
read
miss

Invalid

Invalidate

Dat
a w

rit
e-

bac
k;

 re
ad

 m
iss

Shared
(read only)

D
at

a
w

ri
te

-b
ac

k

6.5 Distributed Shared-Memory Architectures 695
and write misses require data value replies, and these events wait for replies be-
fore changing state.

The operation of the state transition diagram for a cache block in Figure 6.29
is essentially the same as it is for the snooping case: the states are identical, and
the stimulus is almost identical. The write miss operation, which was broadcast
on the bus in the snooping scheme, is replaced by the data fetch and invalidate
operations that are selectively sent by the directory controller. Like the snooping
protocol, any cache block must be in the exclusive state when it is written and
any shared block must be up to date in memory.

In a directory-based protocol, the directory implements the other half of the
coherence protocol. A message sent to a directory causes two different types of
actions: updates of the directory state, and sending additional messages to satisfy
the request. The states in the directory represent the three standard states for a
block; unlike in a snoopy scheme, however, the directory state indicates the state
of all the cached copies of a memory block, rather than for a single cache block.
The memory block may be uncached by any node, cached in multiple nodes and
readable (shared), or cached exclusively and writable in exactly one node. In ad-
dition to the state of each block, the directory must track the set of processors that
have a copy of a block; we use a set called Sharers to perform this function. In
multiprocessors with less than 64 nodes (which may represent 2-4 times as many
processors), this set is typically kept as a bit vector. In larger multiprocessors,
other techniques, which we discuss in the Exercises, are needed. Directory re-
quests need to update the set Sharers and also read the set to perform invalida-
tions.

Figure 6.30 shows the actions taken at the directory in response to messages
received. The directory receives three different requests: read miss, write miss,
and data write back. The messages sent in response by the directory are shown in
bold, while the updating of the set Sharers is shown in bold italics. Because all
the stimulus messages are external, all actions are shown in gray. Our simplified
protocol assumes that some actions are atomic, such as requesting a value and
sending it to another node; a realistic implementation cannot use this assumption.

To understand these directory operations, let’s examine the requests received
and actions taken state by state. When a block is in the uncached state the copy in
memory is the current value, so the only possible requests for that block are

n Read miss—The requesting processor is sent the requested data from memory
and the requestor is made the only sharing node. The state of the block is made
shared.

n Write miss—The requesting processor is sent the value and becomes the Shar-
ing node. The block is made exclusive to indicate that the only valid copy is
cached. Sharers indicates the identity of the owner.

When the block is in the shared state the memory value is up-to-date, so the same
two requests can occur:

696 Chapter 6 Multiprocessors and Thread-Level Parallelism
n Read miss—The requesting processor is sent the requested data from memory
and the requesting processor is added to the sharing set.

n Write miss—The requesting processor is sent the value. All processors in the
set Sharers are sent invalidate messages, and the Sharers set is to contain the
identity of the requesting processor. The state of the block is made exclusive.

When the block is in the exclusive state the current value of the block is held in
the cache of the processor identified by the set sharers (the owner), so there are
three possible directory requests:

n Read miss—The owner processor is sent a data fetch message, which causes
the state of the block in the owner’s cache to transition to shared and causes the
owner to send the data to the directory, where it is written to memory and sent
back to the requesting processor. The identity of the requesting processor is
added to the set sharers, which still contains the identity of the processor that

FIGURE 6.30 The state transition diagram for the directory has the same states and
structure as the transition diagram for an individual cache. All actions are in gray be-
cause they are all externally caused. Bold indicates the action taken by the directory in re-
sponse to the request. Bold italics indicate an action that updates the sharing set, Sharers,
as opposed to sending a message.

Exclusive
(read/write)

Data
write-back

Write miss

D
at

a
va

lu
e

re
p

ly
;

S
h

ar
er

s=
{P

}

S
h

ar
er

s=
{}

In
va

lid
at

e;
 S

har
er

s=
{P

};
dat

a v
alu

e r
ep

ly

Read miss

Data value reply
Sharers=Sharers+{P}

Data value reply; Sharers={P}

Write
miss

Fetch/invalidate
Data value reply
Sharers={P}

Read
miss

Uncached

Fet
ch

; d
at

a v
alu

e r
ep

ly;
 S

har
er

s=
Shar

er
s+

{P
}

Rea
d

m
iss

W
rit

e
m

iss

Shared
(read only)

6.6 Performance of Distributed Shared-Memory Multiprocessors 697
was the owner (since it still has a readable copy).

n Data write-back—The owner processor is replacing the block and therefore
must write it back. This write-back makes the memory copy up to date (the
home directory essentially becomes the owner), the block is now uncached, and
the sharer set is empty.

n Write miss—The block has a new owner. A message is sent to the old owner
causing the cache to invalidate the block and send the value to the directory,
from which it is sent to the requesting processor, which becomes the new owner.
Sharers is set to the identity of the new owner, and the state of the block remains
exclusive.

This state transition diagram in Figure 6.30 is a simplification, just as it was in
the snooping cache case. In the directory case it is a larger simplification, since
our assumption that bus transactions are atomic no longer applies. Appendix E
explores these issues in depth.

In addition, the directory protocols used in real multiprocessors contain addi-
tional optimizations. In particular, in this protocol when a read or write miss oc-
curs for a block that is exclusive, the block is first sent to the directory at the
home node. From there it is stored into the home memory and also sent to the
original requesting node. Many of the protocols in use in commercial multipro-
cessors forward the data from the owner node to the requesting node directly (as
well as performing the write back to the home). Such optimizations often add
complexity by increasing the possibility of deadlock and by increasing the types
of messages that must be handled.

The performance of a directory-based multiprocessor depends on many of the
same factors that influence the performance of bus-based multiprocessors (e.g.,
cache size, processor count, and block size), as well as the distribution of misses
to various locations in the memory hierarchy. The location of a requested data
item depends on both the initial allocation and the sharing patterns. We start by
examining the basic cache performance of our scientific/technical workload and
then look at the effect of different types of misses.

Because the multiprocessor is larger and has longer latencies than our snoop-
ing-based multiprocessor, we begin with a slightly larger cache (128 KB) and a
larger block size of 64 bytes.

6.6 Performance of Distributed Shared-Memory
Multiprocessors

698 Chapter 6 Multiprocessors and Thread-Level Parallelism
In distributed memory architectures, the distribution of memory requests be-
tween local and remote is key to performance, because it affects both the con-
sumption of global bandwidth and the latency seen by requests. Therefore, for the
figures in this section we separate the cache misses into local and remote re-
quests. In looking at the figures, keep in mind that, for these applications, most of
the remote misses that arise are coherence misses, although some capacity misses
can also be remote, and in some applications with poor data distribution, such
misses can be significant (see the Pitfall on page 758).

As Figure 6.31 shows, the miss rates with these cache sizes are not affected
much by changes in processor count, with the exception of Ocean, where the
miss rate rises at 64 processors. This rise results from two factors: an increase in
mapping conflicts in the cache that occur when the grid becomes small, which
leads to a rise in local misses, and an increase in the number of the coherence
misses, which are all remote.

Figure 6.32 shows how the miss rates change as the cache size is increased,
assuming a 64-processor execution and 64-byte blocks. These miss rates decrease
at rates that we might expect, although the dampening effect caused by little or
no reduction in coherence misses leads to a slower decrease in the remote misses
than in the local misses. By the time we reach the largest cache size shown, 512
KB, the remote miss rate is equal to or greater than the local miss rate. Larger
caches would amplify this trend.

We examine the effect of changing the block size in Figure 6.33. Because
these applications have good spatial locality, increases in block size reduce the
miss rate, even for large blocks, although the performance benefits for going to
the largest blocks are small. Furthermore, most of the improvement in miss rate
comes from a reduction in the local misses.

Rather than plot the memory traffic, Figure 6.34 plots the number of bytes re-
quired per data reference versus block size, breaking the requirement into local
and global bandwidth. In the case of a bus, we can simply aggregate the demands
of each processor to find the total demand for bus and memory bandwidth. For a
scalable interconnect, we can use the data in Figure 6.34 to compute the required
per-node global bandwidth and the estimated bisection bandwidth, as the next
Example shows.

E X A M P L E Assume a 64-processor multiprocessor with 1GHz processors that sus-
tain one memory reference per processor clock. For a 64-byte block size,
the remote miss rate is 0.7%. Find the per-node and estimated bisection
bandwidth for FFT. Assume that the processor does not stall for remote
memory requests; this might be true if, for example, all remote data were
prefetched. How do these bandwidth requirements compare to various in-
terconnection technologies?

A N S W E R The per-node bandwidth is simply the number of data bytes per reference

6.6 Performance of Distributed Shared-Memory Multiprocessors 699
times the reference rate: 0.7% × 1000 × 64 = 448 MB/sec. This rate is
somewhat higher than the hardware sustainable transfer rate for the
CrayT3E (using a block prefetch) and lower than that for an SGI Origin
3000 (1.6 GB/processor pair). The FFT per-node bandwidth demand ex-

FIGURE 6.31 The data miss rate is often steady as processors are added for these
benchmarks. Because of its grid structure, Ocean has an initially decreasing miss rate,
which rises when there are 64 processors. For Ocean, the local miss rate drops from 5% at
8 processors to 2% at 32, before rising to 4% at 64. The remote miss rate in Ocean, driven
primarily by communication, rises monotonically from 1% to 2.5%. Note that to show the de-
tailed behavior of each benchmark, different scales are used on the y-axis. The cache for all
these runs is 128 KB, two-way set associative, with 64-byte blocks. Remote misses include
any misses that require communication with another node, whether to fetch the data or to de-
liver an invalidate. In particular, in this figure and other data in this section, the measurement
of remote misses includes write upgrade misses where the data is up to date in the local
memory but cached elsewhere and, therefore, requires invalidations to be sent. Such invali-
dations do indeed generate remote traffic, but may or may not delay the write, depending on
the consistency model (see section 6.8).

Miss rate

0%

3%

2%

1%

8 16 32

Processor count

FFT

64

6%

4%

5%

Miss rate

0.0%

0.5%

8 16 32

Processor count

LU

64

1.0%

Miss rate

0%

4%

2%

8 16 32

Processor count

Ocean

64

8%

6%

Miss rate

0.0%
8 16 32

Processor count

Barnes

64

0.5%

Local misses Remote misses

700 Chapter 6 Multiprocessors and Thread-Level Parallelism
ceeds the bandwidth sustainable from the fastest standard networks by
more than a factor of 5.

FFT performs all-to-all communication, so the bisection bandwidth is
equal to the number of processors times the per-node bandwidth, or
about 64 x 448 MB/sec = 28.7 GB/sec. The SGI Origin 3000 with 64-pro-
cessors has a bisection bandwidth of about 50 GB/sec. No standard net-
working technology comes close. n

FIGURE 6.32 Miss rates decrease as cache sizes grow. Steady decreases are seen in
the local miss rate, while the remote miss rate declines to varying degrees, depending on
whether the remote miss rate had a large capacity component or was driven primarily by com-
munication misses. In all cases, the decrease in the local miss rate is larger than the decrease
in the remote miss rate. The plateau in the miss rate of FFT, which we mentioned in the last
section, ends once the cache exceeds 128 KB. These runs were done with 64 processors
and 64-byte cache blocks.

Miss rate

0%

4%

2%

32 64 128

Cache size (KB)

FFT

256 512

10%

6%

8%

Miss rate

0.0%

1.0%

0.5%

32 64 128

Cache size (KB)

LU

Ocean

256 512

2.5%

1.5%

2.0%

Miss rate

0.0%

0.5%

32 64 128

Cache size (KB)

Barnes

256 512

1.5%

1.0% Miss rate

0%

10%

5%

32 64 128

Cache size (KB)

256 512

20%

15%

Local misses Remote misses

6.6 Performance of Distributed Shared-Memory Multiprocessors 701
The previous Example looked at the bandwidth demands. The other key issue
for a parallel program is remote memory access time, or latency. To get insight
into this, we use a simple example of a directory-based multiprocessor.
Figure 6.35 shows the parameters we assume for our simple multiprocessor mod-
el. It assumes that the time to first word for a local memory access is 85 processor
cycles and that the path to local memory is 16 bytes wide, while the network in-
terconnect is 4 bytes wide. This model ignores the effects of contention, which
are probably not too serious in the parallel benchmarks we examine, with the
possible exception of FFT, which uses all-to-all communication. Contention
could have a serious performance impact in other workloads.

FIGURE 6.33 Data miss rate versus block size assuming a 128-KB cache and 64 pro-
cessors in total. Although difficult to see, the coherence miss rate in Barnes actually rises
for the largest block size, just as in the last section.

Miss rate

0%

4%

6%

2%

16 32 64

Block size (bytes)

FFT

128

12%

8%

10%

Miss rate

0%

2%

1%

16 32 64

Block size (bytes)

LU

128

4%

3%

Miss rate

0%

5%

10%

16 32 64

Block size (bytes)

Ocean

128

15%

Miss rate

0.0%

0.1%

16 32 64

Block size (bytes)

Barnes

128

0.3%

0.2%

Local misses Remote misses

702 Chapter 6 Multiprocessors and Thread-Level Parallelism
Figure 6.36 shows the cost in cycles for the average memory reference, as-
suming the parameters in Figure 6.35. Only the latencies for each reference type
are counted. Each bar indicates the contribution from cache hits, local misses, re-
mote misses, and 3-hop remote misses. The cost is influenced by the total
frequency of cache misses and upgrades, as well as by the distribution of the lo-
cation where the miss is satisfied. The cost for a remote memory reference is fair-
ly steady as the processor count is increased, except for Ocean. The increasing
miss rate in Ocean for 64 processors is clear in Figure 6.31. As the miss rate in-
creases, we should expect the time spent on memory references to increase also.

Although Figure 6.36 shows the memory access cost, which is the dominant
multiprocessor cost in these benchmarks, a complete performance model would

FIGURE 6.34 The number of bytes per data reference climbs steadily as block size is
increased. These data can be used to determine the bandwidth required per node both in-
ternally and globally. The data assumes a 128-KB cache for each of 64 processors.

Bytes per data
reference

Bytes per data
reference

Bytes per data
reference

Bytes per data
reference

0.0

2.0

3.0

1.0

16 32 64

Block size (bytes)

FFT

128

6.0

4.0

5.0

0.0

0.2

0.3

0.1

16 32 64

Block size (bytes)

LU

128

0.6

0.4

0.5

0.0

2.0

4.0

6.0

5.0

3.0

1.0

16 32 64

Block size (bytes)

Ocean

128

7.0

0.0

0.1

16 32 64

Block size (bytes)

Barnes

128

0.4

0.3

0.2

Local Global

6.6 Performance of Distributed Shared-Memory Multiprocessors 703
need to consider the effect of contention in the memory system, as well as the
losses arising from synchronization delays.

The coherence protocols that we have discussed so far have made several sim-
plifying assumptions. In practice, real protocols must deal with two realities:
nonatomicity of operations and finite buffering. We have seen why certain opera-
tions (such as a write miss) cannot be atomic. In DSM multiprocessors the pres-
ence of only a finite number of buffers to hold message requests and replies
introduces additional possibilities for deadlock. The challenge for the designer is
to create a protocol that works correctly and without deadlock, using nonatomic
actions and finite buffers as the building blocks. These factors are fundamental
challenges in all parallel multiprocessors, and the solutions are applicable to a
wide variety of protocol design environments, both in hardware and in software.

Because this material is extremely complex and not necessary to comprehend
the rest of the chapter, we have placed it in Appendix E. For the interested reader,
Appendix E shows how the specific problems in our coherence protocols are
solved and illustrates the general principles that are more globally applicable. It
describes the problems arising in snooping cache implementations, as well as the
more complex problems that arise in more distributed systems using directories.
If you want to understand how either state-of-the-art SMPs (which use split trans-
actions buses and nonblocking memory accesses) or DSM multiprocessors really
work and why designing them is such a challenge, go read Appendix E!

Characteristic Processor clock cycles
≤ 16 processor

Processor clock cycles
17–64 processor

Cache hit 1 1

Cache miss to local memory 85 85

Cache miss to remote home directory 125 150

Cache miss to remotely cached data (3-hop miss) 140 170

FIGURE 6.35 Characteristics of the example directory-based multiprocessor. Misses can be serviced locally (includ-
ing from the local directory), at a remote home node, or using the services of both the home node and another remote node
that is caching an exclusive copy. This last case is called a 3-hop miss and has a higher cost because it requires interrogating
both the home directory and a remote cache. Note that this simple model does not account for invalidation time, but does
include some factor for increasing interconnect time. These remote access latencies are based on those in an SGI Origin
3000, the fastest scalable interconnect system in 2000, and assume a 500 MHz processor.

704 Chapter 6 Multiprocessors and Thread-Level Parallelism
FIGURE 6.36 The effective latency of memory references in a DSM multiprocessor depends both on the relative
frequency of cache misses and on the location of the memory where the accesses are served. These plots show the
memory access cost (a metric called average memory access time in Chapter 5) for each of the benchmarks for 8, 16, 32,
and 64 processors, assuming a 512KB data cache that is two-way set associative with 64-byte blocks. The average memory
access cost is composed of four different types of accesses, with the cost of each type given in Figure 6.35. For the Barnes
and LU benchmarks, the low miss rates lead to low overall access times. In FFT, the higher access cost is determined by a
higher local miss rate (1-4%) and a significant 3-hop miss rate (1%). The improvement in FFT comes from the reduction in
local miss rate from 4% to 1%, as the aggregate cache increases. Ocean shows the biggest change in the cost of memory
accesses, and the highest overall cost at 64 processors. The high cost is driven primarily by a high local miss rate (average
1.6%). The memory access cost drops from 8 to 16 processors as the grids more easily fit in the individual caches. At 64
processors, the data set size is too small to map properly and both local misses and coherence misses rise, as we saw in
Figure 6.31.

Cache hit Local miss Remote miss 3-hop miss to remote cac

arnes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

8 16 32 64

rocessor count

FFT

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

8 16 32 64

Processor count

LU

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

8 16 32 64

Processor count

Ocean

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

8 16 32 64

rocessor count

6.7 Synchronization 705
Synchronization mechanisms are typically built with user-level software routines
that rely on hardware-supplied synchronization instructions. For smaller multi-
processors or low-contention situations, the key hardware capability is an unin-
terruptible instruction or instruction sequence capable of atomically retrieving
and changing a value. Software synchronization mechanisms are then construct-
ed using this capability. For example, we will see how very efficient spin locks
can be built using a simple hardware synchronization instruction and the coher-
ence mechanism. In larger-scale multiprocessors or high-contention situations,
synchronization can become a performance bottleneck, because contention intro-
duces additional delays and because latency is potentially greater in such a multi-
processor. We will see how contention can arise in implementing some common
user-level synchronization operations and examine more powerful hardware-sup-
ported synchronization primitives that can reduce contention as well as latency.

We begin by examining the basic hardware primitives, then construct several
well-known synchronization routines with the primitives, and then turn to perfor-
mance problems in larger multiprocessors and solutions for those problems.

Basic Hardware Primitives

The key ability we require to implement synchronization in a multiprocessor is a
set of hardware primitives with the ability to atomically read and modify a mem-
ory location. Without such a capability, the cost of building basic synchronization
primitives will be too high and will increase as the processor count increases.
There are a number of alternative formulations of the basic hardware primitives,
all of which provide the ability to atomically read and modify a location, together
with some way to tell if the read and write were performed atomically. These
hardware primitives are the basic building blocks that are used to build a wide va-
riety of user-level synchronization operations, including things such as locks and
barriers. In general, architects do not expect users to employ the basic hardware
primitives, but instead expect that the primitives will be used by system program-
mers to build a synchronization library, a process that is often complex and tricky.
Let’s start with one such hardware primitive and show how it can be used to build
some basic synchronization operations.

One typical operation for building synchronization operations is the atomic
exchange, which interchanges a value in a register for a value in memory. To see
how to use this to build a basic synchronization operation, assume that we want
to build a simple lock where the value 0 is used to indicate that the lock is free
and a 1 is used to indicate that the lock is unavailable. A processor tries to set the
lock by doing an exchange of 1, which is in a register, with the memory address
corresponding to the lock.The value returned from the exchange instruction is 1 if
some other processor had already claimed access and 0 otherwise. In the latter

6.7 Synchronization

706 Chapter 6 Multiprocessors and Thread-Level Parallelism
case, the value is also changed to be 1, preventing any competing exchange from
also retrieving a 0.

For example, consider two processors that each try to do the exchange simul-
taneously: This race is broken since exactly one of the processors will perform
the exchange first, returning 0, and the second processor will return 1 when it
does the exchange. The key to using the exchange (or swap) primitive to imple-
ment synchronization is that the operation is atomic: the exchange is indivisible
and two simultaneous exchanges will be ordered by the write serialization mech-
anisms. It is impossible for two processors trying to set the synchronization vari-
able in this manner to both think they have simultaneously set the variable.

There are a number of other atomic primitives that can be used to implement
synchronization. They all have the key property that they read and update a mem-
ory value in such a manner that we can tell whether or not the two operations exe-
cuted atomically. One operation, present in many older multiprocessors, is test-
and-set, which tests a value and sets it if the value passes the test. For example,
we could define an operation that tested for 0 and set the value to 1, which can be
used in a fashion similar to how we used atomic exchange. Another atomic syn-
chronization primitive is fetch-and-increment: it returns the value of a memory
location and atomically increments it. By using the value 0 to indicate that the
synchronization variable is unclaimed, we can use fetch-and-increment, just as
we used exchange. There are other uses of operations like fetch-and-increment,
which we will see shortly.

A slightly different approach to providing this atomic read-and-update opera-
tion has been used in some recent multiprocessors. Implementing a single atomic
memory operation introduces some challenges, since it requires both a memory
read and a write in a single, uninterruptible instruction. This requirement compli-
cates the implementation of coherence, since the hardware cannot allow any oth-
er operations between the read and the write, and yet must not deadlock.

An alternative is to have a pair of instructions where the second instruction re-
turns a value from which it can be deduced whether the pair of instructions was
executed as if the instructions were atomic. The pair of instructions is effectively
atomic if it appears as if all other operations executed by any processor occurred
before or after the pair. Thus, when an instruction pair is effectively atomic, no
other processor can change the value between the instruction pair.

The pair of instructions includes a special load called a load linked or load
locked and a special store called a store conditional. These instructions are used
in sequence: If the contents of the memory location specified by the load linked
are changed before the store conditional to the same address occurs, then the
store conditional fails. If the processor does a context switch between the two in-
structions, then the store conditional also fails. The store conditional is defined to
return a value indicating whether or not the store was successful. Since the load
linked returns the initial value and the store conditional returns 1 if it succeeds
and 0 otherwise, the following sequence implements an atomic exchange on the
memory location specified by the contents of R1:

6.7 Synchronization 707
try: MOV R3,R4,R0 ;mov exchange value

LL R2,0(R1) ;load linked

SC R3,0(R1) ;store conditional

BEQZ R3,try ;branch store fails

MOV R4,R2 ;put load value in R4

At the end of this sequence the contents of R4 and the memory location speci-
fied by R1 have been atomically exchanged (ignoring any effect from delayed
branches). Any time a processor intervenes and modifies the value in memory be-
tween the LL and SC instructions, the SC returns 0 in R3, causing the code se-
quence to try again.

An advantage of the load linked/store conditional mechanism is that it can be
used to build other synchronization primitives. For example, here is an atomic
fetch-and-increment:

try: LL R2,0(R1) ;load linked

DADDUI R3,R2,#1 ;increment

SC R3,0(R1) ;store conditional

BEQZ R3,try ;branch store fails

These instructions are typically implemented by keeping track of the address
specified in the LL instruction in a register, often called the link register. If an in-
terrupt occurs, or if the cache block matching the address in the link register is in-
validated (for example, by another SC), the link register is cleared. The SC
instruction simply checks that its address matches that in the link register; if so,
the SC succeeds; otherwise, it fails. Since the store conditional will fail after ei-
ther another attempted store to the load linked address or any exception, care
must be taken in choosing what instructions are inserted between the two instruc-
tions. In particular, only register-register instructions can safely be permitted;
otherwise, it is possible to create deadlock situations where the processor can
never complete the SC. In addition, the number of instructions between the load
linked and the store conditional should be small to minimize the probability that
either an unrelated event or a competing processor causes the store conditional to
fail frequently.

Implementing Locks Using Coherence

Once we have an atomic operation, we can use the coherence mechanisms of a
multiprocessor to implement spin locks: locks that a processor continuously tries
to acquire, spinning around a loop until it suceeds. Spin locks are used when a
programmer expects the lock to be held for a very short amount of time and when

708 Chapter 6 Multiprocessors and Thread-Level Parallelism
she wants the process of locking to be low latency when the lock is available. Be-
cause spin locks tie up the processor, waiting in a loop for the lock to become
free, they are inappropriate in some circumstances.

The simplest implementation, which we would use if there were no cache co-
herence, would keep the lock variables in memory. A processor could continually
try to acquire the lock using an atomic operation, say exchange, and test whether
the exchange returned the lock as free. To release the lock, the processor simply
stores the value 0 to the lock. Here is the code sequence to lock a spin lock whose
address is in R1 using an atomic exchange:

DADDUI R2,R0,#1

lockit: EXCH R2,0(R1) ;atomic exchange

BNEZ R2,lockit ;already locked?

If our multiprocessor supports cache coherence, we can cache the locks using
the coherence mechanism to maintain the lock value coherently. Caching locks
has two advantages. First, it allows an implementation where the process of
“spinning” (trying to test and acquire the lock in a tight loop) could be done on a
local cached copy rather than requiring a global memory access on each attempt
to acquire the lock. The second advantage comes from the observation that there
is often locality in lock accesses: that is, the processor that used the lock last will
use it again in the near future. In such cases, the lock value may reside in the
cache of that processor, greatly reducing the time to acquire the lock.

Obtaining the first advantage—being able to spin on a local cached copy rath-
er than generating a memory request for each attempt to acquire the lock—re-
quires a change in our simple spin procedure. Each attempt to exchange in the
loop directly above requires a write operation. If multiple processors are attempt-
ing to get the lock, each will generate the write. Most of these writes will lead to
write misses, since each processor is trying to obtain the lock variable in an ex-
clusive state.

Thus we should modify our spin-lock procedure so that it spins by doing reads
on a local copy of the lock until it successfully sees that the lock is available.
Then it attempts to acquire the lock by doing a swap operation. A processor first
reads the lock variable to test its state. A processor keeps reading and testing until
the value of the read indicates that the lock is unlocked. The processor then races
against all other processes that were similarly “spin waiting” to see who can lock
the variable first. All processes use a swap instruction that reads the old value and
stores a 1 into the lock variable. The single winner will see the 0, and the losers
will see a 1 that was placed there by the winner. (The losers will continue to set
the variable to the locked value, but that doesn’t matter.) The winning processor
executes the code after the lock and, when finished, stores a 0 into the lock vari-
able to release the lock, which starts the race all over again. Here is the code to
perform this spin lock (remember that 0 is unlocked and 1 is locked):

6.7 Synchronization 709
lockit: LD R2,0(R1) ;load of lock

BNEZ R2,lockit ;not available-spin

DADDUI R2,R0,#1 ;load locked value

EXCH R2,0(R1) ;swap

BNEZ R2,lockit ;branch if lock wasn’t 0

Let’s examine how this “spin-lock” scheme uses the cache-coherence mecha-
nisms. Figure 6.37 shows the processor and bus or directory operations for multi-
ple processes trying to lock a variable using an atomic swap. Once the processor
with the lock stores a 0 into the lock, all other caches are invalidated and must
fetch the new value to update their copy of the lock. One such cache gets the copy
of the unlocked value (0) first and performs the swap. When the cache miss of
other processors is satisfied, they find that the variable is already locked, so they
must return to testing and spinning.

Step Processor P0 Processor P1 Processor P2
Coherence
state of lock Bus/directory activity

1 Has lock Spins, testing if
lock = 0

Spins, testing if
lock = 0

Shared None

2 Set lock to 0 (Invalidate
received)

(Invalidate
received)

Exclusive Write invalidate of lock
variable from P0

3 Cache miss Cache miss Shared Bus/directory services P2
cache miss; write back from
P0

4 (Waits while bus/
directory busy)

Lock = 0 Shared Cache miss for P2 satisfied

5 Lock = 0 Executes swap,
gets cache miss

Shared Cache miss for P1 satisfied

6 Executes swap,
gets cache miss

Completes swap:
returns 0 and sets
Lock =1

Exclusive Bus/directory services P2
cache miss; generates
invalidate

7 Swap completes
and returns 1

Enter critical
section

Shared Bus/directory services P1
cache miss; generates write
back

8 Spins, testing if
lock = 0

None

FIGURE 6.37 Cache-coherence steps and bus traffic for three processors, P0, P1, and P2. This figure assumes write-
invalidate coherence. P0 starts with the lock (step 1). P0 exits and unlocks the lock (step 2). P1 and P2 race to see which
reads the unlocked value during the swap (steps 3–5). P2 wins and enters the critical section (steps 6 and 7), while P1’s
attempt fails so it starts spin waiting (steps 7 and 8). In a real system, these events will take many more than eight clock
ticks, since acquiring the bus and replying to misses takes much longer.

710 Chapter 6 Multiprocessors and Thread-Level Parallelism
This example shows another advantage of the load-linked/store-conditional
primitives: the read and write operation are explicitly separated. The load linked
need not cause any bus traffic. This fact allows the following simple code se-
quence, which has the same characteristics as the optimized version using ex-
change (R1 has the address of the lock):

lockit: LL R2,0(R1) ;load linked

BNEZ R2,lockit ;not available-spin

DADDUIR2,R0,#1 ;locked value

SC R2,0(R1) ;store

BEQZ R2,lockit ;branch if store fails

The first branch forms the spinning loop; the second branch resolves races when
two processors see the lock available simultaneously.

Although our spin lock scheme is simple and compelling, it has difficulty scal-
ing up to handle many processors because of the communication traffic generated
when the lock is released. The next section discusses these problems in more de-
tail, as well as techniques to overcome these problems in larger multiprocessors.

Synchronization Performance Challenges

To understand why the simple spin-lock scheme of the previous section does not
scale well, imagine a large multiprocessor with all processors contending for the
same lock. The directory or bus acts as a point of serialization for all the proces-
sors, leading to lots of contention, as well as traffic. The following Example
shows how bad things can be.

E X A M P L E Suppose there are 10 processors on a bus that each try to lock a variable
simultaneously. Assume that each bus transaction (read miss or write
miss) is 100 clock cycles long. You can ignore the time of the actual read
or write of a lock held in the cache, as well as the time the lock is held (they
won’t matter much!). Determine the number of bus transactions required
for all 10 processors to acquire the lock, assuming they are all spinning
when the lock is released at time 0. About how long will it take to process
the 10 requests? Assume that the bus is totally fair so that every pending
request is serviced before a new request and that the processors are
equally fast.

A N S W E R Figure 6.38 shows the sequence of events from the time of the release to
the time to the next release. Of course, the number of processors con-
tending for the lock drops by one each time the lock is acquired, which re-
duces the average cost to 1550 cycles. Thus for 10 lock-unlock pairs it will
take over 15,000 cycles for the processors to pass through the lock. Fur-

6.7 Synchronization 711
thermore, the average processor will spend half this time idle, simply try-
ing to get the lock. The number of bus transactions involved is over 200!

n

The difficulty in this Example arises from contention for the lock and serial-
ization of lock access, as well as the latency of the bus access. (The fairness prop-
erty of the bus actually makes things worse, since it delays the processor that
claims the lock from releasing it; unfortunately, for any bus arbitration scheme
some worst-case scenario does exist.) The key advantages of spin locks, namely
that they have low overhead in terms of bus or network cycles and offer good per-
formance when locks are reused by the same processor, are both lost in this ex-
ample. We will consider alternative implementations in the next section, but
before we do that, let’s consider the use of spin locks to implement another com-
mon high-level synchronization primitive.

Barrier Synchronization
One additional common synchronization operation in programs with parallel
loops is a barrier. A barrier forces all processes to wait until all the processes
reach the barrier and then releases all of the processes. A typical implementation
of a barrier can be done with two spin locks: one used to protect a counter that
tallies the processes arriving at the barrier and one used to hold the processes un-
til the last process arrives at the barrier. To implement a barrier we usually use the
ability to spin on a variable until it satisfies a test; we use the notation spin(con-
dition) to indicate this. Figure 6.40 is a typical implementation, assuming that
lock and unlock provide basic spin locks and total is the number of processes
that must reach the barrier.

In practice, another complication makes barrier implementation slightly more
complex. Frequently a barrier is used within a loop, so that processes released
from the barrier would do some work and then reach the barrier again. Assume
that one of the processes never actually leaves the barrier (it stays at the spin op-

Event Duration

Read miss by all waiting processors to fetch lock (10 × 100) 1000

Write miss by releasing processor and invalidates 100

Read miss by all waiting processors (10 × 100) 1000

Write miss by all waiting processors, one successful lock (100),
and invalidation of all lock copies (9 × 100)

1000

Total time for one processor to acquire and release lock 3100 clocks

FIGURE 6.38 The time to acquire and release a single lock when 10 processors
contend for the lock, assuming each bus transaction takes 100 clock cycles. Be-
cause of fair bus arbitration, the releasing processor must wait for all other 9 proces-
sors to try to get the lock in vain!

712 Chapter 6 Multiprocessors and Thread-Level Parallelism
eration), which could happen if the OS scheduled another process, for example.
Now it is possible that one process races ahead and gets to the barrier again be-
fore the last process has left. The “fast” process then traps the remaining “slow”
process in the barrier by resetting the flag release. Now all the processes will
wait infinitely at the next instance of this barrier, because one process is trapped
at the last instance, and the number of processes can never reach the value of to-
tal.

The important observation in this example is that the programmer did nothing
wrong. Instead, the implementer of the barrier made some assumptions about for-
ward progress that cannot be assumed. One obvious solution to this is to count
the processes as they exit the barrier (just as we did on entry) and not to allow any
process to reenter and reinitialize the barrier until all processes have left the prior
instance of this barrier. This extra step would significantly increase the latency of
the barrier and the contention, which as we will see shortly are already large. An
alternative solution is a sense-reversing barrier, which makes use of a private per-
process variable, local_sense, which is initialized to 1 for each process. Figure
6.40 shows the code for the sense-reversing barrier. This version of a barrier is

lock (counterlock);/* ensure update atomic */

if (count==0) release=0;/*first=>reset release */

count = count +1;/* count arrivals */

unlock(counterlock);/* release lock */

if (count==total) {/* all arrived */

count=0;/* reset counter */

release=1;/* release processes */

}

else {/* more to come */

spin (release==1);/* wait for arrivals */

}

FIGURE 6.39 Code for a simple barrier. The lock counterlock protects the counter so
that it can be atomically incremented. The variable count keeps the tally of how many pro-
cesses have reached the barrier. The variable release is used to hold the processes until
the last one reaches the barrier.The operation spin (release==1) causes a process to
wait until all processes reach the barrier.

6.7 Synchronization 713
safely usable; as the next example shows, however, its performance can still be
quite poor.

E X A M P L E Suppose there are 10 processors on a bus that each try to execute a bar-
rier simultaneously. Assume that each bus transaction is 100 clock cycles,
as before. You can ignore the time of the actual read or write of a lock held
in the cache as the time to execute other nonsynchronization operations
in the barrier implementation. Determine the number of bus transactions
required for all 10 processors to reach the barrier, be released from the
barrier, and exit the barrier. Assume that the bus is totally fair, so that
every pending request is serviced before a new request and that the pro-
cessors are equally fast. Don’t worry about counting the processors out of
the barrier. How long will the entire process take?

A N S W E R The following table shows the sequence of events for one processor to
traverse the barrier, assuming that the first process to grab the bus does
not have the lock.

local_sense =! local_sense; /*toggle local_sense*/

lock (counterlock);/* ensure update atomic */

count=count+1;/* count arrivals */

unlock (counterlock);/* unlock */

if (count==total) {/* all arrived */

count=0;/* reset counter */

release=local_sense;/* release processes */

}

else {/* more to come */

spin (release==local_sense);/*wait for signal*/

}

FIGURE 6.40 Code for a sense-reversing barrier. The key to making the barrier reusable
is the use of an alternating pattern of values for the flag release, which controls the exit from
the barrier. If a process races ahead to the next instance of this barrier while some other pro-
cesses are still in the barrier, the fast process cannot trap the other processes, since it does
not reset the value of release as it did in Figure 6.40.

Event
Duration in clocks
for one processor

Duration in clocks
for 10 processors

Time for each processor to grab lock, increment, release lock 3100 31,000

Time to execute release 100 100

Time for each processor to get the release flag 100 1000

Total 3300 31,100

714 Chapter 6 Multiprocessors and Thread-Level Parallelism
Our barrier operation takes about as long as the 10-processor lock-unlock
sequence we considered earlier. The total number of bus transactions is
about 220. n

As we can see from these examples, synchronization performance can be a
real bottleneck when there is substantial contention among multiple processes.
When there is little contention and synchronization operations are infrequent, we
are primarily concerned about the latency of a synchronization primitive—that is,
how long it takes an individual process to complete a synchronization operation.
Our basic spin-lock operation can do this in two bus cycles: one to initially read
the lock and one to write it. We could improve this to a single bus cycle by a vari-
ety of methods. For example, we could simply spin on the swap operation. If the
lock were almost always free, this could be better, but if the lock were not free, it
would lead to lots of bus traffic, since each attempt to lock the variable would
lead to a bus cycle. In practice, the latency of our spin lock is not quite as bad as
we have seen in this example, since the write miss for a data item present in the
cache is treated as an upgrade and will be cheaper than a true read miss.

The more serious problem in these examples is the serialization of each pro-
cess’s attempt to complete the synchronization. This serialization is a problem
when there is contention, because it greatly increases the time to complete the
synchronization operation. For example, if the time to complete all 10 lock and
unlock operations depended only on the latency in the uncontended case, then it
would take 1000 rather than 15,000 cycles to complete the synchronization oper-
ations. The barrier situation is as bad, and in some ways worse, since it is highly
likely to incur contention. The use of a bus interconnect exacerbates these prob-
lems, but serialization could be just as serious in a directory-based multiproces-
sor, where the latency would be large. The next section presents some solutions
that are useful when either the contention is high or the processor count is large.

Synchronization Mechanisms for Larger-Scale Multiprocessors

What we would like are synchronization mechanisms that have low latency in un-
contended cases and that minimize serialization in the case where contention is
significant. We begin by showing how software implementations can improve the
performance of locks and barriers when contention is high; we then explore two
basic hardware primitives that reduce serialization while keeping latency low.

Software Implementations
The major difficulty with our spin-lock implementation is the delay due to con-
tention when many processes are spinning on the lock. One solution is to artifi-
cially delay processes when they fail to acquire the lock. The best performance is
obtained by increasing the delay exponentially whenever the attempt to acquire

6.7 Synchronization 715
the lock fails. Figure 6.41 shows how a spin lock with exponential back-off is im-
plemented. Exponential back-off is a common technique for reducing contention
in shared resources, including access to shared networks and buses (see section
7.7). This implementation still attempts to preserve low latency when contention
is small by not delaying the initial spin loop. The result is that if many processes
are waiting, the back-off does not affect the processes on their first attempt to ac-
quire the lock. We could also delay that process, but the result would be poorer
performance when the lock was in use by only two processes and the first one
happened to find it locked.

Another technique for implementing locks is to use queuing locks. Queuing
locks work by constructing a queue of waiting processors; whenever a processor
frees up the lock, it causes the next processor in the queue to attempt access. This
eliminates contention for a lock when it is freed. We show how queuing locks op-
erate in the next section using a hardware implementation, but software imple-
mentations using arrays can achieve most of the same benefits (see Exercise
6.25). Before we look at hardware primitives, let’s look at a better mechanism for
barriers.

Our barrier implementation suffers from contention both during the gather
stage, when we must atomically update the count, and at the release stage, when

ADDUI R3,R0,#1 ;R3 = initial delay

lockit: LL R2,0(R1) ;load linked

BNEZ R2,lockit ;not available-spin

DADDUI R2,R2,#1 ;get locked value

SC R2,0(R1) ;store conditional

BNEZ R2,gotit ;branch if store succeeds

DSLL R3,R3,#1 ;increase delay by factor of 2

PAUSE R3 ;delays by value in R3

J lockit

gotit: use data protected by lock

FIGURE 6.41 A spin lock with exponential back-off. When the store conditional fails, the
process delays itself by the value in R3. The delay can be implemented by decrementing R3
until it reaches 0. The exact timing of the delay is multiprocessor dependent, although it
should start with a value that is approximately the time to perform the critical section and re-
lease the lock. The statement pause R3 should cause a delay of R3 of these time units. The
value in R3 is increased by a factor of 2 every time the store conditional fails, which causes
the process to wait twice as long before trying to acquire the lock again. The small variations
in the rate at which competing processors execute instructions are usually sufficient to ensure
that processes will not continually collide. If the natural perturbation in execution time was in-
sufficient, R3 could be initialized with a small random value, increasing the variance in the
successive delays an reducing the probability of successive collisions.

716 Chapter 6 Multiprocessors and Thread-Level Parallelism
all the processes must read the release flag. The former is more serious because it
requires exclusive access to the synchronization variable and thus creates much
more serialization; in comparison, the latter generates only read contention. We
can reduce the contention by using a combining tree, a structure where multiple
requests are locally combined in tree fashion. The same combining tree can be
used to implement the release process, reducing the contention there; we leave
the last step for the Exercises.

Our combining tree barrier uses a predetermined n-ary tree structure. We use
the variable k to stand for the fan-in; in practice k = 4 seems to work well. When
the kth process arrives at a node in the tree, we signal the next level in the tree.
When a process arrives at the root, we release all waiting processes. As in our ear-
lier example, we use a sense-reversing technique. A tree-based barrier, as shown in
Figure 6.42, uses a tree to combine the processes and a single signal to release the
barrier, Exercises 6.23 and 6.24 ask you to analyze the time for the combining
barrier versus the noncombining version. Some MPPs (e.g., the T3D and CM-5)
have also included hardware support for barriers, but more recent machines have
relied on software libraries for this support.

Hardware Primitives
In this section we look at two hardware synchronization primitives. The first
primitive deals with locks, while the second is useful for barriers and a number of
other user-level operations that require counting or supplying distinct indices. In
both cases we can create a hardware primitive where latency is essentially identi-
cal to our earlier version, but with much less serialization, leading to better scal-
ing when there is contention.

The major problem with our original lock implementation is that it introduces
a large amount of unneeded contention. For example, when the lock is released
all processors generate both a read and a write miss, although at most one proces-
sor can successfully get the lock in the unlocked state. This sequence happens on
each of the 20 lock/unlock sequences, as we saw in the example on page 710.

We can improve this situation by explicitly handing the lock from one waiting
processor to the next. Rather than simply allowing all processors to compete ev-
ery time the lock is released, we keep a list of the waiting processors and hand the
lock to one explicitly, when its turn comes. This sort of mechanism has been
called a queuing lock. Queuing locks can be implemented either in hardware,
which we describe here, or in software using an array to keep track of the waiting
processes. The basic concepts are the same in either case. Our hardware imple-
mentation assumes a directory-based multiprocessor where the individual proces-
sor caches are addressable. In a bus-based multiprocessor, a software
implementation would be more appropriate and would have each processor using

6.7 Synchronization 717
a different address for the lock, permitting the explicit transfer of the lock from
one process to another.

How does a queuing lock work? On the first miss to the lock variable, the miss
is sent to a synchronization controller, which may be integrated with the memory
controller (in a bus-based system) or with the directory controller. If the lock is
free, it is simply returned to the processor. If the lock is unavailable, the control-
ler creates a record of the node’s request (such as a bit in a vector) and sends the

struct node{/* a node in the combining tree */
int counterlock; /* lock for this node */
int count; /* counter for this node */

 int parent; /* parent in the tree = 0..P-1cep except for root
};
struct node tree [0..P–1]; /* the tree of nodes */
int local_sense; /* private per processor */
int release; /* global release flag */

/* function to implement barrier */
barrier (int mynode) {

lock (tree[mynode].counterlock); /* protect count */
tree[mynode].count=tree[mynode].count+1;

/* increment count */
unlock (tree[mynode].counterlock); /* unlock */
if (tree[mynode].count==k) {/* all arrived at mynode */

if (tree[mynode].parent >=0) {
barrier(tree[mynode].parent);

} else{
release = local_sense;

};
tree[mynode].count = 0; /* reset for the next time */

} else{
spin (release==local_sense); /* wait */

};
};
/* code executed by a processor to join barrier */
local_sense =! local_sense;
barrier (mynode);

FIGURE 6.42 An implementation of a tree-based barrier reduces contention considerably. The tree is assumed to
be prebuilt statically using the nodes in the array tree. Each node in the tree combines k processes and provides a separate
counter and lock, so that at most k processes contend at each node. When the kth process reaches a node in the tree it
goes up to the parent, incrementing the count at the parent. When the count in the parent node reaches k, the release flag
is set. The count in each node is reset by the last process to arrive. Sense-reversing is used to avoid races as in the simple
barrier.

718 Chapter 6 Multiprocessors and Thread-Level Parallelism
processor back a locked value for the variable, which the processor then spins on.
When the lock is freed, the controller selects a processor to go ahead from the list
of waiting processors. It can then either update the lock variable in the selected
processor’s cache or invalidate the copy, causing the processor to miss and fetch
an available copy of the lock.

E X A M P L E How many bus transaction and how long does it take to have 10 proces-
sors lock and unlock the variable using a queuing lock that updates the
lock on a miss? Make the other assumptions about the system the same
as those in the earlier example on page 710.

A N S W E R Each processor misses once on the lock initially and once to free the lock,
so it takes only 20 bus cycles. The first 10 initial misses take 1000 cycles,
followed by a 100-cycle delay for each of the 10 releases. This sequence
yields a total of 2100 cycles—significantly better than the case with con-
ventional coherence-based spin locks. n

There are a couple of key insights in implementing such a queuing lock capa-
bility. First, we need to be able to distinguish the initial access to the lock, so we
can perform the queuing operation, and also the lock release, so we can provide
the lock to another processor. The queue of waiting processes can be implemented
by a variety of mechanisms. In a directory-based multiprocessor, this queue is akin
to the sharing set, and similar hardware can be used to implement the directory
and queuing lock operations. One complication is that the hardware must be pre-
pared to reclaim such locks, since the process that requested the lock may have
been context-switched and may not even be scheduled again on the same proces-
sor.

Queuing locks can be used to improve the performance of our barrier opera-
tion (see Exercise 6.17). Alternatively, we can introduce a primitive that reduces
the amount of time needed to increment the barrier count, thus reducing the seri-
alization at this bottleneck, which should yield comparable performance to using
queuing locks. One primitive that has been introduced for this and for building
other synchronization operations is fetch-and-increment, which atomically fetch-
es a variable and increments its value. The returned value can be either the incre-
mented value or the fetched value. Using fetch-and-increment we can
dramatically improve our barrier implementation, compared to the simple code-
sensing barrier.

E X A M P L E Write the code for the barrier using fetch-and-increment. Making the
same assumptions as in our earlier example and also assuming that a

6.8 Models of Memory Consistency: An Introduction 719
fetch-and-increment operation takes 100 clock cycles, determine the time
for 10 processors to traverse the barrier. How many bus cycles are
required?

A N S W E R Figure 6.40 shows the code for the barrier. This implementation requires
10 fetch-and-increment operations and 10 cache misses for the release
operation for a total time of 2000 cycles and 20 bus/interconnect opera-
tions versus an earlier implementation that took over 15 times longer and
10 times more bus operations to complete the barrier. Of course, fetch-
and-increment can also be used in implementing the combining tree bar-
rier, reducing the serialization at each node in the tree.

n

As we have seen, synchronization problems can become quite acute in larger-
scale multiprocessors. When the challenges posed by synchronization are com-
bined with the challenges posed by long memory latency and potential load im-
balance in computations, we can see why getting efficient usage of large-scale
parallel processors is very challenging.

Cache coherence ensures that multiple processors see a consistent view of memo-
ry. It does not answer the question of how consistent the view of memory must
be. By “:how consistent” we mean, when must a processor see a value that has
been updated by another processor? Since processors communicate through

local_sense =! local_sense; /*toggle local_sense*/

fetch_and_increment(count);/* atomic update*/

if (count==total) {/* all arrived */

count=0;/* reset counter */

release=local_sense;/* release processes */

}

else {/* more to come */

spin (release==local_sense);/*wait for signal*/

}

FIGURE 6.43 Code for a sense-reversing barrier using fetch-and-increment to
do the counting.

6.8 Models of Memory Consistency: An Introduction

720 Chapter 6 Multiprocessors and Thread-Level Parallelism
shared variables (used both for data values and for synchronization), the question
boils down to this: In what order must a processor observe the data writes of an-
other processor? Since the only way to “observe the writes of another processor”
is through reads, the question becomes, what properties must be enforced among
reads and writes to different locations by different processors?

Although the question of how consistent memory be seems simple, it is re-
markably complicated, as we can see with a simple example. Here are two code
segments from processes P1 and P2, shown side by side:

P1: A = 0; P2: B = 0;

A = 1; B = 1;

L1: if (B == 0) ... L2: if (A == 0)...

Assume that the processes are running on different processors, and that locations
A and B are originally cached by both processors with the initial value of 0. If
writes always take immediate effect and are immediately seen by other proces-
sors, it will be impossible for both if-statements (labeled L1 and L2) to evaluate
their conditions as true, since reaching the if-statement means that either A or B
must have been assigned the value 1. But suppose the write invalidate is delayed,
and the processor is allowed to continue during this delay; then it is possible that
both P1 and P2 have not seen the invalidations for B and A (respectively) before
they attempt to read the values. The question is, should this behavior be allowed,
and if so, under what conditions?

The most straightforward model for memory consistency is called sequential
consistency. Sequential consistency requires that the result of any execution be
the same as if the memory accesses executed by each processor were kept in or-
der and the accesses among different processors were arbitrarily interleaved. Se-
quential consistency eliminates the possibility of some nonobvious execution in
the previous example, because the assignments must be completed before the if
statements are initiated.

The simplest way to implement sequential consistency is to require a proces-
sor to delay the completion of any memory access until all the invalidations
caused by that access are completed. Of course, it is equally effective to delay the
next memory access until the previous one is completed. Remember that memory
consistency involves operations among different variables: the two accesses that
must be ordered are actually to different memory locations. In our example, we
must delay the read of A or B (A==0 or B==0) until the previous write has complet-
ed (B=1 or A=1). Under sequential consistency, we cannot, for example, simply
place the write in a write buffer and continue with the read. Although sequential
consistency presents a simple programming paradigm, it reduces potential

6.8 Models of Memory Consistency: An Introduction 721
performance, especially in a multiprocessor with a large number of processors or
long interconnect delays, as we can see in the following Example.

E X A M P L E Suppose we have a processor where a write miss takes 40 cycles to es-
tablish ownership, 10 cycles to issue each invalidate after ownership is
established, and 50 cycles for an invalidate to complete and be acknowl-
edged once it is issued. Assuming that four other processors share a
cache block, how long does a write miss stall the writing processor if the
processor is sequentially consistent? Assume that the invalidates must be
explicitly acknowledged before the directory controller knows they are
completed. Suppose we could continue executing after obtaining owner-
ship for the write miss without waiting for the invalidates; how long would
the write take?

A N S W E R When we wait for invalidates, each write takes the sum of the ownership
time plus the time to complete the invalidates. Since the invalidates can
overlap, we need only worry about the last one, which starts 10 + 10 + 10
+ 10 = 40 cycles after ownership is established. Hence the total time for
the write is 40 + 40 + 50 = 130 cycles. In comparison, the ownership time
is only 40 cycles. With appropriate write-buffer implementations it is even
possible to continue before ownership is established. n

To provide better performance, researchers and architects have explored two
different routes. First, they developed ambitious implementations that preserve
sequential consistency but use latency hiding techniques to reduce the penalty;
we discuss these in the section on cross-cutting issues (see page 731). Second,
they developed less restrictive memory consistency models that allow for faster
hardware. Such models can affect how the programmer sees the multiprocessor,
so before we discuss these less restrictive models, let’s look at what the program-
mer expects.

The Programmer’s View

Although the sequential consistency model has a performance disadvantage,
from the viewpoint of the programmer it has the advantage of simplicity. The
challenge is to develop a programming model that is simple to explain and yet al-
lows a high performance implementation.

One such programming model that allows us to have a more efficient imple-
mentation is to assume that programs are synchronized. A program is synchro-
nized if all access to shared data is ordered by synchronization operations. A data
reference is ordered by a synchronization operation if, in every possible execu-
tion, a write of a variable by one processor and an access (either a read or a write)

722 Chapter 6 Multiprocessors and Thread-Level Parallelism
of that variable by another processor are separated by a pair of synchronization
operations, one executed after the write by the writing processor and one execut-
ed before the access by the second processor. Cases where variables may be up-
dated without ordering by synchronization are called data races, because the
execution outcome depends on the relative speed of the processors, and like races
in hardware design, the outcome is unpredictable, which leads to another name
for synchronized programs: data-race-free.

As a simple example, consider a variable being read and updated by two dif-
ferent processors. Each processor surrounds the read and update with a lock and
an unlock, both to ensure mutual exclusion for the update and to ensure that the
read is consistent. Clearly, every write is now separated from a read by the other
processor by a pair of synchronization operations: one unlock (after the write)
and one lock (before the read). Of course, if two processors are writing a variable
with no intervening reads, then the writes must also be separated by synchroniza-
tion operations.

It is a broadly accepted observation that most programs are synchronized. This
observation is true primarily because if the accesses were unsynchronized, the
behavior of the program would be quite difficult to determine because the speed
of execution would determine which processor won a data race and thus affect
the results of the program. Even with sequential consistency, reasoning about
such programs is very difficult. Programmers could attempt to guarantee order-
ing by constructing their own synchronization mechanisms, but this is extremely
tricky, can lead to buggy programs, and may not be supported architecturally,
meaning that they may not work in future generations of the multiprocessor. In-
stead, almost all programmers will choose to use synchronization libraries that
are correct and optimized for the multiprocessor and the type of synchronization.
Finally, the use of standard synchronization primitives ensures that even if the ar-
chitecture implements a more relaxed consistency model than sequential consis-
tency, a synchronized program will behave as if the hardware implemented
sequential consistency.

Relaxed Consistency Models: The Basics

The key idea in relaxed consistency models is to allow reads and writes to com-
plete out of order, but to use synchronization operations to enforce ordering, so
that a synchronized program behaves as if the processor were sequentially con-
sistent. There are a variety of relaxed models that are classified according to what
orderings they relax. The three major sets of orderings that are relaxed are:

1. The W→R ordering: which yields a model known as total store ordering or
processor consistency. Because this ordering retains ordering among writes,
many programs that operate under sequential consistency operate under this
model, without additional synchronization.

6.9 Multithreading: Exploiting Thread-Level Parallelism within a Processor 723
2. The W→W ordering: which yields a model known as partial store order.

3. The R→W and R→R orderings: which yields a variety of models including
weak ordering, the Alpha consistency model, the PowerPC consistency mod-
el, and release consistency depending on the details of the ordering restrictions
and how synchronization operations enforce ordering.

By relaxing these orderings, the processor can possibly obtain significant perfor-
mance advantages. There are, however, many complexities in describing relaxed
consistency models, including the advantages and complexities of relaxing dif-
ferent orders, defining precisely what it means for a write to complete, and decid-
ing when processors can see values that the processor itself has written. These
complexities, as well as an assessment of the performance of relaxed model and a
discussion of the implementation issues, are described in more detail in Appendix
F.

Final Remarks on Consistency Models

At the present time, many multiprocessors being built support some sort of re-
laxed consistency model, varying from processor consistency to release consis-
tency. Since synchronization is highly multiprocessor specific and error prone,
the expectation is that most programmers will use standard synchronization li-
braries and will write synchronized programs, making the choice of a weak con-
sistency model invisible to the programmer and yielding higher performance.

An alternative viewpoint, which we discuss more extensively in the next sec-
tion (specifically on page 731), argues that with speculation much of the perfor-
mance advantage of relaxed consistency models can be obtained with sequential
or processor consistency.

A key part of this argument in favor of relaxed consistency revolves the role of
the compiler and its ability to optimize memory access to potentially shared vari-
ables. This topic is also discussed on page 731.

Multithreading allows multiple threads to share the functional units of a single
processor in an overlapping fashion. To permit this sharing, the processor must
duplicate the independent state of each thread. For example, a separate copy of
the register file, a separate PC, and a separate page table are required for each
thread. The memory itself can be shared through the virtual memory mecha-
nisms, which already support multiprogramming. In addition, the hardware must

6.9 Multithreading: Exploiting Thread-Level
Parallelism within a Processor

724 Chapter 6 Multiprocessors and Thread-Level Parallelism
support the ability to change to a different thread relatively quickly; in particular,
a thread switch should be much more efficient than a process switch, which typi-
cally requires hundreds to thousands of processor cycles.

There are two main approaches to multithreading. Fine-grained multithread-
ing switches between threads on each instruction, causing the execution of multi-
ples threads to be interleaved. This interleaving is often done in a round-robin
fashion, skipping any threads that are stalled at that time. To make fine-grained
multithreading practical, the CPU must be able to switch threads on every clock
cycle. One key advantage of fine-grained multithreading is that it can hide the
throughput losses that arise from both short and long stalls, since instructions
from other threads can be executed when one thread stalls. The primary disad-
vantage of fine-grained multithreading is that it slows down the execution of the
individual threads, since a thread that is ready to execute without stalls will be de-
layed by instructions from other threads.

Coarse-grained multithreading was invented as an alternative to fine-grained
multithreading. Coarse-grained multithreading switches threads only on costly
stalls, such as level two cache misses. This change relieves the need to have
thread-switching be essentially free and is much less likely to slow the processor
down, since instructions from other threads will only be issued, when a thread en-
counters a costly stall. Coarse-grained multithreading suffers, however, from a
major drawback: it is limited in its ability to overcome throughput losses, espe-
cially from shorter stalls. This limitation arises from the pipeline start-up costs of
coarse-grain multithreading. Because a CPU with coarse-grained multithreading
issues instructions from a single thread, when a stall occurs, the pipeline must be
emptied or frozen. The new thread that begins executing after the stall must fill
the pipeline before instructions will be able to complete. Because of this start-up
overhead, coarse-grained multithreading is much more useful for reducing the
penalty of high cost stalls, where pipeline refill is negligible compared to the stall
time.

The next section explores a variation on fine-grained multithreading that en-
ables a superscalar processor to exploit ILP and multithreading in an integrated
and efficient fashion. Section 6.12 examines a commercial processor using
coarse-grained multithreading.

Simultaneous Multithreading: Converting Thread-Level Parallelism
into Instruction-Level Parallelism

Simultaneous multithreading (SMT) is a variation on multithreading that uses the
resources of a multiple-issue, dynamically-scheduled processor to exploit TLP at
the same time it exploits ILP. The key insight that motivates SMT is that modern
multiple-issue processors often have more functional unit parallelism available
than a single thread can effectively use. Furthermore, with register renaming and
dynamic scheduling, multiple instructions from independent threads can be is-

6.9 Multithreading: Exploiting Thread-Level Parallelism within a Processor 725
sued without regard to the dependences among them; the resolution of the depen-
dences can be handled by the dynamic scheduling capability.

Figure 6.44 conceptually illustrates the differences in a processor’s ability to
exploit the resources of a superscalar for the following processor configurations:

n a superscalar with no multithreading support,

n a superscalar with coarse-grained multithreading,

n a superscalar with fine-grained multithreading, and

n a superscalar with simultaneous multithreading.

In the superscalar without multithreading support, the use of issue slots is limited
by a lack of ILP, a topic we discussed extensively in Chapter 3. In addition, a ma-
jor stall, such as an instruction cache miss, can leave the entire processor idle.

In the coarse-grained multithreaded superscalar, the long stalls are partially
hidden by switching to another thread that uses the resources of the processor.
Although this reduces the number of completely idle clock cycles, within each
clock cycle, the ILP limitations still lead to idle cycles. Furthermore, in a coarse-
grained multithreaded processor, since thread switching only occurs when there
is a stall and the new thread has a start-up period, there are likely to be some fully
idle cycles remaining.

Issue Slots

Superscalar Coarse MT Fine MT SMT

T
i

m
e

FIGURE 6.44 This illustration shows how these four different approaches use the issue slots of a superscalar pro-
cessor. The horizontal dimension represents the instruction issue capability in each clock cycle. The vertical dimension rep-
resents a sequence of clock cycles. An empty (white) box indicates that the corresponding issue slot is unused in that clock
cycle. The shades of grey and black correspond to four different threads in the multithreading processors. Black is also used
to indicate the occupied issue slots in the case of the superscalar without multithreading support.

726 Chapter 6 Multiprocessors and Thread-Level Parallelism
In the fine-grained case, the interleaving of threads eliminates fully empty
slots. Because only one thread issues instructions in a given clock cycle, however,
ILP limitations still lead to a significant number of idle slots within individual
clock cycles.

In the SMT case, thread-level parallelism (TLP) and instruction-level parallel-
ism (ILP) are exploited simultaneously; with multiple threads using the issue
slots in a single clock cycle. Ideally, the issue slot usage is limited by imbalances
in the resource needs and resource availability over multiple threads. In practice,
other factors–including how many active threads are considered, finite limitations
on buffers, the ability to fetch enough instructions from multiple threads, and
practical limitations of what instruction combinations can issue from one thread
and from multiple threads–can also restrict how many slots are used. Although
Figure 6.44 greatly simplifies the real operation of these processors it does illus-
trate the potential performance advantages of multithreading in general and SMT
in particular.

As mentioned above, simultaneous multithreading uses the insight that a dy-
namically scheduled processor already has many of the hardware mechanisms
needed to support the integrated exploitation of TLP through multithreading. In
particular, dynamically scheduled superscalars have a large set of virtual registers
that can be used to hold the register sets of independent threads (assuming sepa-
rate renaming tables are kept for each thread). Because register renaming pro-
vides unique register identifiers, instructions from multiple threads can be mixed
in the datapath without confusing sources and destinations across the threads.
This observation leads to the insight that multithreading can be built on top of an
out-of-order processor by adding a per thread renaming table, keeping separate
PCs, and providing the capability for instructions from multiple threads to com-
mit. There are complications in handling instruction commit, since we would like
instructions from independent threads to be able to commit independently. The
independent commitment of instructions from separate threads can be supported
by logically keeping a separate reorder buffer for each thread.

Design Challenges in SMT processors
Because a dynamically scheduled superscalar processor is likely to have a deep
pipeline, SMT will be unlikely to gain much in performance if it were coarse-
grained. Since SMT will likely make sene only in a fine-grained implementation,
we must worry about the impact of fine-grained scheduling on single thread per-
formance. This effect can be minimized by having a preferred thread, which still
permits multithreading to preserve some of its performance advantage with a
smaller compromise in single thread performance. At first glance, it might appear
that a preferred thread approach sacrifices neither throughput nor single-thread
performance. Unfortunately, with a preferred thread, the processor is likely to
sacrifice some throughput, when the preferred thread encounters a stall. The rea-

6.9 Multithreading: Exploiting Thread-Level Parallelism within a Processor 727
son is that the pipeline is less likely to have a mix of instructions from several
threads, resulting in greater probability that either empty slots or a stall will oc-
cur. Throughput is maximized by having a sufficient number of independent
threads to hide all stalls in any combination of threads.

Unfortunately, mixing many threads will inevitably compromise the execution
time of individual threads. Similar problems exist in instruction fetch. To maxi-
mize single thread performance, we should fetch as far ahead as possible in that
single thread and always have the fetch unit free when a branch is mispredicted
and a miss occurs in the prefetch buffer. Unfortunately, this limits the number of
instructions available for scheduling from other threads, reducing throughput. All
multithreaded processor must seek to balance this tradeoff.

In practice, the problems of dividing resources and balancing single-thread
and multiple-thread performance turn out not to be as challenging as they sound,
at least for current superscalar back-ends. In particular, for current machines that
issue four to eight instructions per cycle, it probably suffices to have a small num-
ber of active threads, and an even smaller number of “preferred” threads. When-
ever possible, the processor acts on behalf of a preferred thread. This starts with
prefetching instructions: whenever the prefetch buffers for the preferred threads
are not full, instructions are fetched for those threads. Only when the preferred
thread buffers are full is the instruction unit directed to prefetch for other threads.
Note that having two preferred threads means that we are simultaneously
prefetching for two instruction streams and this adds complexity to the instruc-
tion fetch unit and the instruction cache. Similarly, the instruction issue unit can
direct its attention to the preferred threads, considering other threads only if the
preferred threads are stalled and cannot issue. In practice, having four to eight
threads and two to four preferred threads is likely to completely utilize the capa-
bility of a superscalar back-end that is roughly double the capability of those
available in 2001.

There are a variety of other design challenges for an SMT processor, includ-
ing:

n dealing with a larger register file needed to hold multiple contexts,

n maintaining low overhead on the clock cycle, particularly in critical steps such
as instruction issue, where more candidate instructions need to be considered,
and in instruction completion, where choosing what instructions to commit
may be challenging, and

n ensuring that the cache conflicts generated by the simultaneous execution of
multiple threads do not cause significant performance degradation.

In viewing these problems, two observation are important. In many cases, the po-
tential performance overhead due to multithreading is small, and simple choices
work well enough. Second, the efficiency of current superscalars is low enough
that there is room for significant improvement, even at the cost of some overhead.

728 Chapter 6 Multiprocessors and Thread-Level Parallelism
SMT appears to be the most promising way to achieve that improvement in
throughput.

Because SMT exploits thread-level parallelism on a multiple-issue supersca-
lar, it is most likely to be included in high-end processors targeted at server mar-
kets. In addition, it is likely that there will be some mode to restrict the
multithreading, so as to maximize the performance of a single thread.

Prior to deciding to abandon the Alpha architecture in mid 2001, Compaq had
announced that the Alpha 21364 would have SMT capability when it became
available in 2002 In July 2001, Intel announced that a future processor based on
the Pentium 4 microarchitecture and targeted at the server market, most likely
Pentium 4 Xenon, would support SMT, initially with two-thread implementation.
Intel claims a 30% improvement in throughput for server applications with this
new support.

Because multiprocessors redefine many system characteristics (e.g., performance
assessment, memory latency, and the importance of scalability), they introduce
interesting design problems that cut across the spectrum, affecting both hardware
and software. In this section we give several examples including: measuring and
reporting the performance of multiprocessors, enhancing latency tolerance in
memory systems, and a method for using virtual memory support to implement
shared memory.

Memory System Issues

As we have seen in this chapter, memory system issues are at the core of the de-
sign of shared-memory multiprocessors. Indeed, multiprocessing introduces
many new memory system complications that do not exist in uniprocessors. In
this section we look at two implementation issues that have a significant impact
on the design and implementation of a memory system in a multiprocessor
context.

Inclusion and Its Implementation
Many multiprocessors use multilevel cache hierarchies to reduce both the de-
mand on the global interconnect and the latency of cache misses. If the cache also
provides multilevel inclusion—every level of cache hierarchy is a subset of the
level further away from the processor—then we can use the multilevel structure
to reduce the contention between coherence traffic and processor traffic, as
explained earlier. Thus most multiprocessors with multilevel caches enforce the

6.10 Crosscutting Issues

6.10 Crosscutting Issues 729
inclusion property. This restriction is also called the subset property, because
each cache is a subset of the cache below it in the hierarchy.

At first glance, preserving the multilevel inclusion property seems trivial.
Consider a two-level example: any miss in L1 either hits in L2 or generates a
miss in L2, causing it to be brought into both L1 and L2. Likewise, any invalidate
that hits in L2 must be sent to L1, where it will cause the block to be invalidated,
if it exists.

The catch is what happens when the block size of L1 and L2 are different.
Choosing different block sizes is quite reasonable, since L2 will be much larger
and have a much longer latency component in its miss penalty, and thus will want
to use a larger block size. What happens to our “automatic” enforcement of inclu-
sion when the block sizes differ? A block in L2 represents multiple blocks in L1,
and a miss in L2 causes the replacement of data that is equivalent to multiple L1
blocks. For example, if the block size of L2 is four times that of L1, then a miss
in L2 will replace the equivalent of four L1 blocks. Let’s consider a detailed
example.

E X A M P L E Assume that L2 has a block size four times that of L1. Show how a miss
for an address that causes a replacement in L1 and L2 can lead to viola-
tion of the inclusion property.

A N S W E R Assume that L1 and L2 are direct mapped and that the block size of L1 is
b bytes and the block size of L2 is 4b bytes. Suppose L1 contains two
blocks with starting addresses x and x + b and that x mod 4b = 0, meaning
that x also is the starting address of a block in L2, then that single block
in L2 contains the L1 blocks x, x + b, x + 2b, and x + 3b. Suppose the pro-
cessor generates a reference to block y that maps to the block containing
x in both caches and hence misses. Since L2 missed, it fetches 4b bytes
and replaces the block containing x, x + b, x + 2b, and x + 3b, while L1
takes b bytes and replaces the block containing x. Since L1 still contains
x + b, but L2 does not, the inclusion property no longer holds. n

To maintain inclusion with multiple block sizes, we must probe the higher lev-
els of the hierarchy when a replacement is done at the lower level to ensure that
any words replaced in the lower level are invalidated in the higher-level caches.
Most systems chose this solution rather than the alternative of not relying on in-
clusion and snooping the higher-level caches. In the Exercises we explore inclu-
sion further and show that similar problems exist if the associativity of the levels
is different. Baer and Wang [1988] describe the advantages and challenges of in-
clusion in detail.

730 Chapter 6 Multiprocessors and Thread-Level Parallelism
Nonblocking Caches and Latency Hiding
We saw the idea of nonblocking or lockup-free caches in Chapter 5, where the
concept was used to reduce cache misses by overlapping them with execution and
by pipelining misses. There are additional benefits in the multiprocessor case.
The first is that the miss penalties are likely to be larger, meaning there is more
latency to hide, and the opportunity for pipelining misses is also probably larger,
since the memory and interconnect system can often handle multiple outstanding
memory references also.

Second, a multiprocessor needs nonblocking caches to take advantage of weak
consistency models. For example, to implement a model like processor consis-
tency requires that writes be nonblocking with respect to reads so that a processor
can continue either immediately, by buffering the write, or as soon as it establish-
es ownership of the block and updates the cache. Relaxed consistency models al-
low further reordering of misses, but nonblocking caches are needed to take full
advantage of this flexibility.
 Finally, nonblocking support is critical to implementing prefetching. Prefetch-
ing, which we also discussed in Chapter 5, is even more important in multipro-
cessors than in uniprocessors, again due to longer memory latencies. In Chapter 5
we described why it is important that prefetches not affect the semantics of the
program, since this allows them to be inserted anywhere in the program without
changing the results of the computation.

In a multiprocessor, maintaining the absence of any semantic impact from the
use of prefetches requires that prefetched data be kept coherent. A prefetched val-
ue is kept coherent if, when the value is actually accessed by a load instruction,
the most recently written value is returned, even if that value was written after the
prefetch. This result is exactly the property that cache coherence gives us for oth-
er variables in memory. A prefetch that brings a data value closer, and guarantees
that on the actual memory access to the data (a load of the prefetched value) the
most recent value of the data item is obtained, is called nonbinding, since the data
value is not bound to a local copy, which would be incoherent. By contrast, a
prefetch that moves a data value into a general-purpose register is binding, since
the register value is a new variable, as opposed to a cache block, which is a coher-
ent copy of a variable. A nonbinding prefetch maintains the coherence properties
of any other value in memory, while a binding prefetch appears more like a regis-
ter load, since it removes the data from the coherent address space.

Why is nonbinding prefetch critical? Consider a simple but typical example: a
data value written by one processor and used by another. In this case, the con-
sumer would like to prefetch the value as early as possible; but suppose the pro-
ducing process is delayed for some reason. Then the prefetch may fetch the old
value of the data item. If the prefetch is nonbinding, the copy of the old data is in-
validated when the value is written, maintaining coherence. If the prefetch is
binding, however, then the old, incoherent value of the data is used by the
prefetching process. Because of the long memory latencies, a prefetch may need
to be placed a hundred or more instructions earlier than the data use, if we aim to

6.10 Crosscutting Issues 731
hide the entire latency. This requirement makes the nonbinding property vital to
ensure coherent usage of the prefetch in multiprocessors.

Implementing prefetch requires the same sort of support that a lockup-free
cache needs, since there are multiple outstanding memory accesses. This require-
ment causes several complications:

1. A local node will need to keep track of the multiple outstanding accesses, since
the replies may return in a different order than they were sent. This accounting
can be handled by adding tags to the requests, or by incorporating the address
of the memory block in the reply.

2. Before issuing a request (either a normal fetch or a prefetch), the node must
ensure that it has not already issued a request for the same block, since two
write requests for the same block could lead to incorrect operation of the pro-
tocol. For example, if the node issues a write prefetch to a block, while it has
a write miss or write prefetch outstanding, both our snooping protocol and di-
rectory protocol can fail to operate properly.

3. Our implementation of the directory and snooping controllers assumes that the
processor stalls on a miss. Stalling allows the cache controller to simply wait
for a reply when it has generated a request. With a nonblocking cache or with
prefetching, a processor can generate additional requests while it is waiting for
replies. This complicates the directory and snooping controllers; Appendix E
shows how these issues can be addressed.

Compiler Optimization and the Consistency Model
Another reason for defining a model for memory consistency is to specify the
range of legal compiler optimizations that can be performed on shared data. In ex-
plicitly parallel programs, unless the synchronization points are clearly defined
and the programs are synchronized, the compiler could not interchange a read and
a write of two different shared data items, because such transformations might af-
fect the semantics of the program. This prevents even relatively simple optimiza-
tions, such as register allocation of shared data, because such a process usually
interchanges reads and writes. In implicitly parallelized programs—for example,
those written in High Performance FORTRAN (HPF)—programs must be syn-
chronized and the synchronization points are known, so this issue does not arise.

Using Speculation to Hide Latency in Strict Consistency Models
As we saw in Chapters 4 and 5, speculation can be used to hide memory latency.
It can also be used to hide latency arising from a strict consistency model, giving
much of the benefit of a relaxed memory model. The key idea is for: the proces-
sor to use dynamic scheduling to reorder memory references, letting them possi-
bly execute out-of-order. Executing the memory references out-of-order may
generate violations of sequential consistency, which might affect the execution of
the program. This possibility is avoided by using the delayed commit feature of a

732 Chapter 6 Multiprocessors and Thread-Level Parallelism
speculative processor. Assume the coherency protocol is based on invalidation. If
the processor receives an invalidation for a memory reference before the memory
reference is committed, the processor uses speculation recovery to back-out the
computation and restart with the memory reference whose address was invalidat-
ed.

If the reordering of memory requests by the processor yields an execution or-
der that could result in an outcome that differs from what would have been seen
under sequential consistency, the processor will redo the execution. The key to
using this approach is that the processor need only guarantee that the result
would be the same as if all access were completed in order, and it can achieve this
by detecting when the results might differ. The approach is attractive because the
speculative restart will rarely be triggered. It will only be triggered when there
are unsynchronized access that actually cause a race. Gharachorloo, et. al. made
this observation in a 1992 paper.

Hill in a 1998 paper advocates the combination of sequential or processor con-
sistency together with speculative execution as the consistency model of choice.
His argument has three parts. First, that an aggressive implementation of either
sequential consistency or processor consistency will gain most of the advantage
of a more relaxed model. Second, that such an implementation adds very little to
the implementation cost of a speculative processor. Third, that such an approach
allows the programmer to reason using the simpler programming models of ei-
ther sequential or processor consistency.

The MIPS R10000 design team had this insight in the mid 1990s and used the
R10000’s out-of-order capability to support this type of aggressive implementa-
tion of sequential consistency. Hill’s arguments are likely to motivate others to
follow this approach.

One open question is how successful compiler technology will be in optimiz-
ing memory references to shared variables. The state of optimization technology
and the fact that shared data is often accessed via pointers or array indexing has
limited the use of such optimizations. If this technology became available and led
to significant performance advantages, compiler writers would want to be able to
take advantage of a more relaxed programming model.

6.10 Crosscutting Issues 733
Using Virtual Memory Support to Build Shared Memory

Suppose we wanted to support a shared address space among a group of worksta-
tions connected to a network. One approach is to use the virtual memory mecha-
nism and operating system (OS) support to provide shared memory. This
approach, which was first explored more than 10 years ago, has been called dis-
tributed virtual memory (DVM) or shared virtual memory (SVM). The key obser-
vation that this idea builds on is that the virtual memory hardware has the ability
to control access to portions of the address space for both reading and writing. By
using the hardware to check and intercept accesses and the operating system to
ensure coherence, we can create a coherent, shared address space across the dis-
tributed memory of multiple processors.

In SVM, pages become the units of coherence, rather than cache blocks. The
OS can allow pages to be replicated in read-only fashion, using the virtual memo-
ry support to protect the pages from writing. When a process attempts to write
such a page, it traps to the operating system. The operating system on that proces-
sor can then send messages to the OS on each node that shares the page, request-
ing that the page be invalidated. Just as in a directory system, each page has a
home node, and the operating system running in that node is responsible for
tracking who has copies of the page.

The mechanisms are quite similar to those at work in coherent shared memory.
The key differences are that the unit of coherence is a page and that software is
used to implement the coherence algorithms. It is exactly these two differences
that lead to the major performance differences. A page is considerably bigger
than a cache block, and the possibilities for poor usage of a page and for false
sharing are very high. Such events can lead to much less stable performance and
sometimes even lower performance than a uniprocessor. Because the coherence
algorithms are implemented in software, they have much higher overhead.

The result of this combination is that shared virtual memory has become an
acceptable substitute for loosely coupled message passing, since in both cases the
frequency of communication must be low, and communication that is structured
in larger blocks is favored. Distributed virtual memory is not currently competi-
tive with schemes that have hardware-supported, coherent memory, such as the
distributed shared-memory schemes we examined in section 6.5: Most programs
written for coherent shared memory cannot be run efficiently on shared virtual
memory without changes.

Several factors could change the attractiveness of shared virtual memory. Bet-
ter implementation and small amounts of hardware support could reduce the
overhead in the operating system. Compiler technology, as well as the use of
smaller or multiple page sizes, could allow the system to reduce the disadvantag-
es of coherence at a page-level granularity. The concept of software-supported

734 Chapter 6 Multiprocessors and Thread-Level Parallelism
shared memory remains an active area of research, and such techniques may play
an important role in connecting more loosely coupled multiprocessors, such as
networks of workstations.

Performance Measurement of Parallel Processors

One of the most controversial issues in parallel processing has been how to mea-
sure the performance of parallel processors. Of course, the straightforward an-
swer is to measure a benchmark as supplied and to examine wall-clock time.
Measuring wall-clock time obviously makes sense; in a parallel processor, mea-
suring CPU time can be misleading because the processors may be idle but un-
available for other uses.

Users and designers are often interested in knowing not just how well a multi-
processor performs with a certain fixed number of processors, but also how the
performance scales as more processors are added. In many cases, it makes sense
to scale the application or benchmark, since if the benchmark is unscaled, effects
arising from limited parallelism and increases in communication can lead to re-
sults that are pessimistic when the expectation is that more processors will be
used to solve larger problems. Thus, it is often useful to measure the speedup as
processors are added both for a fixed-size problem and for a scaled version of the
problem, providing an unscaled and a scaled version of the speedup curves. The
choice of how to measure the uniprocessor algorithm is also important to avoid
anomalous results, since using the parallel version of the benchmark may under-
state the uniprocessor performance and thus overstate the speedup, as discussed
with an example in section 6.14.

Once we have decided to measure scaled speedup, the question is how to scale
the application. Let’s assume that we have determined that running a benchmark
of size n on p processors makes sense. The question is how to scale the bench-
mark to run on m × p processors. There are two obvious ways to scale the prob-
lem: keeping the amount of memory used per processor constant; and keeping the
total execution time, assuming perfect speedup, constant. The first method, called
memory-constrained scaling, specifies running a problem of size m × n on m × p
processors. The second method, called time-constrained scaling, requires that we
know the relationship between the running time and the problem size, since the
former is kept constant. For example, suppose the running time of the application
with data size n on p processors is proportional to n2/p. Then with time-
constrained scaling, the problem to run is the problem whose ideal running time
on m × p processors is still n2/p. The problem with this ideal running time has
size .

E X A M P L E Suppose we have a problem whose execution time for a problem of size
n is proportional to n3. Suppose the actual running time on a 10-processor
multiprocessor is 1 hour. Under the time-constrained and memory-con-
strained scaling models, find the size of the problem to run and the effec-

m n×

6.11 Putting It All Together: Sun’s Wildfire Prototype 735
tive running time for a 100-processor multiprocessor.

A N S W E R For the time-constrained problem, the ideal running time is the same, 1
hour, so the problem size is or 2.15 times larger than the original.
For memory-constrained scaling, the size of the problem is 10n and the
ideal execution time is 103/10, or 100 hours! Since most users will be re-
luctant to run a problem on an order of magnitude more processors for
100 times longer, this size problem is probably unrealistic. n

In addition to the scaling methodology, there are questions as to how the pro-
gram should be scaled when increasing the problem size affects the quality of the
result. Often, we must change other application parameters to deal with this ef-
fect. As a simple example, consider the effect of time to convergence for solving
a differential equation. This time typically increases as the problem size increas-
es, since, for example, we often require more iterations for the larger problem.
Thus when we increase the problem size, the total running time may scale faster
than the basic algorithmic scaling would indicate.

For example, suppose that the number of iterations grows as the log of the
problem size. Then for a problem whose algorithmic running time is linear in the
size of the problem, the effective running time actually grows proportional to n
log n. If we scaled from a problem of size m on 10 processors, purely algorithmic
scaling would allow us to run a problem of size 10 m on 100 processors. Ac-
counting for the increase in iterations means that a problem of size k × m, where k
log k = 10, will have the same running time on 100 processors. This problem size
yields a scaling of 5.72 m, rather than 10 m.

In practice, scaling to deal with error requires a good understanding of the ap-
plication and may involve other factors, such as error tolerances (for example, it
affects the cell-opening criteria in Barnes-Hut). In turn, such effects often signifi-
cantly affect the communication or parallelism properties of the application as
well as the choice of problem size.

Scaled speedup is not the same as unscaled (or true) speedup; confusing the
two has led to erroneous claims (e.g., see the fallacy on page 753). Scaled speed-
up has an important role, but only when the scaling methodology is sound and the
results are clearly reported as using a scaled version of the application. Singh et.
al.[1993] describe these issues in detail.

In Sections 6.3 and 6.5 we examined centralized memory architectures (also
known as SMPs or symmetric multiprocessors) and distributed memory architec-
tures (also known as DSMs or distributed shared memory multiprocessors).
SMPs have the advantage of maintaining a single centralized memory with uni-

6.11 Putting It All Together: Sun’s Wildfire Prototype

103 n×

736 Chapter 6 Multiprocessors and Thread-Level Parallelism
form access time, and although cache hit rates are crucial, memory placement is
not. In comparison, DSMs have a nonuniform memory architecture and memory
placement can be important; in return, they can achieve far greater scalability.

The question is whether there is a way to combine the advantages of the two
approaches: maximizing the uniform memory access property while simulta-
neously allowing greater scalability. The answer is a partial yes, if we accept
some compromises on the uniformity of the memory model and some limits of
scalability. The machine we discuss in this section, an experimental prototype
multiprocessor called Wildfire, built by Sun Microsystems, attempts to do exactly
this.

One key motivation for an approach that maximizes the uniformity of memory
access while accepting some limits on scalability is the rising importance of
OLTP and web server markets for large-scale multiprocessors. In comparison to
scientific applications, which played a key role in driving both SMP and DSM
development, commercial server applications have both less predictable memory
access patterns and less demand for scalability to hundreds or thousands of pro-
cessors.

The Wildfire Architecture

Wildfire attempts to maximize the benefits of SMP, while allowing scalability by
creating a DSM architecture using large SMPs as the nodes. The individual nodes
in the Wildfire design are Sun E series multiprocessors (E6x00, E5x00, E4x00, or
E3x00. Our measurements in this section are all done with E6000 multiproces-
sors as the nodes. An E6000 can accept up to 15 processor or I/O boards on the
Gigaplane bus interconnect, which supports 50 million bus transactions per sec-
ond, up to 112 outstanding transactions, and has a peak bandwidth of 3.2 GB/sec.
Each processor board contains 2 UltraSPARC III processors.

Wildfire can connect 2 to 4 E6000 multiprocessors by replacing one dual pro-
cessor (or I/O) board with a Wildfire Interface board (WFI), yielding up to 112
processors (4 x 28), as shown in Figure 6.45. The WFI board supports one coher-
ent address space across all four multiprocessor nodes with the two high-order
address bits used to designate which node contains a memory address. Hence,
Wildfire is a cache-coherent nonuniform memory access architecture (cc-NU-
MA) with large nodes. Within each node of 28 processors, memory is uniformly
accessible, only processes that span nodes need to worry about the non uniformi-
ty in memory access times.

The WFI plugs into the bus and sees all memory requests; it implements the
global coherence across up to four nodes. Each WFI has three ports that connect
to up to three additional Wildfire nodes, each with a dual directional 800 MB/sec
connection. WFI uses a simple directory scheme, similar to that discussed in Sec-
tion 6.7. To keep the amount of directory state small, the directory is actually a
cache, which is backed by the main memory in the node. When an miss occurs,
the request is routed to the home node for the requested address. When the re-

6.11 Putting It All Together: Sun’s Wildfire Prototype 737
quest arrives at the WFI of the home node, the WFI does a directory look-up. If
the address is cached locally or clean in memory, a bus transaction is used to re-
trieve it. If the requested data is cached exclusively in a remote node, a request is
sent to that remote node, where the WFI on that node generates a bus request to
fetch the data. When the data is returned from either the remote owner or the
home node, it is placed on the bus by the WFI and returned to the requesting pro-
cessor.

We can see from this discussion one major disadvantage of this design: each
remote request requires either four or five bus transactions. Two transactions are
required at the local node and two or three others are required elsewhere, depend-
ing on where the data is cached:

n If the referenced data is cached only in the home node, then two additional bus
transactions in the home are sufficient to retrieve the data.

n If the referenced data is cached exclusively in a third remote node, then two bus
transactions are required at the remote node and one is required at the home
node (to write the shared data back into the home memory).

These are one-way transactions and the E6000 bus is a split transaction bus, so
even a normal memory access takes two bus transactions. Nonetheless, there is an
increase in the required bus bandwidth of between 1.5 and 2.5. This increase

FIGURE 6.45 The Wildfire Architecture uses a bus-based SUN Enterprise server as its
building blocks. The WFI replaces a processor or I/O board and provides internode coheren-
cy and communication, as well as hardware support for page replication.

Memory

WFI
WFI

WFI WFI

E6000

E6000

E6000

CPUCPUI/OI/O

E6000

28

738 Chapter 6 Multiprocessors and Thread-Level Parallelism
means that the processor count at which the buses within the nodes become satu-
rated is lowered by a factor of at least 1.5, so that if a 28 processor design saturat-
ed the bus bandwidth of an E6000, a four-node Wildfire design could
accommodate about 18 processors per node before saturating the bus bandwidth,
assuming an even distribution of remote requests. A significant fraction of re-
quests to data cached remotely from its home would further lower the useful pro-
cessor count in each node. We will return to a further discussion of the
advantages and disadvantages of this approach shortly, but first, let us look at
how the Wildfire design reduces the fraction of costly remote memory accesses.

Using Page Replication and Migration to Reduce NUMA Effects
Wildfire uses special support, called CMR for Coherent Memory Replication, for
page migration and replication. The idea is inspired by a more sophisticated hard-
ware scheme for supporting migration and replication, called COMA for Cache
Only Memory Architecture. COMA is an approach that treats all main memory as
a cache allowing replication and migration of memory blocks. Full COMA im-
plementations are quite complex, so a variety of simplifications have been pro-
posed. CMR is based on one of these simplifications called S-COMA, for Simple
COMA. S-COMA, like CMR, uses page-level mechanisms for migrating and
replicating pages in memory, although coherence is still maintained at the cache-
block level. We discuss the COMA ideas, as well as other approaches to migra-
tion and replication, in more detail in the historical perspectives and in the exer-
cises.

To decide when to replicate or migrate pages, CMR uses a set of page counters
that record the frequency of misses to remote pages. Migration is preferred when
a page is primarily used by a node other than the one where the page is currently
allocated. Replication is useful when multiple nodes share a page; the drawback
of replication is that it requires extra memory. When the node sizes in a DSM are
small, page migration and replication can lead to both excessive overhead for
moving pages and excessive memory overhead from duplication of pages. With
the large nodes in Wildfire, however, page-level migration and replication are
much more attractive.

CMR, like S-COMA, maintains coherence at the unit of a cache-block, rather
than at the page level. This choice is important for two reasons. First, maintaining
coherence at the page level is likely to lead to a significant numbers of false shar-
ing misses; we saw this increase in false sharing misses with increases in block
size in Section 6.3. Second, the large size of a page means that even true sharing
misses are likely to end up moving many bytes of data that are never used. These
two drawbacks have limited the usefulness of the Shared Virtual Memory ap-
proach, which we discussed on page 733. CMR avoids these problems by making
the unit of coherence a cache block and by selectively migrating and replicating
some pages, while leaving others as standard NUMA pages that are accessed re-
motely when a cache miss occurs.

6.11 Putting It All Together: Sun’s Wildfire Prototype 739
In addition to the page counters that the operating system uses to decide when
to migrate or replicate a page, CMR requires special support to map between
physical and virtual addresses of replicated pages. First, when a page is replicat-
ed the page tables are changed to refer to the local physical memory address of
the duplicated page. To maintain coherence, however, a miss to this page must be
sent to the home node to check the directory entry in that node. Thus, the WFI
maintains a structure that maps the address of a replicated page (the local physi-
cal address) to its original physical address (called the global address) and gener-
ates the appropriate remote memory request, just as if the page were never
replicated. When a write-back request or invalidation request is received, the glo-
bal address must be translated to the local address, and the WFI maintains such a
mapping for all pages that have been replicated. By maintaining these two maps,
pages can be replicated while maintaining coherence at the unit of a cache block,
which increases the usefulness of page replication.

Performance of Wildfire

In this section we look at the performance of the Wildfire prototype starting first
with basic performance measures such as latency for memory accesses and band-
width and then turning to application performance. Since Wildfire is a research
prototype, rather than a product, its performance evaluation for applications is
limited, but some interesting experiments that evaluate the use of page migration
and replication are available.

Basic Performance Measures: Latency and Bandwidth
To better understand the design trade-offs between DSM architectures with nodes
that have small, medium, and large processor counts, we compare the latency and
bandwidth measurements of two different machines: the Sun Wildfire and the
SGI Origin 2000.

The SGI Origin 2000 is a highly scalable cc-NUMA architecture capable of
accommodating up to 2,048 processors. Each node consists of a pair of MIPS
R1000 processors sharing a single memory module. An interface processor called
the Hub (see Figure 6.46) provides an interface to the memory and directory in
each node and implements the coherence protocol. The Hub interfaces directly to
the routing chip, which provides a hypercube interconnection network that main-
tains a a bisection bandwidth of 200 MB/sec per processor. The high dimension
of the router also reduces hop counts leading to a lower ratio of remote to local
access.

The Origin and Wildfire designs have significantly different motivations, so a
comparison of the design trade-offs must acknowledge this fact. Among the most
important differences are:

740 Chapter 6 Multiprocessors and Thread-Level Parallelism
n The range of scalability: Origin can scale to thousands of processors, while the
Wildfire design can scale to 112. Practically, the Wildfire design limit is likely
to be closer to 64 to 80 processors, since bus bandwidth limits and the need for
I/O boards will reduce the effective size of each node.

n The Origin is designed primarily, though not exclusively, for scientific compu-
tation and the Wildfire design is oriented primarily for commercial processing.
For the Origin design, this means that scalable bandwidth is crucial, and for the
Wildfire design, it means that hiding more of the NUMA-ness is crucial.

n The processors are also different in ways that affect both the bandwidth and la-
tency of the nodes, including the block sizes of the L2 caches. We try to reduce
this artifact by supplying multiple comparison numbers (e.g., latency to restart
and back-to-back worst-case latency).

In Figure 6.47 we compare a variety of latency measurements for the two ma-
chines showing the variation arising both from local versus remote accesses and
the variation arising from the cache organization. The first portion of the table
concentrates on local memory accesses, which remain within one node. We com-
pare both the restart latency, which is the time from miss detection to pipeline re-

FIGURE 6.46 The SGI Origin 2000 uses an architecture that contains two processors per
node and a scalable interconnection network that can handle up to 2,048 processors. A high-
er dimension network leads to scalable bisection bandwidth and a low ratio per out-of-node
and in-node references.

Router

800 MB/sec

R10000 R10000

800 MB/sec

Memory
+

Directory
Hub

R10000 R10000

800 MB/sec

Memory
+

Directory
Hub

R10000 R10000

800 MB/sec

Memory
+

Directory
Hub

R10000 R10000

800 MB/sec

Memory
+

Directory
Hub

R10000 R10000

800 MB/sec

Memory
+

Directory
Hub

Node

Node

Node

Node

Node

Network

6.11 Putting It All Together: Sun’s Wildfire Prototype 741
start, and a worst-case, back-to-back measurement, which is measured by a
sequence of dependent loads. The performance differences arise from the cache
architecture (including a factor of two difference in block size), the pipeline ar-
chitecture, and the main memory access time. Local memory latency also de-
pends on the state of the cache block. We show three cases:

Characteristic How
measured?

Target
status?

Sun Wildfire SGI Origin
2000

Local memory latency Restart Unowned 342 338

Local memory latency Back-to-back Unowned 330 472

Local memory latency Restart Exclusive 362 656

Local memory latency Back-to-back Exclusive 350 707

Local memory latency Restart Dirty 482 892

Local memory latency Back-to-back Dirty 470 1036

Remote memory latency to nearest node Restart Unowned 1774 570

Remote memory latency to nearest node Restart Dirty 2162 1128

Remote memory latency to furthest node (< 128) Restart Unowned 1774 1219

Remote memory latency to furthest node (< 128) Restart Dirty 2162 1787

Avg. remote memory latency processors (< 128) Restart Unowned 1774 973

Avg. remote memory latency: processors (< 128) Restart Dirty 2162 1531

Average memory latency all processors (< 128) Restart Unowned 1416 963

Average memory latency all processors (< 128) Restart Dirty 1742 1520

Three hop miss to nearest node Restart Dirty 2550 953

Three hop miss to furthest node (worst case) Restart Dirty 2550 1967

Average three hop miss Restart Dirty 2453 1582

FIGURE 6.47 A comparison of memory access latencies (in ns) between the Sun Wildfire prototype (using E6000 nodes)
and a SGI Origin 2000 shows significant differences in both local and remote access times. This table has four parts corre-
sponding to local memory accesses (which are within the node), remote memory access involving only the requesting and
home node, a third section that compares the average memory latency for the combination of local and remote (but not 3-
hop) misses, and a final section showing the 3-hop latencies. The second column describes whether the latency is measured
by time to restart the pipeline or by the back-to-back miss cost. For local accesses we show both; for remote accesses, we
show the restart latency, which is the more likely case. The third column indicates the state of the remote data. Unowned
means that it is in the shared or invalid state in the other caches. Exclusive means exclusive but clean, which requires an
intervention to be completed before the memory access can complete, so that write serialization may be maintained. Dirty
indicates that the data is exclusive and has been updated; an access, therefore, requires retrieving the data from the cache.
In the local case, we show all three possibilities, to show the effect of the processor architecture (e.g., intervention cost and
cache block size both affect the access times), while for remote accesses we show the unowned and dirty case, which are
likely to be the most frequent.

742 Chapter 6 Multiprocessors and Thread-Level Parallelism
1. the accessed block is unowned or it is in the shared state

2. the accessed block is owned exclusively but clean, which requires that the
block be invalidated,

3. the accessed block is owned and dirty, which requires that the block be re-
trieved from the cache to satisfy the miss.

These 6 combinations (3 possible states of the target block x 2 possible miss tim-
ings) are the most likely cases of a local miss, though there are several other pos-
sibilities. These latencies are primarily dominated by choices in the
microprocessor design (such as minimizing time to restart or minimizing total
miss time) as well as in the local memory system and coherence implementation.
These choices increase the difficulty in comparing memory latency for a multi-
processor, since some of these design choices affect the remote latencies as well.

The second section of the table compares the remote access times under a va-
riety of different circumstances but all assuming that the home address is in a dif-
ferent node and that any cached copies are in the home node. For these numbers
we use restart latency and consider the two most probable coherence states for a
remotely accessed datum: unowned and dirty. The first two entries describe the
time to access a datum whose home is in the nearest node; for the Wildfire system
all remote nodes are equidistant, while for the Origin, the nearest node is one
router hop away. The second pair of numbers deals with the latency when the
home is as far away as possible for Origin. Finally, the third and last pair provide
the average latency for a uniform distribution of the home address across a multi-
processor with 128 processors.

The fourth set of numbers deals with 3-hop misses, assuming that the owner is
in a different node from either the home or the originating node. Here the most
likely case is that the data is Dirty, and we show the restart latency for this case
under the best, worst, and average assumptions.

From these measurements, we can see several of the trade-offs at work in a de-
sign that uses large nodes versus one that uses smaller nodes. Large nodes in-
crease the number of processors reachable with a local access, but also typically
have a longer remote access time. The latter is driven primarily by the higher
overhead of acquiring access to the bus either for the directory or to access a re-
mote cached copy. Of course, access latency is only part of the picture, band-
width is also affected by these design decisions.

As Figure 6.48 shows, the pipeline memory bandwidth can be measured in
many different ways. The Origin design supports greater memory bandwidth by
every measure except local bandwidth to dirty data. Local bandwidth and bisec-
tion bandwidth are almost three times higher on a per processor basis for Origin.

Application performance of Wildfire

In this section, we examine the performance of Wildfire, first on an OLTP appli-
cation and then on a scientific application. We look at both the basic performance

6.11 Putting It All Together: Sun’s Wildfire Prototype 743
of the architecture versus alternatives such as a strict SMP or a small-node
NUMA and then consider the effect of Wildfire’s support for replication and mi-
gration.

Performance of the OLTP Workload
In this study an OLTP application supporting 900 warehouses was run on a 16-
processor E6000 and on a two-node, 16-processor Wildfire configuration. I/O
was supplied by 240 disks connected by fiber-channel. To examine the perfor-
mance of Wildfire and the effect of its support for replication and migration, we
consider six system alternatives:

1. Ideal SMP: a 16-processor SMP design, modeled using the E6000.

2. Wildfire with CMR and locality scheduling: a 2-node, 16-processor Wildfire
with replication and migration enabled and using the locality scheduling in the
OS.

3. Wildfire with CMR only.

4. Wildfire base with neither CMR nor locality scheduling.

5. Unoptimized Wildfire with poor data placement: Wildfire with poor data

Characteristic Sun Wildfire
MB/sec

SGI Origin 2000
MB/sec

Pipelined local memory bandwidth: unowned data 312 554

Pipelined local memory bandwidth: exclusive data 266 340

Pipelined local memory bandwidth: dirty data 246 182

Total local memory bandwidth (per node) 2,700 631

Local memory bandwidth per processor 96 315

Aggregate local memory bandwidth (all nodes, 112 processors) 10,800 39,088

Remote memory bandwidth, unowned data 508

Remote 3-hop bandwidth, dirty data 238

Total bisection bandwidth (112 processors) 9,600 25,600

Bisection bandwidth per processor (112 processors) 86 229

FIGURE 6.48 A comparison of memory bandwidth measurements (in MB/sec) between the Sun Wildfire prototype (using
E6000 nodes) and a SGI Origin 2000 shows significant differences in both local and remote memory bandwidth. The first
section of the table compares pipelined local memory bandwidth, which is defined as the sustainable bandwidth for inde-
pendent accesses generated by a single processor; like restart latency, this measure depends on the state of the addressed
cache block. The second section of the table compares the total local memory bandwidth (i.e., within a node) on a per pro-
cessor basis and system wide. The third section compares the memory bandwidth for remote accesses, both a two-hop ac-
cess to an unowned cache block and a three-hop access to a dirty cache block. The final section compares the total bisection
bandwidth for the entire system and on a per processor basis.

744 Chapter 6 Multiprocessors and Thread-Level Parallelism
placement and unintelligent scheduling. Poor data placement is modeled by
assuming that 50% of the cache misses are remote, which in practice is unre-
alistic.

6. Unoptimized Wildfire with thin nodes (2 processors per node) and poor data
placement. This system assumes Wildfires interconnection characteristics, but
with eight two-processor nodes. Poor data placement is modeled by assuming
that 87.5% (i.e., 14/16) 1of the cache misses are remote, which in practice is
unrealistic.

To examine performance we first look at the fraction of cache misses satisfied
within a node. Figure 6.49 shows the fraction of local accesses for each of these
configurations. For this OLTP application the Wildfire optimizations improve
fraction of local accesses by a factor of 1.23 over unoptimized Wildfire, bringing
the fraction of local accesses to 87%.

FIGURE 6.49 The fraction of local accesses (defined as within the node) is shown for six different configurations,
ranging from an ideal SMP (with only one node and 16 processors) to four configurations with 8-processor nodes,
to a configuration with thin, 2-processor nodes. The fraction of remote accesses is set as a parameter for the two right-
most data points, while the other numbers are measured.

100%

87%

76%

71%

50%

13%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ideal SMP Wildfire complete Wildfire CMR only Unoptimized Wildfire Unoptimized Wildfire,
poor data allocation

Unoptimized thin-
node Wildfire, poor

data allocation

%
 L

oc
al

 A
cc

es
se

s

6.11 Putting It All Together: Sun’s Wildfire Prototype 745
Figure 6.50 shows how these changes in local versus remote access fractions
translate to performance for this OLTP application. The performance of each sys-
tem in Figure 6.50 is relative to the E6000; however, as we will see when we ex-
amine a scientific application, the E6000 can encounter performance losses from
bus contention at 16 processors, so that, in fact, the performance of the E6000
does not represent an upper bound for a multiprocessor using sixteen of the same
processors. The E6000 performance is probably within 10-20% of contention-
free performance for this benchmark. As we can see from the data the penalty for
off-node accesses translates directly to reduced performance. The next section
examine how Wildfire performs for a scientific application.

Performance of Wildfire on a Scientific Application
In this section we examine a performance study of Wildfire using a Red-Black fi-
nite difference solver to solve a 2-dimensional Poisson equation for a square grid.
In this implementation, each 2x2 block of grid points is assigned either a red or

FIGURE 6.50 The performance of the OLTP application using 16 processors is highest for the E6000, and drops
off as remote memory accesses become a major performance loss.

100%

7%

75%

67%

55%

41%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

E6000 Wildfire complete Wildfire CMR only Unoptimized Wildfire Unoptimized Wildfire,
poor data allocation

Unoptimized thin-
node Wildfire, poor

data allocation

R
el

at
iv

e
P

er
fo

rm
an

ce

746 Chapter 6 Multiprocessors and Thread-Level Parallelism
black color, so that the overall grid looks like a checkerboard. Red data points are
updated based on values of black data points and vice versa, which allows all red
points to be updated in parallel and all black points to be updated in parallel. A
point is updated by accessing the four neighboring points (all of which are a dif-
ferent color). This data access pattern is common in two-dimensional solvers.

Our first performance comparisons examine the performance of Wildfire ver-
sus the E6000 and the E10000. The E 10000 uses a two-level interconnect. Four
processors are connected with a 4x4 cross-bar to four memory modules, creating
a 4-processor SMP. Up to 16 of these 4-processor nodes can be connected with
the Starfire interconnect, which uses a 16x16 cross-bar. Coherence is maintained
by a global broadcast scheme.

Figure 6.51 shows the performance of the generalized red-black (GRB) solver
for six different configurations. The performance is given in terms of iterations
per second with more iterations being better. The leftmost group of columns
compares 24-processor measurements on an E6000, E10000, and Wildfire; while
the rightmost bars compare 36-processor runs on two different Wildfire configu-
rations and an E10000. Both the 24 and 36 processor runs use the same processor
(250 MHZ UltraSPARC II) with 4MB secondary caches.

FIGURE 6.51 Wildfire performance for the Red-Black solver measured as iterations per second shows the perfor-
mance for three different 24-processor and three different 36-processor machines. Iterations per second is directly
proportional to performance.

0.56

0.48

0.40

0.91

0.77

0.67

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Wildfire (3x8
CPUs)

E10000 (24
CPUs)

E6000 (24 CPUs) Wildfire (4x9
CPUs)

E10000 (2x18
CPUs)

E6000 (36 CPUs)

It
er

at
io

ns
/s

ec
on

d

6.11 Putting It All Together: Sun’s Wildfire Prototype 747
The 24-processor runs include a 3-node Wildfire configuration (with an 8-pro-
cessor E6000 in each Wildfire node), a 6-node E10000 and a 24-processor
E6000. The performance differences among the 24-processor runs on Wildfire,
the E1000, and the E6000 arise primarily from bus and interconnect differences.
The global broadcast of the E10000 has nontrivial overhead. Thus, despite the
fact that the E10000 interconnect has performance equal to that of Wildfire, the
performance of Wildfire is about 1.17 times better. For the E6000, the measured
bus usage for the 24-processor runs is between 90% and 100%, leading to a sig-
nificant bottleneck and lengthened memory access time. Overall, Wildfire has a
performance advantage of about 1.19 versus the E6000. Equally importantly,
these measurements tell us that configurations of Wildfire with larger processor
counts per node will not have good performance, at least for applications with be-
havior similar to this solver. The 36 processor runs confirm this view.

The 36-processor runs compare three alternatives: a 9-node E10000, a 2x18
configure of Wildfire (each Wildfire node is an 18-processor E6000) and a 4x9
configuration of Wildfire (each Wildfire node is an 9-processor E6000). The most
interesting comparison here involve the 36-processor versus 24-processor results.
The E10000 shows a faster than linear speedup (1.67 in runtime versus 1.5 in
processor count); this probably results from improved cache behavior due to the
smaller data set that each processor must access in the 36-processor case. The
Wildfire results are even more interesting; the 4x9 configuration also shows faster
than linear speed-up versus the 24-processor result. The 2x18 configuration,
however, shows speed-up that is slower than linear (1.38 vs. 1.5), most probably
because the bus has become a major bottleneck.

How well do the migration and replication capabilities of Wildfire work for
scientific applications? To examine this question, this solver was executed start-
ing with a memory allocation that placed all the data on a single node. Wildfire’s
migration and replication capabilities were used to allow data to migrate and rep-
licate to one of the other nodes. Figure 6.52 shows the performance in iterations
per second over time for a 1, 2, 3, and 4 node Wildfire, each with 24 processors/
node. As shown, the 2, 3, and 4 node runs converge to stable and best perfor-
mance after somewhere between 120 and 180 seconds. Since during the initial
time period, the application averages about 0.2 iterations per second, it requires
between 600 and 900 iterations to reach the stable performance levels.

Although the eventual convergence to a good operating point from an initial
pathological memory allocation is impressive, the number of iterations required
is rather large, and leaves open the question of how well the migration and repli-
cation strategies might work in problems where the memory allocation continued
to change over time.

A key question is what the relative benefits of migration and replication are?
Figure 6.53 examines this question by showing the iteration rate and time to
reach that rate. We also show the number of replications and migrations. The pri-

748 Chapter 6 Multiprocessors and Thread-Level Parallelism
mary conclusion we can draw from the performance of these three cases is that
the stable performance level for migration is competitive with the combination of
migration and replication. Since supporting migration had much lower hardware
costs that supporting replication (because the reverse memory maps are not need-
ed), a design that supports migration may be equally or more cost effective than
supporting both migration and replication. The large data set coupled with well

FIGURE 6.52 The replication and migration support of Wildfire allows an application to start with a pathological
memory allocation (all memory on one node) and converge to a stable allocation that gives nearly linear speed-up.
The final iterations/second number shows that the 96-processor, 4-node version achieves 90% of linear speedup. As ex-
pected, the two node runs converge slightly faster than three or four node runs.

1 node

2 nodes

3 nodes

4 nodes

6.11 Putting It All Together: Sun’s Wildfire Prototype 749
defined access patterns by the “owner” of each portion of the grid means that rep-
lication buys little over only migration.

Concluding Remarks on Wildfire

Wildfire represents an alternative to thin-node NUMAs with 2 to 4 processors per
node, while permitting greater scalability than strict SMP designs. The shift in
market interest from scientific and supercomputing applications to large-scale
servers for database and web applications may favor a fat-node design with 8 to
16 processors per node. The two primary reasons for this are:

1. Although a moderate range of scalability, up to a few hundred processors may
be of interest, the “sweet spot” of the server market is likely to be tens of pro-
cessors. Few, if any, customers will express interest in the thousand processor
machines that are a key part of the supercomputer marketplace.

2. The memory access patterns of commercial applications tend to have less
sharing and less predictable sharing and data access. The lower rates of shar-
ing are key because a fat node design will tend to have lower bisection band-
width per processor than a thin-node design. Since a fat-node design has
somewhat less dependence on exact memory allocation and data placement, it
is likely to perform better for applications with irregular or changing data ac-
cess patterns. Furthermore, fat-nodes make it easier for migration and replica-
tion to work well.

The drawbacks of a fat node design are essentially the dual of its advantages.
These include: less scalability, lower bisection bandwidth per processor, and
higher internode latencies. For applications that require significant amounts of in-
ternode communication even with fat nodes, a fat-node design will face a more
challenging programming and optimization task, since the ratio of local to remote
accesses times is likely to be quite a bit larger. To read more on Wildfire see:

Policy Iterations
per second

Iterations needed
to reach stability

Migrations # Replications

No migration or replication 0.10 0 0 0

Migration only 1.06 154 sec. 99,251

Replication only 1.15 61 sec. 98.545

Migration + replication 1.09 151 sec. 98,543 85

FIGURE 6.53 Migration only, replication only, and the combination of all three achieve about the same perfor-
mance given enough execution time and that number is roughly 10 times the performance achieved with the initial
data allocation and no replication or migration. For this experiment, which used a 96-processor, 4-node Wildfire, the pag-
es were allocated in a cyclic fashion, meaning that roughly 25% of were allocated to the correct location initially. A large data
set size (16K x 8K) that exceeds the capacity of the secondary caches, leads to a high miss rate, which requires migration,
replication, or careful initial data placement to reduce the miss penalty.

750 Chapter 6 Multiprocessors and Thread-Level Parallelism
Hagersten and Koster [1998] and Noordergraaf and van der Pas [1999], which are
also the sources for the data in this section.

Considering the growing significance of the commercial server market with its
less predictable memory access patterns, its reduced emphasis on ultimate scal-
ability, and its lower interprocess communication requirements, it is likely the
“plump” node designs will become more attractive. Growing processor demands
and avoidance of bus limits, is likely to lead to designs with 4-8 processors per
node rather than the 16-24 limit in Wildfire. Although fatter nodes are likely to be
beneficial, the nonuniform access time to memory cannot be ignored when the lo-
cal node provide SMP-style access to only 3-7 other nodes.
.

As we have seen, dynamic scheduling can be used to make a single program run
faster, as we saw in the Pentium III. Alternatively, multithreading can use a dif-
ferent form of dynamic scheduling (scheduling across multiple threads) to in-
crease the throughput of multiple simultaneously executing programs. This is the
approach used in the IBM RS64 III.

The IBM RS64 III processor, also called Pulsar, is a PowerPC microprocessor
that supports two different IBM product lines: the RS/6000 series, where it is
called the RS64 III processor, and the AS/400 series, where it is called the A50.
Both product lines are aimed at commercial servers and focus on throughput in
common commercial applications.

Motivated by the observation that such applications encounter high cache and
TLB miss rates and thus degraded CPI, the designers decided to include a multi-
threading capability to enhance throughput and make use of the processor during
long TLB or cache-miss stalls. In deciding how to support multithreading, the de-
signers considered three facts:

1. The Pulsar processor, which was based on the earlier Northstar, is a statically
scheduled processor.

2. The performance penalty for multithreading must be small both in silicon area
and in clock rate.

3. Single thread performance on Pulsar must not suffer.

This combination of considerations led to a multithreading architecture with
the following characteristics:

1. Pulsar supports precisely two threads: this minimizes both the incremental sil-
icon area and the potential clock rate impact.

6.12 Another View: Multithreading in a Commercial Server

6.13 Another View: Embedded Multiprocessors 751
2. The multithreading is coarsely scheduled; that is, threads are not interleaved,
instead a thread switch occurs only when a long latency stall is encountered.
Coarse multithreading was chosen to maximize single thread performance and
make use of the statically scheduled pipeline structure, which makes SMT an
impractical choice.

To implement the multithreading architecture, Pulsar includes two copies of
the register files and PC register, which resulted in relatively minor silicon over-
head (< 10%). In addition, a special register that determines the maximum num-
ber of cycles between a thread switch ensures that no thread is ever completely
starved for cycles. The overall architecture provides a significant improvement in
multithreaded throughput, a key metric for the commercial server workloads. The
Pulsar microprocessor is the first widely available, mainline microprocessor to
support multithreading; it is likely that future microprocessors will include such a
capability either a coarse-grained form or using the SMT approach.

Multiprocessors are now common in server environments, and several desktop
multiprocessors are available from vendors, such as Sun, Compaq, and Apple. In
the embedded space, a number of special-purpose designs have used customized
multiprocessors, including the Sony Playstation described in Chapters 2 and 5.
Many special-purpose embedded designs consist of a general-purpose program-
mable processor with special purpose finite-state machines that are used for
stream-oriented I/O. In applications ranging from computer graphics and media
processing to telecommunications, this style of special-purpose multiprocessor is
becoming common. Although the interprocessor interactions in such deigns is
highly regimented and relatively simple–consisting primarily of a simple com-
munication channel–because much of the design is committed to silicon, ensur-
ing that the communication protocols among the input/output processors and the
general-purpose processor are correct is a major challenge in such designs.

More recently, we have seen the first appearance, in the embedded space, of
embedded multiprocessors built from several general-purpose processors. These
multiprocessors have been focused primarily on the high-end telecommunica-
tions and networking market, where scalability is critical. An example of such a
design is the MXP processor designed by empowerTel Networks for use in voice
over IP systems. The MXP processor consists of four main components:

1. An interface to serial voice streams, including support for handling jitter.

2. Support for fast packet routing and channel lookup.

6.13 Another View: Embedded Multiprocessors

752 Chapter 6 Multiprocessors and Thread-Level Parallelism
3. A complete Ethernet interface, including the MAC layer.

4. Four MIPS32 R4000-class processors each with its own caches (a total of 48
KB or 12 KB per processor).

The MIPS processors are used to run the code responsible for maintaining the
voice over IP channels, including the assurance of quality of service, echo can-
cellation, simple compression, and packet encoding. Since the goal is to run as
many independent voice streams as possible, a multiprocessor is an ideal solu-
tion.

Because of the small size of the MIPS cores, the entire chip takes only 13.5M
transistors. Future generations of the chip are expected to handle more voice
channels, as well as do more sophisticated echo cancellation, voice activity de-
tection, and more sophisticated compression.

Your authors expect that multiprocessing will become widespread in the em-
bedded computing arena in the future for two primary reasons. First, the issues of
binary software compatibility, which plague desktop and server systems, are less
relevant in the embedded space. Often software in an embedded application is
written from scratch for an application or significant modified. Second, the appli-
cations often have natural parallelism, especially at the high-end of the embedded
space. Examples of this natural parallelism abound in applications such as a set-
top box, a network switch, or a game system. The lower barriers to use of thread-
level parallelism together with the greater sensitivity to die cost (and hence effi-
cient use of silicon) will likely lead to more ready adoption of multiprocessing in
the embedded space, as the application needs grow to demand more performance.

Given the lack of maturity in our understanding of parallel computing, there are
many hidden pitfalls that will be uncovered either by careful designers or by un-
fortunate ones. Given the large amount of hype that has surrounded multi-
processors, especially at the high end, common fallacies abound. We have
included a selection of these.

Pitfall: Measuring performance of multiprocessors by linear speedup versus
execution time.

“Mortar shot” graphs—plotting performance versus number of processors show-
ing linear speedup, a plateau, and then a falling off—have long been used to
judge the success of parallel processors. Although speedup is one facet of a paral-
lel program, it is not a direct measure of performance. The first question is the
power of the processors being scaled: A program that linearly improves perfor-
mance to equal 100 Intel 486s may be slower than the sequential version on a
workstation. Be especially careful of floating-point-intensive programs; process-

6.14 Fallacies and Pitfalls

6.14 Fallacies and Pitfalls 753
ing elements without hardware assist may scale wonderfully but have poor col-
lective performance.

Comparing execution times is fair only if you are comparing the best algo-
rithms on each computer. Comparing the identical code on two processors may
seem fair, but it is not; the parallel program may be slower on a uniprocessor than
a sequential version. Developing a parallel program will sometimes lead to algo-
rithmic improvements, so that comparing the previously best-known sequential
program with the parallel code—which seems fair—will not compare equivalent
algorithms. To reflect this issue, the terms relative speedup (same program) and
true speedup (best program) are sometimes used.

Results that suggest super-linear performance, when a program on n pro-
cessors is more than n times faster than the equivalent uniprocessor, may indicate
that the comparison is unfair, although there are instances where “real” superlin-
ear speedups have been encountered. For example, when Ocean is run on two
processors, the combined cache produces a small superlinear speedup (2.1 vs.
2.0).

In summary, comparing performance by comparing speedups is at best tricky
and at worst misleading. Comparing the speedups for two different multiproces-
sors does not necessarily tell us anything about the relative performance of the
multiprocessors. Even comparing two different algorithms on the same multipro-
cessor is tricky, since we must use true speedup, rather than relative speedup, to
obtain a valid comparison.

Fallacy: Amdahl’s Law doesn’t apply to parallel computers.

In 1987, the head of a research organization claimed that Amdahl’s Law (see
section 1.6) had been broken by an MIMD multiprocessor. This statement hardly
meant, however, that the law has been overturned for parallel computers; the ne-
glected portion of the program will still limit performance. To understand the ba-
sis of the media reports, let’s see what Amdahl [1967] originally said:

A fairly obvious conclusion which can be drawn at this point is that the effort ex-
pended on achieving high parallel processing rates is wasted unless it is accom-
panied by achievements in sequential processing rates of very nearly the same
magnitude. [p. 483]

One interpretation of the law was that since portions of every program must be
sequential, there is a limit to the useful economic number of processors—say
100. By showing linear speedup with 1000 processors, this interpretation of
Amdahl’s Law was disproved.

The basis for the statement that Amdahl’s Law had been “overcome” was the
use of scaled speedup.The researchers scaled the benchmark to have a data set
size that is 1000 times larger and compared the uniprocessor and parallel execu-
tion times of the scaled benchmark. For this particular algorithm the sequential

754 Chapter 6 Multiprocessors and Thread-Level Parallelism
portion of the program was constant independent of the size of the input, and the
rest was fully parallel—hence, linear speedup with 1000 processors.

We have already described the dangers of relating scaled speedup as true
speedup. Additional problems with this sort of scaling methodology, which can
result in unrealistic running times, were examined in section 6.10.

Fallacy: Linear speedups are needed to make multiprocessors cost-effective.

It is widely recognized that one of the major benefits of parallel computing is to
offer a “shorter time to solution” than the fastest uniprocessor. Many people, how-
ever, also hold the view that parallel processors cannot be as cost-effective as uni-
processors unless they can achieve perfect linear speedup. This argument says that
because the cost of the multiprocessor is a linear function of the number of proces-
sors, anything less than linear speedup means that the ratio of performance/cost
decreases, making a parallel processor less cost-effective than using a uniproces-
sor.

The problem with this argument is that cost is not only a function of processor
count, but also depends on memory and I/O. The effect of including memory in
the system cost was pointed out by Wood and Hill [1995], and we use an example
from their article to demonstrate the effect of looking at a complete system. They
compare a uniprocessor server, the Challenge DM (a deskside unit with one pro-
cessor and up to 6 GB of memory), against a multiprocessor Challenge XL, a
rack-mounted, bus-based multiprocessor holding up to 32-processors. (The XL
also has faster processors than those of the Challenge DM—150 MHz versus 100
MHz—but we will ignore this difference.)

First, Wood and Hill introduce a cost function: cost (p, m), which equals the
list price of a multiprocessor with p processors and m megabytes of memory. For
the Challenge DM:

For the Challenge XL:

Suppose our computation requires 1 GB of memory on either multiprocessor.
Then the cost of the DM is $138,400, while the cost of the Challenge XL is
$181,600 + $20,000 × p.

For different numbers of processors, we can compute what speedups are nec-
essary to make the use of parallel processing on the XL more cost effective than
that of the uniprocessor. For example, the cost of an 8-processor XL is $341,600,
which is about 2.5 times higher than the DM, so if we have a speedup on 8 pro-
cessors of more than 2.5, the multiprocessor is actually more cost effective than
the uniprocessor. If we are able to achieve linear speedup, the 8-processor XL

tcos 1 m,() $38,400 $100 m×+=

tcos p m,() $81,600 $20,000 p× $100 m×+ +=

Exercises 755
system is actually more than three times more cost effective! Things get better
with more processors: On 16 processors, we need to achieve a speedup of only
3.6, or less than 25% parallel efficiency, to make the multiprocessor as cost effec-
tive as the uniprocessor.

The use of a multiprocessor may involve some additional memory overhead,
although this number is likely to be small for a shared-memory architecture. If
we assume an extremely conservative number of 100% overhead (i.e., double the
memory is required on the multiprocessor), the 8-processor multiprocessor needs
to achieve a speedup of 3.2 to break even, and the 16-processor multiprocessor
needs to achieve a speedup of 4.3 to break even.

Surprisingly, the XL can even be cost effective when compared against a
headless workstation used as a server. For example, the cost function for a Chal-
lenge S, which can have at most 256 MB of memory, is

For problems small enough to fit in 256 MB of memory on both multiprocessors,
the XL breaks even with a speedup of 6.3 on 8 processors and 10.1 on 16 proces-
sors.

In comparing the cost/performance of two computers, we must be sure to in-
clude accurate assessments of both total system cost and what performance is
achievable. For many applications with larger memory demands, such a compari-
son can dramatically increase the attractiveness of using a multiprocessor.

Fallacy: Multiprocessors are “free.”

This fallacy has two different interpretations, and both are erroneous. The first is,
given that modern microprocessors contain support for snooping caches, we can
build small-scale, bus-based multiprocessors for no additional cost in dollars
(other than the microprocessor cost) or sacrifice of performance. Many designers
believed this to be true and have even tried to build multiprocessors to prove it.

To understand why this doesn’t work, you need to compare a design with no
multiprocessing extensibility against a design that allows for a moderate level of
multiprocessing (say 2–4 processors). The 2–4 processor design requires some
sort of bus and a coherence controller that is more complicated than the simple
memory controller required for the uniprocessor design. Furthermore, the mem-
ory access time is almost always faster in the uniprocessor case, since the proces-
sor can be directly connected to memory with only a simple single-master bus.
Thus the strictly uniprocessor solution typically has better performance and
lower cost than the 1-processor configuration of even a very small multiproces-
sor.

It also became popular in the 1980s to believe that the multiprocessor design
was free in the sense that an MP could be quickly constructed from state-of-the-
art microprocessors and then quickly updated using newer processors as they

tcos 1 m,() $16,600 $100 m×+=

756 Chapter 6 Multiprocessors and Thread-Level Parallelism
became available. This viewpoint ignores the complexity of cache coherence and
the challenge of designing high-bandwidth, low-latency memory systems, which
for modern processors is extremely difficult. Moreover, there is additional soft-
ware effort: compilers, operating systems, and debuggers all must be adapted for
a parallel system. The next two fallacies are closely related to this one.

Fallacy: Scalability is almost free.

The goal of scalable parallel computing was a focus of much of the research and
a significant segment of the high-end multiprocessor development from the mid-
1980s through the late 1990s. In the first half of that period, it was widely held
that you could build scalability into a multiprocessor and then simply offer the
multiprocessor at any point on the scale from a small to large number of proces-
sors without sacrificing cost effectiveness. The difficulty with this view is that
multiprocessors that scale to larger processor counts require substantially more
investment (in both dollars and design time) in the interprocessor communication
network, as well as in aspects such as operating system support, reliability, and
reconfigurability.

As an example, consider the Cray T3E, which uses 3D torus capable of scal-
ing to 2,048 processors as an interconnection network. At 128 processors, it de-
livers a peak bisection bandwidth of 38.4 GB/s, or 300 MB/s per processor. But
for smaller configurations, the Compaq Alphaserver ES40 can accept up to 4 pro-
cessors and has 5.6 GB/s of interconnect bandwidth, or almost four times the
bandwidth per processor. Furthermore, the cost per CPU in a Cray T3E is several
times higher than the cost in the ES40.

The cost of scalability can be seen even in more limited design ranges, such as
the Sun Enterprise server line that all use the same basic Ultraport interconnect,
scaling the amount of interconnect for different systems. For example, the 4 pro-
cessor Enterprise 450 places all four processors on a single board and uses an on-
board crossbar. The midrange system, designed to support 6 to 30 processors,
uses a single address bus and a 32-byte wide data bus to connect the processors.
The Enterprise 10000 series uses four addresses buses (memory address inter-
leaved) and a 16x16 crossbar to connect the processors. Although the solution
gives getter scalability across the product range than forcing the low-end systems
to accommodate four address buses and a multiboard crossbar, the cost of the in-
terconnect system grows faster than linear as the number of processors grows,
leading to a higher per processor cost for the 6000 series versus the 450 and for
the 10000 series versus the 6000 series.

Scalability is also not free in software: To build software applications that
scale requires significantly more attention to load balance, locality, potential con-
tention for shared resources, and the serial (or partly parallel) portions of the pro-
gram. Obtaining scalability for real applications, as opposed to toys or small
kernels, across factors of more than 10 in processor count, is a major challenge.

6.14 Fallacies and Pitfalls 757
In the future, better compiler technology and performance analysis tools may
help with this critical problem.

Pitfall: Not developing the software to take advantage of, or optimize for, a
multiprocessor architecture.

There is a long history of software lagging behind on massively parallel proces-
sors, possibly because the software problems are much harder. Two examples
from mainstream, bus-based multiprocessors illustrate the difficulty of develop-
ing software for new multiprocessors. The first has to do with not being able to
take advantage of a potential architectural capability, and the second arises from
the need to optimize the software for a multiprocessor.

The SUN SPARCCenter was an earlier bus-based multiprocessor with one or
two buses. Memory is distributed on the boards with the processors to create a
simple building block consisting of processor, cache, and memory. With this
structure, the multiprocessor could also have a fast local access and use the bus
only to access remote memory. The SUN operating system, however, was not
able to deal with the NUMA (non-uniform memory access) aspect of memory, in-
cluding such issues as controlling where memory was allocated (local versus glo-
bal). If memory pages were allocated randomly, then successive runs of the same
application could have substantially different performance, and the benefits of
fast local access might be small or nonexistent. In addition, providing both a re-
mote and a local access path to memory slightly complicated the design because
of timing. Since neither the system software nor the application software would
not have been able to take advantage of faster local memory and the design was
believed to be more complicated, the designers decided to require all requests to
go over the bus.

Our second example shows the subtle kinds of problems that can arise when
software designed for a uniprocessor is adapted to a multiprocessor environment.
The SGI operating system protects the page table data structure with a single
lock, assuming that page allocation is infrequent. In a uniprocessor this does not
represent a performance problem. In a multiprocessor situation, it can become a
major performance bottleneck for some programs. Consider a program that uses
a large number of pages that are initialized at start-up, which UNIX does for stat-
ically allocated pages. Suppose the program is parallelized so that multiple pro-
cesses allocate the pages. Because page allocation requires the use of the page
table data structure, which is locked whenever it is in use, even an OS kernel that
allows multiple threads in the OS will be serialized if the processes all try to allo-
cate their pages at once (which is exactly what we might expect at initialization
time!).

This page table serialization eliminates parallelism in initialization and has
significant impact on overall parallel performance. This performance bottleneck
persists even under multiprogramming. For example, suppose we split the paral-
lel program apart into separate processes and run them, one process per proces-

758 Chapter 6 Multiprocessors and Thread-Level Parallelism
sor, so that there is no sharing between the processes. (This is exactly what one
user did, since he reasonably believed that the performance problem was due to
unintended sharing or interference in his application.) Unfortunately, the lock
still serializes all the processes—so even the multiprogramming performance is
poor. This pitfall indicates the kind of subtle but significant performance bugs
that can arise when software runs on multiprocessors. Like many other key soft-
ware components, the OS algorithms and data structures must be rethought in a
multiprocessor context. Placing locks on smaller portions of the page table effec-
tively eliminates the problem.

Pitfall: Neglecting data distribution in a distributed shared-memory multipro-
cessor.

Consider the Ocean benchmark running on a 32-processor DSM architecture. As
Figure 6.31 (page 699) shows, the miss rate is 3.1% for a 64KB cache. Because
the grid used for the calculation is allocated in a tiled fashion (as described on
page 658), 2.5% of the accesses are local capacity misses and 0.6% are remote
communication misses needed to access data at the boundary of each grid. As-
suming a 50-cycle local memory access cost and a 150-cycle remote memory ac-
cess cost, the average miss has a cost of 69.3 cycles.

If the grid was allocated in a straightforward fashion by round-robin allocation
of the pages, we could expect 1/32 of the misses to be local and the rest to be re-
mote, which would lead to local miss rate of and a re-
mote miss rate of 3.0%, for an average miss cost of 146.7 cycles. If the average
CPI without cache misses is 0.6, and 45% of the instructions are data references,
the version with tiled allocation is

This analysis only considers latency, and assumes that contention effects do not
lead to increased latency, which is very optimistic. Round-robin is also not the
worst possible data allocation: if the grid fit in a subset of the memory and was
allocated to only a subset of the nodes, contention for memory at those nodes
could easily lead to a difference in performance of more than a factor of 2.

For over a decade prophets have voiced the contention that the organization of a
single computer has reached its limits and that truly significant advances can be
made only by interconnection of a multiplicity of computers in such a manner as
to permit cooperative solution. …Demonstration is made of the continued validity
of the single processor approach. … [p. 483]

6.15 Concluding Remarks

3.1% 1 32⁄× 0.1%=

0.6 45% 3.1%× 146.7×+
0.6 45% 3.1%× 69.3×+
--- 0.6 2.05+

0.6 0.97+
--------------------- 2.65

1.57
--------- 1.69 times faster= = =

6.15 Concluding Remarks 759
Amdahl [1967]

The dream of building computers by simply aggregating processors has been
around since the earliest days of computing. Progress in building and using effec-
tive and efficient parallel processors, however, has been slow. This rate of
progress has been limited by difficult software problems as well as by a long pro-
cess of evolving architecture of multiprocessors to enhance usability and improve
efficiency. We have discussed many of the software challenges in this chapter, in-
cluding the difficulty of writing programs that obtain good speedup due to Am-
dahl’s law, dealing with long remote access or communication latencies, and
minimizing the impact of synchronization. The wide variety of different architec-
tural approaches and the limited success and short life of many of the architec-
tures to date has compounded the software difficulties. We discuss the history of
the development of these multiprocessors in section 6.16.

Despite this long and checkered past, progress in the last fifteen years leads to
some reasons to be optimistic about the future of parallel processing and multi-
processors. This optimism is based on a number of observations about this
progress and the long-term technology directions:

1. The use of parallel processing in some domains is beginning to be understood.
Probably first among these is the domain of scientific and engineering compu-
tation. This application domain has an almost limitless thirst for more compu-
tation. It also has many applications that have lots of natural parallelism.
Nonetheless, it has not been easy: programming parallel processors even for
these applications remains very challenging. Another important, and much
larger (in terms of market size), application area is large-scale data base and
transaction processing systems. This application domain also has extensive
natural parallelism available through parallel processing of independent re-
quests, but its needs for large-scale computation, as opposed to purely access
to large-scale storage systems, are less well understood. There are also several
contending architectural approaches that may be viable—a point we discuss
shortly.

2. It is now widely held that the most effective way to build a computer that of-
fers more performance than that achieved with a single-chip microprocessor
is by building a multiprocessor the or a cluster at leverages the significant
price/performance advantages of mass-produced microprocessors.

3. Multiprocessors are highly effective for multiprogrammed workloads, which
are often the dominant use of mainframes and large servers, as well as for file
servers or web servers, which are effectively a restricted type of parallel work-
load. In the future, such workloads may well constitute a large portion of the
market for higher-performance multiprocessors. When a workload wants to
share resources, such as file storage, or can efficiently timeshare a resource,
such as a large memory, a multiprocessor can be a very efficient host. Further-

760 Chapter 6 Multiprocessors and Thread-Level Parallelism
more, the OS software needed to efficiently execute multiprogrammed work-
loads is commonplace.

4. More recently, multiprocessors have proved very effective for certain inten-
sive commercial workloads, such as OLTP (assuming the system supports
enough I/O to be CPU-limited), DSS applications (where query optimization
is critical), and large-scale, web searching applications. For commercial appli-
cations with undemanding communication requirements, little need for very
large memories (typically used to cache databases), or limited demand for
computation, clusters are likely to be more cost-effective than multiproces-
sors. The commercial space is currently a mix of clusters of basic PCs, SMPs,
and clustered SMPs with different architectural styles appearing to hold some
lead in different application spaces.

5. On-chip multiprocessing appears to be growing in importance for two reasons.
First, in the embedded market where natural parallelism often exists, such ap-
proaches are an obvious alternative to faster, and possibly less silicon effi-
cient, processors. Second, diminishing returns in high-end microprocessor
design will encourage designers to pursue on-chip multiprocessing as a poten-
tially more cost-effective direction. We explore the challenges to this direction
at the end of this section.

Although there is reason to be optimistic about the growing importance of mul-
tiprocessors, many areas of parallel architecture remain unclear. Two particularly
important questions are, How will the largest-scale multiprocessors (the massively
parallel processors, or MPPs) be built? and What is the role of multiprocessing as
a long-term alternative to higher-performance uniprocessors?

The Future of MPP Architecture

Hennessy and Patterson should move MPPs to Chapter 11.

Jim Gray, when asked about coverage of MPPs
in the second edition of this book, alludes to
Chapter 11 bankruptcy protection in U.S. law (1995)

Small-scale multiprocessors built using snooping-bus schemes are extremely
cost-effective. Microprocessors traditionally have even included much of the log-
ic for cache coherence in the processor chip, and several allow the buses of two
or more processors to be directly connected—implementing a coherent bus with
no additional logic. With modern integration levels, multiple processors can be
placed on a board, on a single multi-chip module (MCM), or even within a single
die (as we saw in Section 6.13) resulting in a highly cost-effective multiproces-
sor. Recent microprocessors have been including support for DSM approaches,

6.15 Concluding Remarks 761
making it possible to connect small to moderate numbers of processors with little
overhead. It is premature to predict that such architectures will dominate the mid-
dle range of processor counts (16–64), but it appears at the present that this ap-
proach is the most attractive.

What is totally unclear at the present is how the very largest multiprocessors
will be constructed. The difficulties that designers face include the relatively
small market for very large multiprocessors (> 64 nodes and often > $5 million)
and the need for multiprocessors that scale to larger processor counts to be ex-
tremely cost-effective at the lower processor counts where most of the multipro-
cessors will be sold. At the present there appear to be four slightly different
alternatives for large-scale multiprocessors:

1. Large-scale multiprocessors that simply scale up naturally, using proprietary
interconnect and communications controller technology. This approach has
been followed in multiprocessors like the Cray T3E and the SGI Origin. There
are two primary difficulties with such designs. First, the multiprocessors are
not cost-effective at small scales, where the cost of scalability is not valued.
Second, these multiprocessors have programming models that are incompati-
ble, in varying degrees, with the mainstream of smaller and midrange multi-
processors.

2. Large-scale multiprocessors constructed from clusters of midrange multipro-
cessors with combinations of proprietary and standard technologies to inter-
connect such multiprocessors. The Wildfire design is just such a system. This
cluster approach gets its cost-effectiveness through the use of cost-optimized
building blocks. In some approaches, the basic architectural model (e.g., co-
herent shared memory) is extended. Many companies offer a high-end version
of such a machine including HP, Sun, and SGI. Due to the two-level nature of
the design, the programming model sometimes must be changed from shared
memory to message passing or to a different variation on shared memory,
among clusters. The migration and replication features in Wildfire offer a way
to minimize this disadvantage. This class of machines has made important in-
roads, especially in commercial applications.

3. Designing clustered multicomputers that use off-the-shelf uniprocessor nodes
and a custom interconnect. The advantage of such a design is the cost-effec-
tiveness of the standard uniprocessor node, which is often a repackaged work-
station; the disadvantage is that the programming model will probably need to
be message passing even at very small node counts. In some application envi-
ronments where little or no sharing occurs, this may be acceptable. In addition,
the cost of the interconnect, because it is custom, can be significant, making
the multiprocessor costly, especially at small node counts. The IBM SP-2 is
the best example of this approach today.

4. Designing a cluster using all off-the-shelf components, which promises the

762 Chapter 6 Multiprocessors and Thread-Level Parallelism
lowest cost. The leverage in this approach lies in the use of commodity tech-
nology everywhere: in the processors (PC or workstation nodes), in the inter-
connect (high-speed local area network technology, such as ATM or Gigabit
Ethernet), and in the software (standard operating systems and programming
languages). Of course, such multiprocessors will use message passing, and
communication is likely to have higher latency and lower bandwidth than in
the alternative designs. Like the previous class of designs, for applications that
do not need high bandwidth or low-latency communication, this approach can
be extremely cost-effective. Web servers, for example, may be a good match
to these multicomputers, as we saw for the Google cluster in Chapter 8.

Each of these approaches has advantages and disadvantages, and the impor-
tance of the shortcomings of any one approach are dependent on the application
class. In 2000 it is unclear which if any of these models will win out for larger-
scale multiprocessors, although the growth of the market for web servers has made
“racks of PCs” the dominant form at least by processor count. It is likely that the
current bifurcation by market and scale will continue for some time, although in
some area a hybridization of these ideas may emerge, given the similarity in sever-
al of the approaches.

The Future of Microprocessor Architecture

As we saw in Chapters 3 and 4, architects are using ever more complex tech-
niques to try to exploit more instruction-level parallelism. As we also saw in that
chapter, the prospects for finding ever-increasing amounts of instruction-level
parallelism in a manner that is efficient to exploit are somewhat limited. Like-
wise, there are increasingly difficult problems to be overcome in building memo-
ry hierarchies for high-performance processors. Of course, continued technology
improvements will allow us to continue to advance clock rate. But the use of
technology improvements that allow a faster gate speed alone is not sufficient to
maintain the incredible growth of performance that the industry has experienced
for over 15 years. Maintaining a rapid rate of performance growth will depend to
an increasing extent on exploiting the dramatic growth in effective silicon area,
which will continue to grow much faster than the basic speed of the process tech-
nology.

Unfortunately, for almost ten years, increases in performance have come at the
cost of ever-increasing inefficiencies in the use of silicon area, external connec-
tions, and power. This diminishing-returns phenomenon has only recently (as of
2001) appeared to have slowed the rate of performance growth. Whether or not
this is slowdown temporary is unclear. What is clear, is that we cannot sustain the
rapid rate of performance improvements without significant new innovations in
computer architecture.

Unlike the prophets quoted at the beginning of the chapter, your authors do not
believe that we are about to “hit a brick wall” in our attempts to improve single-

6.15 Concluding Remarks 763
processor performance. Instead, we may see a gradual slowdown in performance
growth, especially for integer performance, with the eventual growth being limited
primarily by improvements in the speed of the technology. When these limitation
will become serious is hard to say, but possibly as early as 2005 and likely by
2010. Even if such a slowdown were to occur, performance might well be expect-
ed to grow at the annual rate of 1.35 that we saw prior to 1985 at least until fun-
damental limitations in silicon are become serious in th 2015 time frame.

Furthermore, we do not want to rule out the possibility of a breakthrough in
uniprocessor design. In the early 1980s, many people predicted the end of growth
in uniprocessor performance, only to see the arrival of RISC technology and an
unprecedented 15-year growth in performance averaging 1.5 times per year!

With this in mind, we cautiously ask whether the long-term direction will be
to use increased silicon to build multiple processors on a single chip. Such a di-
rection is appealing from the architecture viewpoint—it offers a way to scale per-
formance without increasing hardware complexity. It also offers an approach to
easing some of the challenges in memory-system design, since a distributed
memory can be used to scale bandwidth while maintaining low latency for local
accesses. The challenge lies in software and in what architecture innovations may
be used to make the software easier.

In 2000, IBM announced the first commercial chips with two general-purpose
processors on a single die, the Power4 processor. Each Power4 contains two
Power3 microprocessors, a shared secondary cache, an interface to an off-chip
tertiary cache or main memory, and chip-to-chip communication system, which
allows a four processor cross-bar connected module to be built with no additional
logic. Using 4 Power4 chips and the appropriate DRAMS, an eight-processor
system can be integrated onto a board about 8 inches on a side. The board would
contain 700 million transistors, not including the third level cache or main mem-
ory, and would have a peak instruction execution rate of 32 billion instructions
per second!

Evolution Versus Revolution and the Challenges to Paradigm Shifts in the
Computer Industry

Figure 6.54 shows what we mean by the evolution-revolution spectrum of com-
puter architecture innovation. To the left are ideas that are invisible to the user
(presumably excepting better cost, better performance, or both) and are at the
evolutionary end of the spectrum. At the other end are revolutionary architecture
ideas. These are the ideas that require new applications from programmers who
must learn new programming languages and models of computation, and must in-
vent new data structures and algorithms.

Revolutionary ideas are easier to get excited about than evolutionary ideas, but
to be adopted they must have a much higher payoff. Caches are an example of an
evolutionary improvement. Within 5 years after the first publication about caches,
almost every computer company was designing a computer with a cache. The

764 Chapter 6 Multiprocessors and Thread-Level Parallelism
RISC ideas were nearer to the middle of the spectrum, for it took more than eight
years for most companies to have a RISC product and more than fifteen year for
the last hold out to announce their product. Most multiprocessors have tended to
the revolutionary end of the spectrum, with the largest-scale multiprocessors
(MPPs) being more revolutionary than others. Most programs written to use mul-
tiprocessors as parallel engines have been written especially for that class of mul-
tiprocessors, if not for the specific architecture.

The challenge for both hardware and software designers that would propose
that multiprocessors and parallel processing become the norm, rather than the ex-
ception, is the disruption to the established base of programs. There are two possi-
ble ways this paradigm shift could be facilitated: if parallel processing offers the
only alternative to enhance performance, and if advances in hardware and soft-
ware technology can construct a gentle ramp that allows the movement to parallel
processing, at least with small numbers of processors, to be more evolutionary.

FIGURE 6.54 The evolution-revolution spectrum of computer architecture. The sec-
ond through fourth columns are distinguished from the final column in that applications and
operating systems can be ported from other computers rather than written from scratch. For
example, RISC is listed in the middle of the spectrum because user compatibility is only at
the level of high-level languages, while microprogramming allows binary compatibility, and la-
tency-oriented MIMDs require changes to algorithms and extending HLLs. Timeshared MIMD
means MIMDs justified by running many independent programs at once, while latency MIMD
means MIMDs intended to run a single program faster.

SISD vs.
Intel Paragon

Algorithms,
extended HLL,
programs

High-level
language

Sun 3 vs. Sun 4

Full instruction set
(same data
representation)

Assembly

MIPS 1000
vs.
DEC 3100

Byte order
(Big vs. Little
Endian)

Upward
binary

Intel 8086 vs.
80286 vs.
80386 vs.
80486

Some new
instructions

Binary

VAX-11/780
vs. 8800

Microcode,
TLB, caches,
pipelining,
MIMD

User
compatibility

Example

Difference

New programs,
extended or
new HLL, new
algorithms

RevolutionaryEvolutionary

S
pe

ci
al

 p
ur

po
se

La
te

nc
y

M
IM

D

M
as

si
ve

 S
IM

D

R
IS

C

V
ec

to
r

in
st

ru
ct

io
ns

V
irt

ua
l m

em
or

y

T
im

es
ha

re
d

M
IM

D
C

ac
he

P
ip

el
in

in
g

M
ic

ro
pr

og
ra

m
m

in
g

6.16 Historical Perspective and References 765
There is a tremendous amount of history in parallel processing; in this section we
divide our discussion by both time period and architecture. We start with the
SIMD approach and the Illiac IV. We then turn to a short discussion of some oth-
er early experimental multiprocessors and progress to a discussion of some of the
great debates in parallel processing. Next we discuss the historical roots of the
present multiprocessors and conclude by discussing recent advances.

SIMD Computers: Several Attempts, No Lasting Successes

The cost of a general multiprocessor is, however, very high and further design op-
tions were considered which would decrease the cost without seriously degrading
the power or efficiency of the system. The options consist of recentralizing one of
the three major components.... Centralizing the [control unit] gives rise to the
basic organization of [an]... array processor such as the Illiac IV.

Bouknight et al. [1972]

The SIMD model was one of the earliest models of parallel computing, dating
back to the first large-scale multiprocessor, the Illiac IV. The key idea in that mul-
tiprocessor, as in more recent SIMD multiprocessors, is to have a single instruc-
tion that operates on many data items at once, using many functional units.

The earliest ideas on SIMD-style computers are from Unger [1958] and Slot-
nick, Borck, and McReynolds [1962]. Slotnick’s Solomon design formed the ba-
sis of the Illiac IV, perhaps the most infamous of the supercomputer projects.
Although successful in pushing several technologies that proved useful in later
projects, it failed as a computer. Costs escalated from the $8 million estimate in
1966 to $31 million by 1972, despite construction of only a quarter of the
planned multiprocessor. Actual performance was at best 15 MFLOPS, versus ini-
tial predictions of 1000 MFLOPS for the full system [Hord 1982]. Delivered to
NASA Ames Research in 1972, the computer took three more years of engineer-
ing before it was usable. These events slowed investigation of SIMD, with Danny
Hillis [1985] resuscitating this style in the Connection Machine, which had
65,636 1-bit processors.

Real SIMD computers need to have a mixture of SISD and SIMD instructions.
There is an SISD host computer to perform operations such as branches and ad-
dress calculations that do not need parallel operation. The SIMD instructions are
broadcast to all the execution units, each of which has its own set of registers. For
flexibility, individual execution units can be disabled during a SIMD instruction.

6.16 Historical Perspective and References

766 Chapter 6 Multiprocessors and Thread-Level Parallelism
In addition, massively parallel SIMD multiprocessors rely on interconnection or
communication networks to exchange data between processing elements.

SIMD works best in dealing with arrays in for-loops. Hence, to have the op-
portunity for massive parallelism in SIMD there must be massive amounts of da-
ta, or data parallelism. SIMD is at its weakest in case statements, where each
execution unit must perform a different operation on its data, depending on what
data it has. The execution units with the wrong data are disabled so that the
proper units can continue. Such situations essentially run at 1/nth performance,
where n is the number of cases.

The basic trade-off in SIMD multiprocessors is performance of a processor
versus number of processors. Recent multiprocessors emphasize a large degree of
parallelism over performance of the individual processors. The Connection Mul-
tiprocessor 2, for example, offered 65,536 single bit-wide processors, while the
Illiac IV had 64 64-bit processors.

After being resurrected in the 1980s, first by Thinking Machines and then by
MasPar, the SIMD model has once again been put to bed as a general-purpose
multiprocessor architecture, for two main reasons. First, it is too inflexible. A
number of important problems cannot use such a style of multiprocessor, and the
architecture does not scale down in a competitive fashion; that is, small-scale
SIMD multiprocessors often have worse cost/performance compared with that of
the alternatives. Second, SIMD cannot take advantage of the tremendous perfor-
mance and cost advantages of microprocessor technology. Instead of leveraging
this low-cost technology, designers of SIMD multiprocessors must build custom
processors for their multiprocessors.

Although SIMD computers have departed from the scene as general-purpose
alternatives, this style of architecture will continue to have a role in special-
purpose designs. Many special-purpose tasks are highly data parallel and require
a limited set of functional units. Thus designers can build in support for certain
operations, as well as hardwire interconnection paths among functional units.
Such organizations are often called array processors, and they are useful for
tasks like image and signal processing.

Other Early Experiments

It is difficult to distinguish the first MIMD multiprocessor. Surprisingly, the first
computer from the Eckert-Mauchly Corporation, for example, had duplicate units
to improve availability. Holland [1959] gave early arguments for multiple proces-
sors.

Two of the best-documented multiprocessor projects were undertaken in the
1970s at Carnegie Mellon University. The first of these was C.mmp [Wulf and
Bell 1972; Wulf and Harbison 1978], which consisted of 16 PDP-11s connected
by a crossbar switch to 16 memory units. It was among the first multiprocessors
with more than a few processors, and it had a shared-memory programming mod-
el. Much of the focus of the research in the C.mmp project was on software, espe-

6.16 Historical Perspective and References 767
cially in the OS area. A later multiprocessor, Cm* [Swan et al. 1977], was a
cluster-based multiprocessor with a distributed memory and a nonuniform access
time. The absence of caches and a long remote access latency made data place-
ment critical. This multiprocessor and a number of application experiments are
well described by Gehringer, Siewiorek, and Segall [1987]. Many of the ideas in
these multiprocessors would be reused in the 1980s when the microprocessor
made it much cheaper to build multiprocessors.

Great Debates in Parallel Processing

The quotes at the beginning of this chapter give the classic arguments for aban-
doning the current form of computing, and Amdahl [1967] gave the classic reply
in support of continued focus on the IBM 370 architecture. Arguments for the
advantages of parallel execution can be traced back to the 19th century [Mena-
brea 1842]! Yet the effectiveness of the multiprocessor for reducing latency of in-
dividual important programs is still being explored. Aside from these debates
about the advantages and limitations of parallelism, several hot debates have fo-
cused on how to build multiprocessors.

Predictions of the Future
It’s hard to predict the future, yet in 1989 Gordon Bell made two predictions for
1995. We included these predictions in the first edition of the book, when the out-
come was completely unclear. We discuss them in this section, together with an
assessment of the accuracy of the prediction.

The first is that a computer capable of sustaining a teraFLOPS—one million
MFLOPS—will be constructed by 1995, either using a multicomputer with 4K to
32K nodes or a Connection Multiprocessor with several million processing ele-
ments [Bell 1989]. To put this prediction in perspective, each year the Gordon
Bell Prize acknowledges advances in parallelism, including the fastest real pro-
gram (highest MFLOPS). In 1989 the winner used an eight-processor Cray Y-MP
to run at 1680 MFLOPS. On the basis of these numbers, multiprocessors and pro-
grams would have to have improved by a factor of 3.6 each year for the fastest
program to achieve 1 TFLOPS in 1995. In 1999, the first Gordon Bell prize win-
ner crossed the 1 TF bar, using a 5,832 processor IBM RS/6000 SST system de-
signed specially for Livermore Laboratories, they achieved 1.18 Teraflops on a
shock-wave simulation. This ratio represents a year-to-year improvement of 1.93,
which is still quite impressive.

What has become recognized since 1989 is that although we may have the
technology to build a teraFLOPS multiprocessor, it is not clear that the machine
is cost-effective, except perhaps for a few very specialized and critically impor-
tant application related to national security. Your authors estimated in 1990 that to
achieve 1 TF would require a machine with about 5,000 processors and would
cost about $100 million. The 5,832 processor IBM system at Livermore cost

768 Chapter 6 Multiprocessors and Thread-Level Parallelism
$110 million. As might be expected, improvements in the performance of indi-
vidual microprocessors both in cost and performance directly affect the cost and
performance of large-scale multiprocessors, but a 5000 processor system will
cost more than 5000 times the price of a desktop system using the same proces-
sor.

The second Bell prediction concerned the number of data streams in super-
computers shipped in 1995. Danny Hillis believed that although supercomputers
with a small number of data streams may be the best sellers, the biggest multipro-
cessors will be multiprocessors with many data streams, and these will perform
the bulk of the computations. Bell bet Hillis that in the last quarter of calendar
year 1995 more sustained MFLOPS will be shipped in multiprocessors using few
data streams (≤100) rather than many data streams (≥1000). This bet concerned
only supercomputers, defined as multiprocessors costing more than $1 million
and used for scientific applications. Sustained MFLOPS was defined for this bet
as the number of floating-point operations per month, so availability of multipro-
cessors affects their rating.

In 1989, when this bet was made, it was totally unclear who would win. In
1995, a survey of the current publicly known supercomputers showed only six
multiprocessors in existence in the world with more than 1000 data streams, so
Bell’s prediction was a clear winner. In fact, in 1995, much smaller microproces-
sor-based multiprocessors (≤ 20 processors) were becoming dominant. 1n 1995,
a survey of the 500 highest-performance multiprocessors in use (based on Lin-
pack ratings), called the Top 500, showed that the largest number of multiproces-
sors were bus-based shared-memory multiprocessors! By 2000, the picture had
become less clear: the top four vendors were IBM (144 SP systems), Sun (121
Enterprise systems), SGI (62 Origin systems), and Cray (54 T3E systems). Al-
though IBM holds the largest number of spots, almost all the other systems on the
TOP 500 list are shared-memory systems or clusters of such systems.

More Recent Advances and Developments

With the primary exception of the parallel vector multiprocessors (see Appendix
B), all other recent MIMD computers have been built from off-the-shelf micro-
processors using a bus and logically central memory or an interconnection net-
work and a distributed memory. A number of experimental multiprocessors built
in the 1980s further refined and enhanced the concepts that form the basis for
many of today’s multiprocessors.

The Development of Bus-Based Coherent Multiprocessors
Although very large mainframes were built with multiple processors in the
1970s, multiprocessors did not become highly successful until the 1980s. Bell
[1985] suggests the key was that the smaller size of the microprocessor allowed
the memory bus to replace the interconnection network hardware, and that porta-

6.16 Historical Perspective and References 769
ble operating systems meant that multiprocessor projects no longer required the
invention of a new operating system. In this paper, Bell defines the terms multi-
processor and multicomputer and sets the stage for two different approaches to
building larger-scale multiprocessors.

The first bus-based multiprocessor with snooping caches was the Synapse
N+1 described by Frank [1984]. Goodman [1983] wrote one of the first papers to
describe snooping caches. The late 1980s saw the introduction of many com-
mercial bus-based, snooping-cache architectures, including the Silicon Graphics
4D/240 [Baskett et al. 1988], the Encore Multimax [Wilson 1987], and the Se-
quent Symmetry [Lovett and Thakkar 1988]. The mid 1980s saw an explosion in
the development of alternative coherence protocols, and Archibald and Baer
[1986] provide a good survey and analysis, as well as references to the original
papers. Figure 6.55 summarizes several snooping cache-coherence protocols and
shows some multiprocessors that have used or are using that protocol.

The early 1990s saw the beginning of an expansion of such systems with the
use of very wide, high speed buses (the SGI Challenge system used a 256-bit,
packet-oriented bus supporting up to 8 processor boards and 32 processors) and
later, the use of multiple buses and crossbar interconnects, e.g. in the SUN
SPARCCenter and Enterprise systems (Charlesworth [1998] discusses the inter-
connect architecture of these multiprocessors). In 2001, the Sun Enterprise serv-

Name Protocol
type

Memory-write policy Unique feature Multiprocessors using

Write
Once

Write
invalidate

Write back after first write First snooping protocol
described in literature

Synapse
N+1

Write
invalidate

Write back Explicit state where
memory is the owner

Synapse multiprocessors;
first cache-coherent multi-
processors available

Berkeley
(MOESI)

Write
invalidate

Write back Owned shared state Berkeley SPUR multipro-
cessor; SUN Enterprise
servers

Illinois
(MESI)

Write
invalidate

Write back Clean private state; can
supply data from any
cache with a clean copy

SGI Power and Challenge
series

“Firefly” Write
broadcast

Write back when private,
write through when shared

Memory updated on
broadcast

No current multiproces-
sors; SPARCCenter 2000
closest.

FIGURE 6.55 Five snooping protocols summarized. Archibald and Baer [1986] use these names to describe the five
protocols, and Eggers [1989] summarizes the similarities and differences as shown in this figure. The Firefly protocol was
named for the experimental DEC Firefly multiprocessor, in which it appeared. The alternative names for protocols are based
on the states they support: M=Modified, E=Exclusive (shared clean), S=Shared, I=Invalid, O=Owner (shared dirty).

770 Chapter 6 Multiprocessors and Thread-Level Parallelism
ers represent the primary example of large-scale (> 16 processors), symmetric
multiprocessors in active use.

Toward Large-Scale Multiprocessors
In the effort to build large-scale multiprocessors, two different directions were
explored: message passing multicomputers and scalable shared-memory multi-
processors. Although there had been many attempts to build mesh and hyper-
cube-connected multiprocessors, one of the first multiprocessors to successfully
bring together all the pieces was the Cosmic Cube built at Caltech [Seitz 1985]. It
introduced important advances in routing and interconnect technology and sub-
stantially reduced the cost of the interconnect, which helped make the multicom-
puter viable. The Intel iPSC 860, a hypercube-connected collection of i860s, was
based on these ideas. More recent multiprocessors, such as the Intel Paragon,
have used networks with lower dimensionality and higher individual links. The
Paragon also employed a separate i860 as a communications controller in each
node, although a number of users have found it better to use both i860 processors
for computation as well as communication. The Thinking Multiprocessors CM-5
made use of off-the-shelf microprocessors and a fat tree interconnect (see Chap-
ter 7). It provided user-level access to the communication channel, thus signifi-
cantly improving communication latency. In 1995, these two multiprocessors
represent the state of the art in message-passing multicomputers.

Early attempts at building a scalable shared-memory multiprocessor include
the IBM RP3 [Pfister et al. 1985], the NYU Ultracomputer [Schwartz 1980;
Elder et al. 1985], the University of Illinois Cedar project [Gajksi et al. 1983],
and the BBN Butterfly and Monarch [BBN Laboratories 1986; Rettberg et al.
1990]. These multiprocessors all provided variations on a nonuniform distribut-
ed-memory model (and hence are distributed shared memory or DSM multipro-
cessors), but did not support cache coherence, which substantially complicated
programming. The RP3 and Ultracomputer projects both explored new ideas in
synchronization (fetch-and-operate) as well as the idea of combining references
in the network. In all four multiprocessors, the interconnect networks turned out
to be more costly than the processing nodes, raising problems for smaller ver-
sions of the multiprocessor. The Cray T3D/E (see Arpaci et. al. [1995] for an
evaluation of the T3D and Scott [1996] for a description of the T3E enhance-
ments) builds on these ideas, using a noncoherent shared address space but build-
ing on the advances in interconnect technology developed in the multicomputer
domain (see Scott and Thorson [1996]).

Extending the shared-memory model with scalable cache coherence was done
by combining a number of ideas. Directory-based techniques for cache coherence
were actually known before snooping cache techniques. In fact, the first cache-
coherence protocols actually used directories, as described by Tang [1976] and
implemented in the IBM 3081. Censier and Feautrier [1978] described a directo-
ry coherence scheme with tags in memory. The idea of distributing directories

6.16 Historical Perspective and References 771
with the memories to obtain a scalable implementation of cache coherence was
first described by Agarwal et al. [1988] and served as the basis for the Stanford
DASH multiprocessor (see Lenoski et al. [1990, 1992]), which was the first oper-
ational cache-coherent DSM multiprocessor. DASH was a “plump” node cc-
NUMA machine that used 4-processor SMPs as its nodes; interconnecting them
in a style similar to that of Wildfire but using a more scalable 2-dimension al grid
rather than a crossbar for the interconnect.

The Kendall Square Research KSR-1 [Burkhardt et al. 1992] was the first
commercial implementation of scalable coherent shared memory. It extended the
basic DSM approach to implement a concept called COMA (cache-only memory
architecture), which makes the main memory a cache. Like the Wildfire CMR
scheme, in the KSR-1 memory blocks could be replicated in the main memories
of each node with hardware support to handle the additional coherence require-
ments for these replicated blocks. (The KSR-1 was not strictly a pure COMA be-
cause it did not migrate the home location of a data item, but always kept a copy
at home. Essentially, it implemented only replication.)

In parallel, researchers at the Swedish Institute for Computer Science [Hager-
sten et. al. 1992.] developed a concept called DDM (for Data Diffusion Machine)
which is a true COMA, since all memory operates as a cache, and a memory
block does not exist in a predefined node. The absence of a designated home for a
memory block significantly complicates the protocols, since it means that there is
no static look-up scheme to find the location and status of a block. Furthermore, a
true COMA must contend with the problem of finding a place to move a memory
block when it conflicts with another block for the same location in memory
(which happens because the memory is a cache with a limited associativity). In
the event that the displaced block is the last copy of a memory block, which in it-
self may be difficult to know precisely, the displaced block must be migrated to
some other memory location, since it cannot be destroyed (as it is the only copy
of the data). This migration process can be very complex requiring a potentially
unbounded number of memory blocks to be displaced!

Although no pure COMA machines were ever built, the COMA idea has in-
spired many variations. COMA-F, or FLAT COMA was proposed by Stenström,
Joe, and Gupta in 1992 as a simpler alternative to the original COMA proposals.
By allocating a home location COMA-F eliminated the need for multilevel hier-
archical look-ups and possible displacement misses, since the block status could
always be looked up in the home and the home location always had space for the
block. In 1995, Saulsbury et. al. proposed Simple COMA (S-COMA), which im-
plemented COMA using the virtual memory mechanisms for replication and mi-
gration, rather than hardware support at the cache-level. Reactive NUMA [Falsafi
and Wood 1997] is a proposal to develop a protocol that merges the best of CC-
NUMA protocols with S-COMA protocols. At the same time, several groups (see
Chandra et. al. 1994 and Soundararajan 1996] explored the use of page-level rep-
lication and migration, both to assist in reducing remote misses and as an alterna-
tive to other schemes such as strict COMA or remote access caches. Wildfire

772 Chapter 6 Multiprocessors and Thread-Level Parallelism
builds on many of these ideas to create a blend of hardware and software mecha-
nisms.

The Convex Exemplar implemented scalable coherent shared memory using a
two-level architecture: at the lowest level eight-processor modules are built using
a crossbar. A ring can then connect up to 32 of these modules, for a total of 256
processors (see Thekkath et. al. [1997] for an evaluation). Lenoski and Laudon
[1997] describe the SGI Origin, which was first delivered in 1996 and is closely
based on the original Stanford DASH machine, though including a number of in-
novations for scalability and ease of programming. Origin uses a bit-vector for
the directory structure, which is either 16 or 32 bits long. Each bit represents a
node, which consists of two processors; a coarse bit vector representation allows
each bit to represent up to 8 nodes for a total of 1,024 processors. As Galles
[1996] describes, a high performance fat hypercube is used for the global inter-
connect. Hristea et. al [1997] is a thorough evaluation of the performance of the
Origin memory system.

More recent research has focused on enhanced scalability for cache-coherent
designs, flexible and adaptable techniques for implementing coherency, and ap-
proaches that merge hardware and software schemes. The MIT Alewife machine
[Agarwal et. al. 1995] incorporated several innovations including processor sup-
port for multithreading and the use of cooperative mechanisms for handling co-
herence. The Stanford FLASH multiprocessor [Kuskin et. al. 1994, Gibson et. al.
2000] makes use of a programmable processor that implements the coherence
scheme, as well as alternative schemes for message-passing, synchronization
primitives, or performance instrumentation. Reinhadt and his colleagues at the
University of Wisconsin [1994] explored an alternative for a combination of user
and-base software and hardware support for coherent shared-memory. The Star-T
[Nikhil et. al 1992] and Star-T Voyager [Ang, et. al. 1998] projects at MIT ex-
plored the use of multithreading and combining customized and commodity ap-
proaches to building scalable multiprocessors.

Developments in Synchronization and Consistency Models
A wide variety of synchronization primitives have been proposed for shared-
memory multiprocessors. Mellor-Crummey and Scott [1991] provide an over-
view of the issues as well as efficient implementations of important primitives,
such as locks and barriers. An extensive bibliography supplies references to other
important contributions, including developments in spin locks, queuing locks,
and barriers.

Lamport [1979] introduced the concept of sequential consistency and what
correct execution of parallel programs means. Dubois, Scheurich, and Briggs
[1988] introduced the idea of weak ordering (originally in 1986). In 1990, Adve
and Hill provided a better definition of weak ordering and also defined the con-
cept of data-race-free; at the same conference, Gharachorloo [1990] and his col-
leagues introduced release consistency and provided the first data on the

6.16 Historical Perspective and References 773
performance of relaxed consistency models. More relaxed consistency models
have been widely adopted in microprocessor architectures, including the Sun
SPARC, Alpha, and IA-64. Adve and Gharachorloo [1996] is an excellent tutorial
on memory consistency and the differences among these models.

Other References

The concept of using virtual memory to implement a shared address space among
distinct machines was pioneered in Kai Li’s Ivy system in 1988. There have been
subsequent papers exploring both hardware support issues, software mecha-
nisms, and programming issues. Amza et. al. [1996] describe a system built on
workstations using a new consistency model, L. Kontothanassis, et. al. [1997] de-
scribe a software shared memory scheme using remote writes, and Erlichson et.
al. [1996] describe the use of shared virtual memory to build large-scale multi-
processors using SMPs as nodes.

There is an almost unbounded amount of information on multiprocessors and
multicomputers: Conferences, journal papers, and even books seem to appear
faster than any single person can absorb the ideas. No doubt many of these papers
will go unnoticed—not unlike the past. Most of the major architecture conferenc-
es contain papers on multiprocessors. An annual conference, Supercomputing XY
(where X and Y are the last two digits of the year), brings together users, archi-
tects, software developers, and vendors and publishes the proceedings in book,
CD-ROM, and online (see www.scXY.org) form. Two major journals, Journal of
Parallel and Distributed Computing and the IEEE Transactions on Parallel and
Distributed Systems, contain papers on all aspects of parallel processing. Several
books focusing on parallel processing are included in the following references
with Culler, Singh, and Gupta [1999] being the most recent, large-scale effort.
For years, Eugene Miya of NASA Ames has collected an online bibliography of
parallel-processing papers. The bibliography, which now contains that contains
more than 35,000 entries, is available online at:

http://liinwww.ira.uka.de/bibliography/Parallel/Eugene/index.html.
In addition to documenting the discovery of concepts now used in practice, these
references also provide descriptions of many ideas that have been explored and
found wanting, as well as ideas whose time has just not yet come.

Multithreading and Simultaneous Multithreading

The concept of multithreading dates back to one of the earliest transistorized
computers, the TX-2. TX-2 was one of the earliest transistorized computers and
is also famous for being the computer on which Ivan Sutherland created Sketch-
pad, the first computer graphics system. TX-2 was built at MIT’s Lincoln Labora-
tory and became operational in 1959. It used multiple threads to support fast
context switching to handle I/O functions. Clark [1957] describes the basic archi-
tecture and Forgie [1957] describes the I/O architecture. Multithreading was also

774 Chapter 6 Multiprocessors and Thread-Level Parallelism
used in the CDC 6600, where a fine-grained multithreading scheme with inter-
leaved scheduling among threads was used as the architecture of the I/O proces-
sors. The HEP processor, a pipelined multiprocessor, designed by Denelcor. and
shipped in 1982 used fine-grained multithreading to hide the pipeline latency as
well as to hide the latency to a large memory shared among all the processors.
Because the HEP had no cache, this hiding of memory latency was critical. Bur-
ton Smith, one the primary architects, describes the HEP architecture in a 1978
paper and Jordan [1983] published a performance evaluation. The Tera processor
extends the multithreading ideas and is described by Alverson et. al. in a 1992 pa-
per.

In the late 1980s and early 1990s, researchers explored the concept of coarse-
grained (also called block multithreading), as a way to tolerate latency, especially
in multiprocessor environments. The SPARCLE processor in the Alewife system
used such a scheme, switching threads whenever a high latency exceptional
event, such as a long cache miss, occurred. Agarwal et. al. describe SPARCLE in
a 1993 paper. The IBM Pulsar processor uses similar ideas.

By the early 1990s, several research groups had arrived at two key insights.
First, they realized that fine-grained multithreading was needed to get the maxi-
mum performance benefit, since in a coarse-grained approach, the overhead of
thread switching and thread start-up (e.g., filling the pipeline from the new
thread) negated much of the performance advantage (see Laudon et. al. 1994).
Second, several groups realized that to effectively use large numbers of function-
al units would require both ILP and thread-level parallelism (TLP). These in-
sights led to several architectures that used combinations of multithreading and
multiple issue. Wolfe and Shen [1991] describe an architecture called XIMD that
statically interleaves threads scheduled for a VLIW processor. Mirata et. al.
(1992) describe a proposed processor for media use that combines a static super-
scalar pipeline with support for multithreading; they report speed-ups from com-
bining both forms of parallelism. Keckler and Dally [1992] combine static
scheduling of ILP nd dynamic scheduling of threads combing the two forms for a
processor with multiple functional units. The question of how to balance the allo-
cation of functional units between ILP and TLP and how to schedule the two
forms of parallelism remained open.

When it became clear in the middle of the 1990s that dynamically-scheduled
superscalars would be delivered shortly, several research groups proposed using
the dynamic scheduling capability to mix instructions from several threads on the
fly. Yamamoto, Searing, Talcott, Wood, and Nemirosky [1994] appears to be the
first such proposal, though the simulation results for their multithreaded super-
scalar architecture use simplistic assumptions. This work was quickly followed
by Tullsen, Eggers, and Levy [1995], which was the first realistic simulation as-
sessment and coined the name simultaneous multithreading. Subsequent work by
the same group together with industrial coauthors addressed many of the open
questions about SMT. For example, Tullsen et. al. [1996] addressed questions
about the challenges of scheduling ILP vs. TLP. Lo et. al. [1997] is an extensive

6.16 Historical Perspective and References 775
discussion of the SMT concept and an evaluation of its performance potential,
and Lo et. al. [1998] evaluates database performance on an SMT processor.

References

A. AGARWAL, A., KUBIATOWICZ, J., KRANZ, D., LIM, B.-H, YEUNG, D., D'SOUZA, G. AND M. PAR-

KIN [1993], “Sparcle: An evolutionary processor design for large-scale multiprocessors,” IEEE Mi-
cro 13 (June), pp. 48--61.

ALVERSON, G. ALVERSON, R., CALLAHAN, D. , KOBLENZ, B., PORTERFIELD, A. AND B. SMITH

[1992]. “Exploiting heterogeneous parallelism on a multithreaded multiprocessor,” Proc. 1992 In-
ternational Conf. on Supercomputing (November) , pp. 188--197.

ADVE, S. V. AND K. GHARACHORLOO[1996]. “Shared Memory Consistency Models: A Tutorial,”
IEEE Computer 29:12 (December), 66–76.

ADVE, S. V. AND M. D. HILL [1990]. “Weak ordering—A new definition,” Proc. 17th Int’l Sympo-
sium on Computer Architecture (June), Seattle, 2–14.

AGARWAL, A., BIANCHINI, R., CHAIKEN, D., JOHNSON, K., AND D. KRANZ [1995].“THE MIT ALE-

WIFE MACHINE: ARCHITECTURE AND PERFORMANCE”, INTERNATIONAL SYMPOSIUM ON COM-

PUTER ARCHITECTURE, DENVER, JUNE, 2–13

AGARWAL, A., J. L. HENNESSY, R. SIMONI, AND M.A. HOROWITZ [1988]. “An evaluation of direc-
tory schemes for cache coherence,” Proc. 15th Int’l Symposium on Computer Architecture
(June), 280–289.

ALMASI, G. S. AND A. GOTTLIEB [1989]. Highly Parallel Computing, Benjamin/Cummings, Red-
wood City, Calif.

AMDAHL, G. M. [1967]. “Validity of the single processor approach to achieving large scale
computing capabilities,” Proc. AFIPS Spring Joint Computer Conf. 30, Atlantic City, N.J. (April),
483–485.

AMZA C., COX, A. L., DWARKADAS, S., KELEHER, P., LU, H., RAJAMONY, R., YU, W. AND W.
ZWAENEPOEL.[1996]. “TREADMARKS: SHARED MEMORY COMPUTING ON NETWORKS OF WORKSTA-

TIONS”. IEEE COMPUTER, 29(2) (FEBRUARY), 18–28.

ANG, B., CHIOU, D., ROSENBAND, D., EHRLICH, M., AND RUDOLPH, L., AND ARVIND [1998].
“START-VOYAGER: A FLEXIBLE PLATFORM FOR EXPLORING SCALABLE SMP ISSUES”, PROCEED-

INGS OF SC'98, ORLANDO, FLORIDA, NOV.

ARCHIBALD, J. AND J.-L. BAER [1986]. “Cache coherence protocols: Evaluation using a multiproces-
sor simulation model,” ACM Trans. on Computer Systems 4:4 (November), 273–298.

ARPACI, R.H., CULLER, D.E., KRISHNAMURTHY, A., STEINBERG, S.G. AND K. YELICK [1995].”Em-
pirical evaluation of the CRAY-T3D: A compiler perspective,” Proceedings of the International
Symposium on Computer Architecture, Denver (June), pages 320-331.

BAER J-L. AND W-H. WANG [1988]. “On the Inclusion Properties for Multi-Level Cache Hierar-
chies.” In Proceedings of the 15th Annual International Symposium on Computer Architecture, Ho-
nolulu, June, 73--80.

BARROSO, L.A., GHARACHORLOO, K. AND E. BUGNION [1998]. “Memory System Characterization of
Commercial Workloads,” Proceedings 25th International Symposium on Computer Architecture,
Barcelona (July), 3-14.

BASKETT, F., T. JERMOLUK, AND D. SOLOMON [1988]. “The 4D-MP graphics superworkstation:
Computing + graphics = 40 MIPS + 40 MFLOPS and 10,000 lighted polygons per second,” Proc.
COMPCON Spring, San Francisco, 468–471.

BBN LABORATORIES [1986]. “Butterfly parallel processor overview,” Tech. Rep. 6148, BBN Labo-

776 Chapter 6 Multiprocessors and Thread-Level Parallelism
ratories, Cambridge, Mass.

BELL, C. G. [1985]. “Multis: A new class of multiprocessor computers,” Science 228 (April 26), 462–467.

BELL, C. G. [1989]. “The future of high performance computers in science and engineering,” Comm.
ACM 32:9 (September), 1091–1101.

BOUKNIGHT, W. J, S. A. DENEBERG, D. E. MCINTYRE, J. M. RANDALL, A. H. SAMEH, AND D. L.
SLOTNICK [1972]. “The Illiac IV system,” Proc. IEEE 60:4, 369–379. Also appears in D. P.
Siewiorek, C. G. Bell, and A. Newell, Computer Structures: Principles and Examples, McGraw-
Hill, New York (1982), 306–316.

BURKHARDT, H. III, S. FRANK, B. KNOBE, AND J. ROTHNIE [1992]. “Overview of the KSR1 computer
system,” Tech. Rep. KSR-TR-9202001, Kendall Square Research, Boston (February).

CENSIER, L. AND P. FEAUTRIER [1978]. “A new solution to coherence problems in multicache sys-
tems,” IEEE Trans. on Computers C-27:12 (December), 1112–1118.

CHANDRA, R., DEVINE, S., VERGHESE, B., GUPTA, A. AND MENDEL ROSENBLUM [1994]. “Schedul-
ing and Page Migration for Multiprocessor Compute Servers.” In Sixth International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS-VI).
ACM,Santa Clara, CA. October, 12-24. .

CHARLESWORTH, A [1998]. “STARFIRE: EXTENDING THE SMP ENVELOPE,” IEEE MICRO 18:1 (JAN/
FEB), P 39-49.

CLARK. W.A. [1957]. “The Lincoln TX-2 Computer Development.” Proceedings of the Western Joint
Computer Conference (February), Institute of Radio Engineers, Los Angeles, 143-145.

.CULLER, D. E., SINGH, J. P., AND A. GUPTA [1999]. Parallel Computer Architecture A Hardware/
Software Approach. Morgan Kaufmann Publishers,

 1 EDITION, 1999.DUBOIS, M., C. SCHEURICH, AND F. BRIGGS [1988]. “Synchronization, coherence,
and event ordering,” IEEE Computer 9-21 (February).

EGGERS, S. [1989]. Simulation Analysis of Data Sharing in Shared Memory Multiprocessors, Ph.D.
Thesis, Univ. of California, Berkeley. Computer Science Division Tech. Rep. UCB/CSD 89/501
(April).

ELDER, J., A. GOTTLIEB, C. K. KRUSKAL, K. P. MCAULIFFE, L. RANDOLPH, M. SNIR, P. TELLER, AND

J. WILSON [1985]. “Issues related to MIMD shared-memory computers: The NYU Ultracomputer
approach,” Proc. 12th Int’l Symposium on Computer Architecture (June), Boston, 126–135.

ERLICHSON, A., NUCKOLLS, N., CHESSON, G. AND J. L. HENNESSY [1996]. “SoftFLASH: Analyzing the
performance of clustered distributed virtual shared memory.” In Proc. of the 7th Symp.on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-VII), pages 210--220, October.

FLYNN, M. J. [1966]. “Very high-speed computing systems,” Proc. IEEE 54:12 (December), 1901–1909.

FALSAFI , B. ANDWOOD, D.A. [1997]. “Reactive NUMA: a design for unifying S-COMA and CC-
NUMA,” Proceedings of the 24th international symposium on Computer architecture, June, Denver,
CO, 229-240.

FORGIE, J.W [1957]. "The Lincoln TX-2 Input-Output System," Proceedings of the Western Joint
Computer Conference (February), Institute of Radio Engineers, Los Angeles, 156-160.

FRANK, S. J. [1984] “TIGHTLY COUPLED MULTIPROCESSOR SYSTEMS SPEED MEMORY ACCESS TIME,”
ELECTRONICS 57:1 (JANUARY), 164–169.

GALLES, M. [1996]. “Scalable Pipelined Interconnect for Distributed Endpoint Routing: The SGI
SPIDER chip” . Proceedings Hot Interconnects ‘96, Stanford University, August.

GAJSKI, D., D. KUCK, D. LAWRIE, AND A. SAMEH [1983]. “CEDAR—A large scale multiprocessor,”
Proc. Int’l Conf. on Parallel Processing (August), 524–529.

GEHRINGER, E. F., D. P. SIEWIOREK, AND Z. SEGALL [1987]. Parallel Processing: The Cm* Experi-
ence, Digital Press, Bedford, Mass.

6.16 Historical Perspective and References 777
GHARACHORLOO, K., GUPTA, A., AND J.L. HENNESSY [1992]. “Hiding memory latency using dynam-
ic scheduling in shared-memory multiprocessors.” In Proc. of the 19th Annual Int. Symp. on Com-
puter Architecture, FGold Coast, Austrailia, June.

GHARACHORLOO, K., D. LENOSKI, J. LAUDON, P. GIBBONS, A. GUPTA, AND J. L. HENNESSY [1990].
“Memory consistency and event ordering in scalable shared-memory multiprocessors,” Proc. 17th
Int’l Symposium on Computer Architecture (June), Seattle, 15–26.

GIBSON, J, KUNZ, R, OFELT, D, HOROWITZ,M, HENNESSY, J, AND M. HEINRICH [2000]. "FLASH vs.
(Simulated) FLASH: Closing the Simulation Loop". Proc. of the 9th Conference on Architectural
Support for Programming Languages and Operating Systems (November), San Jose, 49-58.

2000. GOODMAN, J. R. [1983]. “Using cache memory to reduce processor memory traffic,” Proc. 10th
Int’l Symposium on Computer Architecture (June), Stockholm, Sweden, 124–131.

HAGERSTEN E. AND M. KOSTER [1998]. “WILDFIRE: A SCALABLE PATH FOR SMPS,” ROCEEDINGS

OF THE THE FIFTH INTERNATIONAL SYMPOSIUM ON HIGH PERFORMANCE COMPUTER ARCHITEC-

TURE , 1998.

HAGERSTEN, E., LANDIN, A. AND S. HARIDI. DDM --- A Cache-Only Memory Architecture. IEEE
Computer, 25(9):44-54, September, 1992.

HILL, M.D. [1998]. “Multiprocessors should support simple memory consistency models,” IEEE
Computer, 31:8 (August), 28–34.

HILLIS, W. D. [1985]. The Connection Multiprocessor, MIT Press, Cambridge, Mass.

HIRATA, H., KIMURA, K., NAGAMINE, S., MOCHIZUKI, Y., NISHIMURA, A., NAKASE, Y., AND NISH-

IZAWA, T. [1992]. “An elementary processor architecture with simultaneous instruction issuing
from multiple threads,” Proc. 19th Annual International Symposium on Computer Architecture
(May). 136–145.

HOCKNEY, R. W. AND C. R. JESSHOPE [1988]. Parallel Computers-2, Architectures, Programming
and Algorithms, Adam Hilger Ltd., Bristol, England.

HOLLAND, J. H. [1959]. “A universal computer capable of executing an arbitrary number of subpro-
grams simultaneously,” Proc. East Joint Computer Conf. 16, 108–113.

HORD, R. M. [1982]. The Illiac-IV, The First Supercomputer, Computer Science Press, Rockville, Md.

HRISTEA, C., LENOSKI, D., AND J. KEEN [1997]. Measuring Memory Hierarchy Performance of
Cache-Coherent Multiprocessors Using Micro Benchmarks, Proc. Supercomputing 97, San Jose,
CA, November.

HWANG, K. [1993]. Advanced Computer Architecture and Parallel Programming, McGraw-Hill,
New York.

KECKLER, S.W. AND DALLY, W. J. [1992]. “Processor coupling: Integrating compile time and runt-
ime scheduling for parallelism,”. Proc. 19th Annual International Symposium on Computer Archi-
tecture (May). 202–213.

KONTOTHANASSIS, L., HUNT, G., STETS, R.,HARDAVELLAS, N., CIERNIAK, M., PARTHASARATHY,S.,
MEIRA, W., DWARKADAS, S. AND M. SCOTT [1997]. “VM-based shared memory on low-latency,
remote-memory-access networks”, . Proc., 24th Annual Int'l. Symp. on Computer Architecture,
June, Denver.

KUSKIN, J., OFELT, D., HEINRICH, M., HEINLEIN, J., SIMONI, R., GHARACHORLOO, K., CHAPIN, J.,
NAKAHIRA, D., BAXTER, J., HOROWITZ, M., GUPTA, A., ROSENBLUM, M., AND J.L. HENNESSY

[1994]. "The Stanford FLASH Multiprocessor”, Proceedings of the 21th International Symposium
on Computer Architecture, Chicago, April.

LAMPORT, L. [1979]. “How to make a multiprocessor computer that correctly executes multiprocess
programs,” IEEE Trans. on Computers C-28:9 (September), 241–248.

LAUDON, J., GUPTA, A., AND M. HOROWITZ [1994]. “Interleaving: A multithreading technique target-

778 Chapter 6 Multiprocessors and Thread-Level Parallelism
ing multiprocessors and work-stations.,” Proc Sixth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (October), Boston, 308–318.

LAUDON J. AND D. LENOSKI [1997]. “THE SGI ORIGIN: A CCNUMA HIGHLY SCALABLE SERVER,”
Proceedings of the 24th international symposium on Computer architecture , June, Denver, p 241-
251

LENOSKI, D., J. LAUDON, K. GHARACHORLOO, A. GUPTA, AND J. L. HENNESSY [1990]. “The Stan-
ford DASH multiprocessor,” Proc. 17th Int’l Symposium on Computer Architecture (June), Seattle,
148–159.

LENOSKI, D., J. LAUDON, K. GHARACHORLOO, W.-D. WEBER, A. GUPTA, J. L. HENNESSY, M. A.
HOROWITZ, AND M. LAM [1992]. “The Stanford DASH multiprocessor,” IEEE Computer 25:3
(March).

LI,.K., [1988] “IVY: A Shared Virtual Memory System for Parallel Computing,” Proceedings of the
1988 International Conference on Parallel Processing, Pennsylvania State University Press.

LO,J., EGGERS, S., EMER, J., LEVY, H., STAMM, R., AND D. TULLSEN [1997]. “Converting Thread-
Level Parallelism Into Instruction-Level Parallelism via Simultaneous Multithreading.” ACM
Transactions on Computer Systems 15:2 (August), 322-354.

LO,J., BARROSO, L., EGGERS, S., GHARACHORLOO, K., LEVY,H., AND S. PAREKH [1998]. “An Analy-
sis of Database Workload Performance on Simultaneous Multithreaded Processors.” Proceedings
of the 25th International Symposium on Computer Architecture (June), 39-50.

LOVETT, T. AND S. THAKKAR [1988]. “The Symmetry multiprocessor system,” Proc. 1988 Int’l Conf.
of Parallel Processing, University Park, Penn., 303–310.

MELLOR-CRUMMEY, J. M. AND M. L. SCOTT [1991]. “Algorithms for scalable synchronization on
shared-memory multiprocessors,” ACM Trans. on Computer Systems 9:1 (February), 21–65.

MENABREA, L. F. [1842]. “Sketch of the analytical engine invented by Charles Babbage,” Bibio-
thèque Universelle de Genève (October).

MITCHELL, D. [1989]. “The Transputer: The time is now,” Computer Design (RISC supplement), 40–41.

MIYA, E. N. [1985]. “Multiprocessor/distributed processing bibliography,” Computer Architecture
News (ACM SIGARCH) 13:1, 27–29.

NIKHIL, R.S., PAPADOPOULOS, G.M. AND ARVIND [1992]. “*T: A Multithreaded Massively Parallel
Architecture.” In Proceedings of the 19th International Symposium on Computer Architecture, Gold
Coast, Australia, May, 156–167.

NOORDERGRAAF, L. AND R VAN DER PAS [1999]. “Performance Experiences on Sun's WildFire Pro-
totype,” Proc. Supercomputing 99, Portand, Oregon, November.

PFISTER, G. F., W. C. BRANTLEY, D. A. GEORGE, S. L. HARVEY, W. J. KLEINFEKDER, K. P. MCAU-

LIFFE, E. A. MELTON, V. A. NORTON, AND J. WEISS [1985]. “The IBM research parallel processor
prototype (RP3): Introduction and architecture,” Proc. 12th Int’l Symposium on Computer Architec-
ture (June), Boston, 764–771.

REINHARDT, S.K., LARUS, J.R., AND D. A. WOOD[1994]. “Tempest and Typhoon: User-Level Shared
Memory.” In Proceedings of the 21st Annual International Symposium on Computer Architecture, .
Chicago, April, 325--336.

RETTBERG, R. D., W. R. CROWTHER, P. P. CARVEY, AND R. S. TOWLINSON [1990]. “The Monarch
parallel processor hardware design,” IEEE Computer 23:4 (April).

ROSENBLUM, M., S. A. HERROD, E. WITCHEL, AND A. GUTPA [1995]. “Complete computer simula-
tion: The SimOS approach,” to appear in IEEE Parallel and Distributed Technology 3:4 (fall).

SAULSBURY, A., WILKINSON, T., CARTER, J. AND A. LANDIN [1995]. “An Argument for Simple CO-
MA,” Proc. First Conf. on High Performance Computer Architectures (January), Raleigh, N. Caro-
lina,, 276-285

6.16 Historical Perspective and References 779
SCHWARTZ, J. T. [1980]. “Ultracomputers,” ACM Trans. on Programming Languages and Systems
4:2, 484–521.

SCOTT S. L. [1996] “SYNCHRONIZATION AND COMMUNICATION IN THE T3E MULTIPROCESSOR,“ Pro-
ceeding Architectural Support for Programming Languages and Operating Systems (ASPLOS-VII),
Cambridge, Massachusetts, October, pp. 26--36.

SCOTT S. L. AND G. M. THORSON. “The Cray T3E Network: Adaptive Routing in a High Performance
3D Torus,” In Proceedings of the Symposium on High Performance Interconnects (Hot Intercon-
nects 4), Stanford University, August, pages 14-156.

SEITZ, C. [1985]. “The Cosmic Cube,” Comm. ACM 28:1 (January), 22–31.

SINGH, J. P, HENNESSY, J. L. AND A. GUPTA., "Scaling Parallel Programs for Multiprocessors: Meth-
odology and Examples," Computer 26: 7 (July), 22–33.

SLOTNICK, D. L., W. C. BORCK, AND R. C. MCREYNOLDS [1962]. “The Solomon computer,” Proc.
Fall Joint Computer Conf. (December), Philadelphia, 97–107.

SMITH, B.J. [1978] “A pipelined, shared resource MIMD computer,” Proc. 1978 ICPP (August) pp. 6-
-8.

SOUNDARARAJAN, V., HEINRICH, M., VERGHESE, B., GHARACHORLOO, K., GUPTA, A., AND J.L.
HENNESSY [1998]. “FLEXIBLE USE OF MEMORY FOR REPLICATION/MIGRATION IN CACHE-COHER-

ENT DSM MULTIPROCESSORS,” . Proc. 25th Int’l Symposium on Computer Architecture (June),
Barcelona, Spain, 342-355.

STENSTRÖM, P., JOE, T. AND A. GUPTA [1992]. “Comparative performance evaluation of cache-co-
herent NUMA and COMA architectures.” Proceedings of the 19th annual international symposium
on Computer architecture, May, Queensland Australia, 80-91.

STONE, H. [1991]. High Performance Computers, Addison-Wesley, New York.

SWAN, R. J., A. BECHTOLSHEIM, K. W. LAI, AND J. K. OUSTERHOUT [1977]. “The implementation of
the Cm* multi-microprocessor,” Proc. AFIPS National Computing Conf., 645–654.

SWAN, R. J., S. H. FULLER, AND D. P. SIEWIOREK [1977]. “Cm*—A modular, multi-microproces-
sor,” Proc. AFIPS National Computer Conf. 46, 637–644.

TANG, C. K. [1976]. “Cache design in the tightly coupled multiprocessor system,” Proc. AFIPS
National Computer Conf., New York (June), 749–753.

THEKKATH, R. SINGH, A.P. SINGH, J.P., JOHN, S. AND J.L. HENNESSY [1997]. “An Evaluation of a
Commercial CC-NUMA Architecture---The CONVEX Exemplar SPP1200,” Proceedings of the
11th International Parallel Processing Symposium (IPPS '97), Geneva, Switzerland, April.

TULLSEN, D.M., EGGERS, S.J.,. EMER, J.S.,. LEVY, H.M.. LO, J.L. AND R.L. STAMM [1996]. “Exploit-
ing choice: Instruction fetch and issue on an implementable simultaneous multithreading proces-
sor.” Proceedings of the 23rd Annual International Symposium on Computer Architecture (May),
pages 191--202.

TULLSEN, D.M., EGGERS, S.J., AND H.M. LEVY [1995], “Simultaneous multithreading: Maximizing
on-chip parallelism,” Proc. 22nd International Symposium on Computer Architecture (June),
pp.392-403.

UNGER, S. H. [1958]. “A computer oriented towards spatial problems,” Proc. Institute of Radio
Enginers 46:10 (October), 1744–1750.

WILSON, A. W., JR. [1987]. “Hierarchical cache/bus architecture for shared-memory multiproces-
sors,” Proc. 14th Int’l Symposium on Computer Architecture (June), Pittsburgh, 244–252.

WOOD, D. A. AND M. D. HILL [1995]. “Cost-effective parallel computing,” IEEE Computer 28:2
(February).

WOLFE, A. AND J. P. SHEN [1991]. “A variable instruction stream extension to the VLIW architec-
ture.” Proc. of the Fourth Conference on Architectural Support for Programming Languages and

780 Chapter 6 Multiprocessors and Thread-Level Parallelism
Operating Systems (April), Santa Clara, 2-14.

WULF, W. AND C. G. BELL [1972]. “C.mmp—A multi-mini-processor,” Proc. AFIPS Fall Joint
Computing Conf. 41, part 2, 765–777.

WULF, W. AND S. P. HARBISON [1978]. “Reflections in a pool of processors—An experience report
on C.mmp/Hydra,” Proc. AFIPS 1978 National Computing Conf. 48 (June), Anaheim, Calif., 939–
951.

Yamamoto, W., Serrano, M.J., Talcott, A.R., Wood, R.C., and M. Nemirosky [1992].. “Performance
estimation of multistreamed, superscalar processors,” Proc. Twenty-Seventh Hawaii International
Conference on System Sciences (January), pages I:195–204.

E X E R C I S E S

6.1 [10] <6.1> Suppose we have an application that runs in three modes: all processors
used, half the processors in use, and serial mode. Assume that 0.02% of the time is serial
mode, and there are 100 processors in total. Find the maximum time that can be spent in
the mode when half the processors are used, if our goal is a speedup of 80.

6.2 [15] <6.1> Assume that we have a function for an application of the form F(i,p), which
gives the fraction of time that exactly i processors are usable given that a total of p proces-
sors are available. This means that

Assume that when i processors are in use, the application runs i times faster. Rewrite
Amdahl’s Law so that it gives the speedup as a function of p for some application.

6.3 [10] <6.1, 6.2> The Transaction Processing Council (TPC) has several different bench-
marks. Visit their website at www.tpc.org and look at the top 10 performers in each bench-
mark class. Determine whether each of the top 10 configurations is a multiprocessor or if
so what types (SMP, NUMA, cluster, e.g.). Does the ordering look different if price-perfor-
mance is used as the metric?

6.4 [10] <6.1, 6.2> The Top 500 list categorizes the fastest scientific machines in the world
according to their performance on the Linpack benchmark. Visit their website at
www.top500.org and look at the top 100 performers (there are many repeats of a particular
vendor product, since individual supercomputer sites rather than a product are counted).
Determine how many different supercomputer products occur among the top 100 configu-
rations and what type (SMP, NUMA, cluster, e.g.) each different supercomputer is. Try to
obtain cost information and see how the data changes when cost-performance is consid-
ered.

6.5 [15] <6.3> In small bus-based multiprocessors, write-through caches are sometimes
used. One reason is that a write-through cache has a slightly simpler coherence protocol.
Show how the basic snooping cache coherence protocol of Figure 6.12 on page 668 can be
changed for a write-through cache. From the viewpoint of an implementor, what is the ma-
jor hardware functionality that is not needed with a write-through cache compared with a

F i,p() 1=

i 1=

p

∑

6.16 Historical Perspective and References 781
write-back cache?

6.6 [20] <6.3> Add a clean private state to the basic snooping cache-coherence protocol
(Figure 6.12 on page 668). Show the protocol in the format of Figure 6.12.

6.7 [15] <6.3> One proposed solution for the problem of false sharing is to add a valid bit
per word (or even for each byte). This would allow the protocol to invalidate a word without
removing the entire block, allowing a cache to keep a portion of a block in its cache while
another processor wrote a different portion of the block. What extra complications are in-
troduced into the basic snooping cache coherency protocol (Figure 6.12) if this capability
is included? Remember to consider all possible protocol actions.

6.8 [12/10/15] <6.3> The performance differences for write invalidate and write update
schemes can arise from both bandwidth consumption and latency. Assume a memory sys-
tem with 64-byte cache blocks. Ignore the effects of contention.

a. [12] <6.3> Write two parallel code sequences to illustrate the bandwidth differences
between invalidate and update schemes. One sequence should make update look much
better and the other should make invalidate look much better.

b. [10] <6.3> Write a parallel code sequence to illustrate the latency advantage of an up-
date scheme versus an invalidate scheme.

c. [15] <6.3> Show, by example, that when contention is included, the latency of update
may actually be worse. Assume a bus-based multiprocessor with 50-cycle memory
and snoop transactions.

6.9 Use the data on miss rates versus block size for the scientific applications in Section 6.3
to compute AMAT and bus bandwidth making some assumptions about memory access
time based n block size.

6.10 [15/15] <6.3–6.5> Restructure this exercise to use timing from E6000 series.

One possible approach to achieving the scalability of distributed shared memory and the
cost-effectiveness of a bus design is to combine the two approaches, using a set of proces-
sors with memories attached directly to the processors, and interconnected with a bus. The
argument in favor of such a design is that the use of local memories and a coherence scheme
with limited broadcast results in a reduction in bus traffic, allowing the bus to be used for
a larger number of processors. For these Exercises, assume the same parameters as for the
Challenge bus. Assume that remote snoops and memory accesses take the same number of
cycles as a memory access on the Challenge bus. Ignore the directory processing time for
these Exercises. Assume that the coherency scheme works as follows on a miss: If the data
are up-to-date in the local memory, it is used there. Otherwise, the bus is used to snoop for
the data. Assume that local misses take 25 bus clocks.

a. [15] <6.3–6.5> Find the time for a read or write miss to data that are remote.

b. [15] <6.3–6.5> Ignoring contention and using the data from the Ocean benchmark run
on 16 processors for the frequency of local and remote misses (Figure 6.31 on
page 699), estimate the average memory access time versus that for a Challenge using
the same total miss rate.

6.11 [12/15] <6.3,6.5,6.11> Restructure this exercise using the data comparing Origin to

782 Chapter 6 Multiprocessors and Thread-Level Parallelism
E6000.

Although it is widely believed that buses are the ideal interconnect for small-scale multipro-
cessors, this may not always be the case. For example, increases in processor performance
are lowering the processor count at which a more distributed implementation becomes at-
tractive. Because a standard bus-based implementation uses the bus both for access to mem-
ory and for interprocessor coherency traffic, it has a uniform memory access time for both.
In comparison, a distributed memory implementation may sacrifice on remote memory ac-
cess, but it can have a much better local memory access time.

Consider the design of a DSM multiprocessor with 16 processors. Assume the R4400 cache
miss overheads shown for the Challenge design (see pages 730–731). Assume that a mem-
ory access takes 150 ns from the time the address is available from either the local processor
or a remote processor until the first word is delivered.

a. [12] <6.3,6.5,6.11> How much faster is a local access than on the Challenge?

b. [15] <6.3,6.5,6.11> Assume that the interconnect is a 2D grid with links that are 16
bits wide and clocked at 100 MHz, with a start-up time of five cycles for a message.
Assume one clock cycle between nodes in the network, and ignore overhead in the
messages and contention (i.e., assume that the network bandwidth is not the limit).
Find the average remote memory access time, assuming a uniform distribution of re-
mote requests. How does this compare to the Challenge case? What is the largest frac-
tion of remote misses for which the DSM multiprocessor will have a lower average
memory access time than that of the Challenge multiprocessor?

6.12 [20/15/30] <6.5> One downside of a straightforward implementation of directories
using fully populated bit vectors is that the total size of the directory information scales as
the product: Processor count × Memory blocks. If memory is grown linearly with processor
count, then the total size of the directory grows quadratically in the processor count. In
practice, because the directory needs only 1 bit per memory block (which is typically 32 to
128 bytes), this problem is not serious for small to moderate processor counts. For example,
assuming a 128-byte block, the amount of directory storage compared to main memory is
Processor count/1024, or about 10% additional storage with 100 processors. This problem
can be avoided by observing that we only need to keep an amount of information that is pro-
portional to the cache size of each processor. We explore some solutions in these Exercises.

a. [20] <6.5> One method to obtain a scalable directory protocol is to organize the mul-
tiprocessor as a logical hierarchy with the processors at the leaves of the hierarchy and
directories positioned at the root of each subtree. The directory at each subtree root
records which descendents cache which memory blocks, as well as which memory
blocks with a home in that subtree are cached outside of the subtree. Compute the
amount of storage needed to record the processor information for the directories, as-
suming that each directory is fully associative. Your answer should incorporate both
the number of nodes at each level of the hierarchy as well as the total number of nodes.

b. [15] <6.5> Assume that each level of the hierarchy in part (a) has a lookup cost of 50
cycles plus a cost to access the data or cache of 50 cycles, when the point is reached.
We want to compute the AMAT (average memory access time—see Chapter 5) for a
64-processor multiprocessor with four-node subtrees. Use the data from the Ocean
benchmark run on 64 processors (Figure 6.31) and assume that all noncoherence miss-

6.16 Historical Perspective and References 783
es occur within a subtree node and that coherence misses are uniformly distributed
across the multiprocessor. Find the AMAT for this multiprocessor. What does this say
about hierarchies?

c. [30] <6.5> An alternative approach to implementing directory schemes is to imple-
ment bit vectors that are not dense. There are two such strategies: one reduces the
number of bit vectors needed and the other reduces the number of bits per vector. Us-
ing traces, you can compare these schemes. First, implement the directory as a four-
way set-associative cache storing full bit vectors, but only for the blocks that are
cached outside of the home node. If a directory cache miss occurs, choose a directory
entry and invalidate the entry. Second, implement the directory so that every entry has
8 bits. If a block is cached in only one node outside of its home, this field contains the
node number. If the block is cached in more than one node outside its home, this field
is a bit vector with each bit indicating a group of eight processors, at least one of which
caches the block. Using traces of 64-processor execution, simulate the behavior of
these two schemes. Assume a perfect cache for nonshared references, so as to focus
on coherency behavior. Determine the number of extraneous invalidations as the di-
rectory cache size is increased.

6.13 [25/40] <6.10> Prefetching and relaxed consistency models are two methods of tol-
erating the latency of longer access in multiprocessors. Another scheme, originally used in
the HEP multiprocessor and incorporated in the MIT Alewife multiprocessor, is to switch
to another activity when a long-latency event occurs. This idea, called multiple context or
multithreading, works as follows:

n The processor has several register files and maintains several PCs (and related pro-
gram states). Each register file and PC holds the program state for a separate parallel
thread.

n When a long-latency event occurs, such as a cache miss, the processor switches to an-
other thread, executing instructions from that thread while the miss is being handled.

a. [25] <6.10> Using the data for the Ocean benchmark running on 64 processors (Figure
6.31), determine how many contexts are needed to hide all the latency of remote ac-
cesses. Assume that local cache misses take 40 cycles and that remote misses take 120
cycles. Assume that the increased demands due to a higher request rate do not affect
either the latency or the bandwidth of communications.

b. [40] <6.10> Implement a simulator for a multiple-context directory-based multipro-
cessor. Use the simulator to evaluate the performance gains from multiple context.
How significant are contention and the added bandwidth demands in limiting the
gains?

6.14 [25] <6.10> Prove that in a two-level cache hierarchy, where L1 is closer to the pro-
cessor, inclusion is maintained with no extra action if L2 has at least as much associativity
as L1, both caches use LRU replacement, and both caches have the same block size.

6.15 [20] <6.5,6.11> As we saw in the Putting it All Together and in Fallacies and Pitfalls,
data distribution can be important when an application has a nontrivial private data miss
rate caused by capacity misses. This problem can be attacked with compiler technology
(distributing the data in blocks) or through architectural support, as we saw in the descrip-

784 Chapter 6 Multiprocessors and Thread-Level Parallelism
tion of CMR on Wildfire.

Assume that we have two DSM multiprocessors: one with CMR support and one without
such support. Both multiprocessors have one processor per node and remote coherence
misses, which are uniformly distributed, take 1 µS. Assume that all capacity misses on the
CMR multiprocessor hit in the local memory and require 250 ns. Assume that capacity
misses take 200 ns when they are local on the DSM multiprocessor without CMR and 800
ns, otherwise. Using the Ocean data for 32 processors (Figure 6.23), find what fraction of
the capacity misses on the DSM multiprocessor must be local if the performance of the two
multiprocessors is identical.

6.16 [15] <6.7> Some multiprocessors have implemented a special broadcast coherence
protocol just for locks, sometimes even using a different bus. Evaluate the performance of
the spin lock in the Example on page 710 assuming a write broadcast protocol.

6.17 [15] <6.7> Implement the barrier in Figure 6.40 on page 713, using queuing locks.
Compare the performance to the spin-lock barrier.

6.18 [15] <6.7> Implement the barrier in Figure 6.40 on page 713, using fetch-and-incre-
ment. Compare the performance to the spin-lock barrier.

6.19 [15] <6.7> Implement the barrier on page 717, so that barrier release is also done with
a combining tree.

6.20 [30] <6.3–6.7,6.11> Using an available shared-memory multiprocessor, see if you
can determine the organization and latencies of its memory hierarchy. For each level of the
hierarchy, you can look at the total size, block size, and associativity, as well as the latency
of each level of the hierarchy. If the multiprocessor uses a nonbus interconnection network,
see if you can discover the topology and latency characteristics of the network. Try to make
a table like that in Figure 6.47 for the machine. The lmbench (www.bitmover.com/lmbench/
) and stream (http://www.cs.virginia.edu/stream/) benchmark may prove useful in this ex-
ercise.

6.21 [30] <6.3–6.7,6.11> Perform exercise 6.20 but looking at the bandwidth characteris-
tics rather than latency. See if you can prepare a table like that in Figure 6.48. Extend the
table by looking at the effect of strided accesses, as well as sequential and unrelated access-
es.

6.22 [20] <6.5> As we discussed earlier, the directory controller can send invalidates for
lines that have been replaced by the local cache controller. To avoid such messages, and to
keep the directory consistent, replacement hints are used. Such messages tell the controller
that a block has been replaced. Modify the directory coherence protocol of section 6.5 to
use such replacement hints.

6.23 [15] <6.7> Find the time for n processes to synchronize using a standard barrier. As-
sume that the time for a single process to update the count and release the lock is c.

6.24 [15] <6.7> Find the time for n processes to synchronize using a combining tree barrier.
Assume that the time for a single process to update the count and release the lock is c.

6.25 [25] <6.7> Implement a software version of the queuing lock for a bus-based system.
Using the model in the Example on page 710, how long does it take for 20 processors to
acquire and release the lock? You need only count bus cycles.

6.16 Historical Perspective and References 785
6.26 [20/30] <6.2–6.7> Both researchers and industry designers have explored the idea of
having the capability to explicitly transfer data between memories. The argument in favor
of such facilities is that the programmer can achieve better overlap of computation and
communication by explicitly moving data when it is available. The first part of this exercise
explores the potential on paper; the second explores the use of such facilities on real mul-
tiprocessors.

a. [20] <6.2–6.7> Assume that cache misses stall the processor, and that block transfer
occurs into the local memory of a DSM node. Assume that remote misses cost 100 cy-
cles and that local misses cost 40 cycles. Assume that each DMA transfer has an over-
head of 10 cycles. Assuming that all the coherence traffic can be replaced with DMA
into main memory followed by a cache miss, find the potential improvement for
Ocean running on 64 processors (Figure 6.31).

b. [30] <6.2–6.7> Find a multiprocessor that implements both shared memory (coherent
or incoherent) and a simple DMA facility. Implement a blocked matrix multiply using
only shared memory and using the DMA facilities with shared memory. Is the latter
faster? How much? What factors make the use of a block data transfer facility attrac-
tive?

6.27 [Discussion] <6.11> Construct a scenario whereby a truly revolutionary architec-
ture—pick your favorite candidate—will play a significant role. Significant is defined as
10% of the computers sold, 10% of the users, 10% of the money spent on computers, or
10% of some other figure of merit.

6.28 [40] <6.2,6.10,6.14> A multiprocessor or cluster is typically marketed using pro-
grams that can scale performance linearly with the number of processors. The project here
is to port programs written for one multiprocessor to the others and to measure their abso-
lute performance and how it changes as you change the number of processors. What chang-
es need to be made to improve performance of the ported programs on each multiprocessor?
What is the ratio of processor performance according to each program?

6.29 [35] <6.2,6.10,6.14> Instead of trying to create fair benchmarks, invent programs that
make one multiprocessor or cluster look terrible compared with the others, and also pro-
grams that always make one look better than the others. It would be an interesting result if
you couldn’t find a program that made one multiprocessor or cluster look worse than the
others. What are the key performance characteristics of each organization?

6.30 [40] <6.2,6.10,6.14> Multiprocessors and cluster usually show performance increas-
es as you increase the number of processors, with the ideal being n times speedup for n pro-
cessors. The goal of this biased benchmark is to make a program that gets worse
performance as you add processors. For example, this means that one processor on the mul-
tiprocessor or cluster runs the program fastest, two are slower, four are slower than two, and
so on. What are the key performance characteristics for each organization that give inverse
linear speedup?

6.31 [50] <6.2,6.10,6.14> Networked workstations can be considered multicomputers or
clusters, albeit with somewhat slower, though perhaps cheaper, communication relative to
computation. Port some cluster benchmarks to a network using remote procedure calls for
communication. How well do the benchmarks scale on the network versus the cluster?
What are the practical differences between networked workstations and a commercial clus-

786 Chapter 6 Multiprocessors and Thread-Level Parallelism
ter, such as the IBM-SP series?

6.16 Historical Perspective and References 787

	Multiprocessors and Thread-Level Parallelism
	The turning away from the con�ventional organization came in the middle 1960s, when the law of di...
	… sequential computers are approaching a fundamental physical limit on their potential computatio...
	… today’s multiprocessors… are nearing an impasse as technol�ogies �approach the speed of light. ...

	Major changes
	1. split up the longest sections
	2. clearer discussion of the concept of thread and process
	3. SMT and multithreading section
	4. two another views
	5. reordered the cross cutting issues--no big changes, just reordered
	A Taxonomy of Parallel Architectures

	1. Single instruction stream, single data stream (SISD)—This category is the uniprocessor.
	2. Single instruction stream, multiple data streams (SIMD)—The same instruction is executed by mu...
	3. Multiple instruction streams, single data stream (MISD)—No commercial multiprocessor of this t...
	4. Multiple instruction streams, multiple data streams (MIMD)—Each processor fetches its own inst...

	1. MIMDs offer flexibility. With the correct hardware and software support, MIMDs can function as...
	2. MIMDs can build on the cost/performance advantages of off-the-shelf �microprocessors. In fact,...
	FIGURE 6.1� Basic structure of a centralized shared-memory multiprocessor. Multiple processor-cac...
	FIGURE 6.2� The basic architecture of a distributed-memory multiprocessor consists of individual ...

	Models for Communication and Memory Architecture
	Performance Metrics for Communication Mechanisms

	1. Communication bandwidth—Ideally the communication bandwidth is limited by processor, memory, a...
	2. Communication latency—Ideally the latency is as low as possible. As we will see in Chapter 8, ...
	3. Communication latency hiding—How well can the communication mechanism hide latency by overlapp...
	Advantages of Different Communication Mechanisms
	Challenges of Parallel Processing
	EXAMPLE Suppose you want to achieve a speedup of 80 with 100 processors. What fraction of the ori...
	FIGURE 6.3� Typical remote access times to retrieve a word from a remote memory in shared-memory ...

	EXAMPLE Suppose we have an application running on a 32-processor multiprocessor, which has a 400 ...

	CPI = 0.5 + 0.8 = 1.3
	A Commercial Workload
	1. An online transaction processing workload (OLTP) modeled after TPC-B (which has similar memory...
	2. A decision support system (DSS) workload based on TPC-D and also using Oracle 7.3.2 as the und...
	3. A web index search (Altavista) benchmark based on a search of a memory mapped version of the A...
	FIGURE 6.4� The distribution of execution time in the commercial workloads. The OLTP benchmark ha...

	Multiprogramming and OS Workload
	FIGURE 6.5� The distribution of execution time in the multiprogrammed parallel make workload. The...

	Scientific/Technical Applications
	The FFT Kernel

	1. Transpose data matrix.
	2. Perform 1D FFT on each row of data matrix.
	3. Multiply the roots of unity matrix by the data matrix and write the result in the data matrix.
	4. Transpose data matrix.
	5. Perform 1D FFT on each row of data matrix.
	6. Transpose data matrix.
	The LU Kernel
	The Barnes Application
	The Ocean Application
	Computation/Communication for the Parallel Programs
	FIGURE 6.6� Scaling of computation, of communication, and of the ratio are critical factors in de...

	EXAMPLE Suppose we know that for a given multiprocessor the Ocean application spends 20% of its e...
	What Is Multiprocessor Cache Coherence?
	FIGURE 6.7� The cache-coherence problem for a single memory location (X), read and written by two...

	1. A read by a processor, P, to a location X that follows a write by P to X, with no writes of X ...
	2. A read by a processor to location X that follows a write by another processor to X returns the...
	3. Writes to the same location are serialized: that is, two writes to the same location by any tw...
	Basic Schemes for Enforcing Coherence
	Snooping Protocols
	FIGURE 6.8� An example of an invalidation protocol working on a snooping bus for a single cache b...
	FIGURE 6.9� An example of a write update or broadcast protocol working on a snooping bus for a si...

	1. Multiple writes to the same word with no intervening reads require multiple write broadcasts i...
	2. With multiword cache blocks, each word written in a cache block requires a write broadcast in ...
	3. The delay between writing a word in one processor and reading the written value in another pro...
	Basic Implementation Techniques
	An Example Protocol
	FIGURE 6.10� The cache-coherence mechanism receives requests from both the processor and the bus ...
	FIGURE 6.11� A write-invalidate, cache-coherence protocol for a write-back cache showing the stat...
	FIGURE 6.12� Cache-coherence state diagram with the state transitions induced by the local proces...

	EXAMPLE Assume that words x1 and x2 are in the same cache block, which is in the shared state in ...
	1. This event is a true sharing miss, since x1 was read by P2 and needs to be invalidated from P2.
	2. This event is a false sharing miss, since x2 was invalidated by the write of x1 in P1, but tha...
	3. This event is a false sharing miss, since the block containing x1 is marked shared due to the ...
	4. This event is a false sharing miss for the same reason as step 3.
	5. This event is a true sharing miss, since the value being read was �written by P2. n

	Performance Measurements of the Commercial Workload
	FIGURE 6.13� The execution time breakdown for the three programs (OLTP, DSS, and Altavista) in th...
	FIGURE 6.14� The relative performance of the OLTP workload as the size of the L3 cache, which is ...
	FIGURE 6.15� The contributing causes of memory access cycles shift as the cache size is increased...
	FIGURE 6.16� The contribution to memory access cycles increases as processor count increases prim...
	FIGURE 6.17� The number of misses per one-thousand instructions drops steadily as the block size ...

	Performance of the Multiprogramming and OS Workload
	FIGURE 6.18� The data miss rate drops faster for the user code than for the kernel code as the da...
	FIGURE 6.19� The components of the kernel data miss rate change as the data cache size is increas...
	FIGURE 6.20� Miss rate for the multiprogramming workload drops steadily as the block size is incr...
	FIGURE 6.21� As we would expect, the increasing block size substantially reduces the compulsory m...
	FIGURE 6.22� The number of bytes needed per data reference grows as block size is increased for b...

	Performance for the Scientific/Technical Workload
	FIGURE 6.23� Data miss rates can vary in nonobvious ways as the processor count is increased from...
	FIGURE 6.24� The miss rate usually drops as the cache size is increased, although coherence misse...
	FIGURE 6.25� The data miss rate drops as the cache block size is increased. All these results are...
	FIGURE 6.26� Bus traffic for data misses climbs steadily as the block size in the data cache is i...

	Summary: Performance of Snooping Cache Schemes
	FIGURE 6.27� A directory is added to each node to implement cache coherence in a distributed-memo...

	Directory-Based Cache-Coherence Protocols: The Basics
	FIGURE 6.28� The possible messages sent among nodes to maintain coherence are shown with the sour...

	An Example Directory Protocol
	FIGURE 6.29� State transition diagram for an individual cache block in a directory- based system....
	FIGURE 6.30� The state transition diagram for the directory has the same states and structure as ...
	FIGURE 6.31� The data miss rate is often steady as processors are added for these benchmarks. Bec...
	FIGURE 6.32� Miss rates decrease as cache sizes grow. Steady decreases are seen in the local miss...
	FIGURE 6.33� Data miss rate versus block size assuming a 128-KB cache and 64 processors in total....
	FIGURE 6.34� The number of bytes per data reference climbs steadily as block size is increased. T...

	EXAMPLE Assume a 64-processor multiprocessor with 1GHz processors that sustain one memory referen...
	FIGURE 6.35� Characteristics of the example directory-based multiprocessor. Misses can be service...
	FIGURE 6.36� The effective latency of memory references in a DSM multiprocessor depends both on t...
	Basic Hardware Primitives
	Implementing Locks Using Coherence
	FIGURE 6.37� Cache-coherence steps and bus traffic for three processors, P0, P1, and P2. This fig...

	Synchronization Performance Challenges

	EXAMPLE Suppose there are 10 processors on a bus that each try to lock a variable simultaneously....
	FIGURE 6.38� The time to acquire and release a single lock when 10 processors contend for the loc...
	Barrier Synchronization
	FIGURE 6.39� Code for a simple barrier. The lock counterlock protects the counter so that it can ...
	FIGURE 6.40� Code for a sense-reversing barrier. The key to making the barrier reusable is the us...

	EXAMPLE Suppose there are 10 processors on a bus that each try to execute a barrier simultaneousl...
	Synchronization Mechanisms for Larger-Scale Multiprocessors
	Software Implementations
	FIGURE 6.41� A spin lock with exponential back-off. When the store conditional fails, the process...

	struct node{/* a node in the combining tree */ int counterlock; /* lock for this node */ int coun...
	FIGURE 6.42� An implementation of a tree-based barrier reduces contention considerably. The tree ...
	Hardware Primitives
	EXAMPLE How many bus transaction and how long does it take to have 10 processors lock and unlock ...
	EXAMPLE Write the code for the barrier using fetch-and-increment. Making the same assumptions as ...
	FIGURE 6.43� Code for a sense-reversing barrier using fetch-and-increment to do the counting.

	EXAMPLE Suppose we have a processor where a write miss takes 40 cycles to establish ownership, 10...
	The Programmer’s View
	Relaxed Consistency Models: The Basics

	1. The WÆR ordering: which yields a model known as total store ordering or processor consistency....
	2. The WÆW ordering: which yields a model known as partial store order.
	3. The RÆW and RÆR orderings: which yields a variety of models including weak ordering, the Alpha...
	Final Remarks on Consistency Models
	Simultaneous Multithreading: Converting Thread-Level Parallelism into Instruction-Level Parallelism
	FIGURE 6.44� This illustration shows how these four different approaches use the issue slots of a...
	Design Challenges in SMT processors

	Memory System Issues
	Inclusion and Its Implementation

	EXAMPLE Assume that L2 has a block size four times that of L1. Show how a miss for an address tha...
	Nonblocking Caches and Latency Hiding

	1. A local node will need to keep track of the multiple outstanding accesses, since the replies m...
	2. Before issuing a request (either a normal fetch or a prefetch), the node must ensure that it h...
	3. Our implementation of the directory and snooping controllers assumes that the processor stalls...
	Compiler Optimization and the Consistency Model
	Using Speculation to Hide Latency in Strict Consistency Models
	Using Virtual Memory Support to Build Shared Memory
	Performance Measurement of Parallel Processors
	EXAMPLE Suppose we have a problem whose execution time for a problem of size n is proportional to...
	The Wildfire Architecture
	FIGURE 6.45� The Wildfire Architecture uses a bus-based SUN Enterprise server as its building blo...
	Using Page Replication and Migration to Reduce NUMA Effects

	Performance of Wildfire
	Basic Performance Measures: Latency and Bandwidth
	FIGURE 6.46� The SGI Origin 2000 uses an architecture that contains two processors per node and a...
	FIGURE 6.47� A comparison of memory access latencies (in ns) between the Sun Wildfire prototype (...

	1. the accessed block is unowned or it is in the shared state
	2. the accessed block is owned exclusively but clean, which requires that the block be invalidated,
	3. the accessed block is owned and dirty, which requires that the block be retrieved from the cac...
	FIGURE 6.48� A comparison of memory bandwidth measurements (in MB/sec) between the Sun Wildfire p...

	Application performance of Wildfire
	Performance of the OLTP Workload

	1. Ideal SMP: a 16-processor SMP design, modeled using the E6000.
	2. Wildfire with CMR and locality scheduling: a 2-node, 16-processor Wildfire with replication an...
	3. Wildfire with CMR only.
	4. Wildfire base with neither CMR nor locality scheduling.
	5. Unoptimized Wildfire with poor data placement: Wildfire with poor data placement and unintelli...
	6. Unoptimized Wildfire with thin nodes (2 processors per node) and poor data placement. This sys...
	FIGURE 6.49� The fraction of local accesses (defined as within the node) is shown for six differe...
	FIGURE 6.50� The performance of the OLTP application using 16 processors is highest for the E6000...

	Performance of Wildfire on a Scientific Application
	FIGURE 6.51� Wildfire performance for the Red-Black solver measured as iterations per second show...
	FIGURE 6.52� The replication and migration support of Wildfire allows an application to start wit...
	FIGURE 6.53� Migration only, replication only, and the combination of all three achieve about the...

	Concluding Remarks on Wildfire

	1. Although a moderate range of scalability, up to a few hundred processors may be of interest, t...
	2. The memory access patterns of commercial applications tend to have less sharing and less predi...

	1. The Pulsar processor, which was based on the earlier Northstar, is a statically scheduled proc...
	2. The performance penalty for multithreading must be small both in silicon area and in clock rate.
	3. Single thread performance on Pulsar must not suffer.

	1. Pulsar supports precisely two threads: this minimizes both the incremental silicon area and th...
	2. The multithreading is coarsely scheduled; that is, threads are not interleaved, instead a thre...

	1. An interface to serial voice streams, including support for handling jitter.
	2. Support for fast packet routing and channel lookup.
	3. A complete Ethernet interface, including the MAC layer.
	4. Four MIPS32 R4000-class processors each with its own caches (a total of 48 KB or 12 KB per pro...

	1. The use of parallel processing in some domains is beginning to be understood. Probably first a...
	2. It is now widely held that the most effective way to build a computer that offers more perform...
	3. Multiprocessors are highly effective for multiprogrammed workloads, which are often the domina...
	4. More recently, multiprocessors have proved very effective for certain intensive commercial wor...
	5. On-chip multiprocessing appears to be growing in importance for two reasons. First, in the emb...
	The Future of MPP Architecture

	1. Large-scale multiprocessors that simply scale up naturally, using proprietary interconnect and...
	2. Large-scale multiprocessors constructed from clusters of midrange multiprocessors with combina...
	3. Designing clustered multicomputers that use off-the-shelf uniprocessor nodes and a custom inte...
	4. Designing a cluster using all off-the-shelf components, which promises the lowest cost. The le...
	The Future of Microprocessor Architecture
	Evolution Versus Revolution and the Challenges to �Paradigm Shifts in the Computer Industry
	FIGURE 6.54� The evolution-revolution spectrum of computer architecture. The second through fourt...

	SIMD Computers: Several Attempts, No Lasting Successes
	Other Early Experiments
	Great Debates in Parallel Processing
	Predictions of the Future

	More Recent Advances and Developments
	The Development of Bus-Based Coherent Multiprocessors
	FIGURE 6.55� Five snooping protocols summarized. Archibald and Baer [1986] use these names to des...

	Toward Large-Scale Multiprocessors
	Developments in Synchronization and Consistency Models

	Other References
	Multithreading and Simultaneous Multithreading
	References
	Exercises
	6.1� [10] <6.1> Suppose we have an application that runs in three modes: all processors used, hal...
	6.2� [15] <6.1> Assume that we have a function for an application of the form F(i,p), which gives...

	Assume that when i processors are in use, the application runs i times faster. Rewrite �Amdahl’s ...
	6.3� [10] <6.1, 6.2> The Transaction Processing Council (TPC) has several different benchmarks. V...
	6.4� [10] <6.1, 6.2> The Top 500 list categorizes the fastest scientific machines in the world ac...
	6.5� [15] <6.3> In small bus-based multiprocessors, write-through caches are sometimes used. One ...
	6.6� [20] <6.3> Add a clean private state to the basic snooping cache-coherence protocol (Figure ...
	6.7� [15] <6.3> One proposed solution for the problem of false sharing is to add a valid bit per ...
	6.8� [12/10/15] <6.3> The performance differences for write invalidate and write update schemes c...
	a. [12] <6.3> Write two parallel code sequences to illustrate the bandwidth differences between i...
	b. [10] <6.3> Write a parallel code sequence to illustrate the latency advantage of an update sch...
	c. [15] <6.3> Show, by example, that when contention is included, the latency of update may actua...
	6.9� Use the data on miss rates versus block size for the scientific applications in Section 6.3 ...
	6.10� [15/15] <6.3–6.5> Restructure this exercise to use timing from E6000 series.

	One possible approach to achieving the scalability of distributed shared memory and the cost-effe...
	a. [15] <6.3–6.5> Find the time for a read or write miss to data that are remote.
	b. [15] <6.3–6.5> Ignoring contention and using the data from the Ocean benchmark run on 16 proce...
	6.11� [12/15] <6.3,6.5,6.11> Restructure this exercise using the data comparing Origin to E6000.

	Although it is widely believed that buses are the ideal interconnect for small-scale multiprocess...
	Consider the design of a DSM multiprocessor with 16 processors. Assume the R4400 cache miss overh...
	a. [12] <6.3,6.5,6.11> How much faster is a local access than on the Challenge?
	b. [15] <6.3,6.5,6.11> Assume that the interconnect is a 2D grid with links that are 16 bits wide...
	6.12� [20/15/30] <6.5> One downside of a straightforward implementation of directories using full...
	a. [20] <6.5> One method to obtain a scalable directory protocol is to organize the multiprocesso...
	b. [15] <6.5> Assume that each level of the hierarchy in part (a) has a lookup cost of 50 cycles ...
	c. [30] <6.5> An alternative approach to implementing directory schemes is to implement bit vecto...
	6.13� [25/40] <6.10> Prefetching and relaxed consistency models are two methods of tolerating the...
	a. [25] <6.10> Using the data for the Ocean benchmark running on 64 processors (Figure 6.31), det...
	b. [40] <6.10> Implement a simulator for a multiple-context directory-based multiprocessor. Use t...
	6.14� [25] <6.10> Prove that in a two-level cache hierarchy, where L1 is closer to the processor,...

	Assume that we have two DSM multiprocessors: one with CMR support and one without such support. B...
	6.16� [15] <6.7> Some multiprocessors have implemented a special broadcast coherence protocol jus...
	6.17� [15] <6.7> Implement the barrier in Figure 6.40 on page�713, using queuing locks. Compare t...
	6.18� [15] <6.7> Implement the barrier in Figure 6.40 on page�713, using fetch-and-increment. Com...
	6.19� [15] <6.7> Implement the barrier on page 717, so that barrier release is also done with a c...
	6.20� [30] <6.3–6.7,6.11> Using an available shared-memory multiprocessor, see if you can determi...
	6.21� [30] <6.3–6.7,6.11> Perform exercise 6.20 but looking at the bandwidth characteristics rath...
	6.22� [20] <6.5> As we discussed earlier, the directory controller can send invalidates for lines...
	6.23� [15] <6.7> Find the time for n processes to synchronize using a standard barrier. Assume th...
	6.24� [15] <6.7> Find the time for n processes to synchronize using a combining tree barrier. Ass...
	6.25� [25] <6.7> Implement a software version of the queuing lock for a bus-based system. Using t...
	6.26� [20/30] <6.2–6.7> Both researchers and industry designers have explored the idea of having ...
	a. [20] <6.2–6.7> Assume that cache misses stall the processor, and that block transfer occurs in...
	b. [30] <6.2–6.7> Find a multiprocessor that implements both shared memory (coherent or incoheren...
	6.27� [Discussion] <6.11> Construct a scenario whereby a truly revolutionary architecture—pick yo...
	6.28� [40] <6.2,6.10,6.14> A multiprocessor or cluster is typically marketed using programs that ...
	6.29� [35] <6.2,6.10,6.14> Instead of trying to create fair benchmarks, invent programs that make...
	6.30� [40] <6.2,6.10,6.14> Multiprocessors and cluster usually show performance increases as you ...
	6.31� [50] <6.2,6.10,6.14> Networked workstations can be considered multicomputers or clusters, a...

