
Converting Thread-Level Parallelism to
Instruction-Level Parallelism via
Simultaneous Multithreading

JACK L. LO and SUSAN J. EGGERS
University of Washington
JOEL S. EMER
Digital Equipment Corporation
HENRY M. LEVY
University of Washington
REBECCA L. STAMM
Digital Equipment Corporation
and
DEAN M. TULLSEN
University of California, San Diego

To achieve high performance, contemporary computer systems rely on two forms of parallel-
ism: instruction-level parallelism (ILP) and thread-level parallelism (TLP). Wide-issue super-
scalar processors exploit ILP by executing multiple instructions from a single program in a
single cycle. Multiprocessors (MP) exploit TLP by executing different threads in parallel on
different processors. Unfortunately, both parallel processing styles statically partition proces-
sor resources, thus preventing them from adapting to dynamically changing levels of ILP and
TLP in a program. With insufficient TLP, processors in an MP will be idle; with insufficient
ILP, multiple-issue hardware on a superscalar is wasted. This article explores parallel
processing on an alternative architecture, simultaneous multithreading (SMT), which allows
multiple threads to compete for and share all of the processor’s resources every cycle. The
most compelling reason for running parallel applications on an SMT processor is its ability to
use thread-level parallelism and instruction-level parallelism interchangeably. By permitting

This research was supported by Digital Equipment Corporation, the Washington Technology
Center, NSF PYI Award MIP-9058439, NSF grants MIP-9632977, CCR-9200832, and CCR-
9632769, DARPA grant F30602-97-2-0226, ONR grants N00014-92-J-1395 and N00014-94-1-
1136, and fellowships from Intel and the Computer Measurement Group.
Authors’ addresses: J. L. Lo, S. J. Eggers, and H. M. Levy, Department of Computer Science
and Engineering, University of Washington, Box 352350, Seattle, WA 98195-2350; email: {jlo;
eggers; levy}@cs.washington.edu; J. S. Emer and R. L. Stamm, Digital Equipment Corpora-
tion, HL02-3/J3, 77 Reed Road, Hudson, MA 07149; email: {emer; stamm}@vssad.enet.dec.
com; D. M. Tullsen, Department of Computer Science and Engineering, University of Califor-
nia, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0114; email: tullsen@cs. ucsd.edu.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1997 ACM 0734-2071/97/0800–0322 $03.50

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997, Pages 322–354.

multiple threads to share the processor’s functional units simultaneously, the processor can
use both ILP and TLP to accommodate variations in parallelism. When a program has only a
single thread, all of the SMT processor’s resources can be dedicated to that thread; when more
TLP exists, this parallelism can compensate for a lack of per-thread ILP. We examine two
alternative on-chip parallel architectures for the next generation of processors. We compare
SMT and small-scale, on-chip multiprocessors in their ability to exploit both ILP and TLP.
First, we identify the hardware bottlenecks that prevent multiprocessors from effectively
exploiting ILP. Then, we show that because of its dynamic resource sharing, SMT avoids these
inefficiencies and benefits from being able to run more threads on a single processor. The use
of TLP is especially advantageous when per-thread ILP is limited. The ease of adding
additional thread contexts on an SMT (relative to adding additional processors on an MP)
allows simultaneous multithreading to expose more parallelism, further increasing functional
unit utilization and attaining a 52% average speedup (versus a four-processor, single-chip
multiprocessor with comparable execution resources). This study also addresses an often-cited
concern regarding the use of thread-level parallelism or multithreading: interference in the
memory system and branch prediction hardware. We find that multiple threads cause
interthread interference in the caches and place greater demands on the memory system, thus
increasing average memory latencies. By exploiting thread-level parallelism, however, SMT
hides these additional latencies, so that they only have a small impact on total program
performance. We also find that for parallel applications, the additional threads have minimal
effects on branch prediction.

Categories and Subject Descriptors: C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures

General Terms: Measurement, Performance

Additional Key Words and Phrases: Cache interference, instruction-level parallelism, multi-
processors, multithreading, simultaneous multithreading, thread-level parallelism

1. INTRODUCTION

To achieve high performance, contemporary computer systems rely on two
forms of parallelism: instruction-level parallelism (ILP) and thread-level
parallelism (TLP). Although they correspond to different granularities of
parallelism, ILP and TLP are fundamentally identical: they both identify
independent instructions that can execute in parallel and therefore can
utilize parallel hardware. Wide-issue superscalar processors exploit ILP by
executing multiple instructions from a single program in a single cycle.
Multiprocessors exploit TLP by executing different threads in parallel on
different processors. Unfortunately, neither parallel processing style is
capable of adapting to dynamically changing levels of ILP and TLP,
because the hardware enforces the distinction between the two types of
parallelism. A multiprocessor must statically partition its resources among
the multiple CPUs (see Figure 1); if insufficient TLP is available, some of
the processors will be idle. A superscalar executes only a single thread; if
insufficient ILP exists, much of that processor’s multiple-issue hardware
will be wasted.

Simultaneous multithreading (SMT) [Tullsen et al. 1995; 1996; Gulati et
al. 1996; Hirata et al. 1992] allows multiple threads to compete for and
share available processor resources every cycle. One of its key advantages

Simultaneous Multithreading • 323

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

when executing parallel applications is its ability to use thread-level
parallelism and instruction-level parallelism interchangeably. By allowing
multiple threads to share the processor’s functional units simultaneously,
thread-level parallelism is essentially converted into instruction-level par-
allelism. An SMT processor can therefore accommodate variations in ILP
and TLP. When a program has only a single thread (i.e., it lacks TLP) all of
the SMT processor’s resources can be dedicated to that thread; when more
TLP exists, this parallelism can compensate for a lack of per-thread ILP.
An SMT processor can uniquely exploit whichever type of parallelism is
available, thereby utilizing the functional units more effectively to achieve
the goals of greater throughput and significant program speedups.

This article explores parallel processing on a simultaneous multithread-
ing architecture. Our investigation of parallel program performance on an
SMT is motivated by the results of our previous work [Tullsen et al. 1995;
1996]. In Tullsen et al. [1995], we used a multiprogrammed workload to
assess the potential of SMT on a high-level architectural model and
favorably compared total instruction throughput on an SMT to several
alternatives: a superscalar processor, a fine-grained multithreaded proces-
sor, and a single-chip, shared-memory multiprocessor. In Tullsen et al.
[1996], we presented a microarchitectural design that demonstrated that
this potential can be realized in an implementable SMT processor. The
microarchitecture requires few small extensions to modern out-of-order
superscalars; yet, these modest changes enable substantial performance
improvements over wide-issue superscalars. In those two studies, the
multiprogrammed workload provided plenty of TLP, because each thread
corresponded to an entirely different application. In parallel programs,
however, threads execute code from the same application, synchronize, and
share data and instructions. These programs place different demands on an

Fig. 1. A comparison of issue slot (functional unit) utilization in various architectures. Each
square corresponds to an issue slot, with white squares signifying unutilized slots. Hardware
utilization suffers when a program exhibits insufficient parallelism or when available paral-
lelism is not used effectively. A superscalar processor achieves low utilization because of low
ILP in its single thread. Multiprocessors physically partition hardware to exploit TLP, and
therefore performance suffers when TLP is low (e.g., in sequential portions of parallel
programs). In contrast, simultaneous multithreading avoids resource partitioning. Because it
allows multiple threads to compete for all resources in the same cycle, SMT can cope with
varying levels of ILP and TLP; consequently utilization is higher, and performance is better.

324 • Jack L. Lo et al.

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

SMT than a multiprogrammed workload; for example, because parallel
threads often execute the same code at the same time (the Single Program
Multiple Data model), they may exacerbate resource bottlenecks.

In this work, we use parallel applications to explore the utilization of
execution resources in the future, when greatly increased chip densities
will permit several alternative on-chip parallel architectures. In particular,
we compare SMT and small-scale on-chip multiprocessors (MP) in their
ability to exploit both ILP and TLP. This study makes several contributions
in this respect. First, we identify the hardware bottlenecks that prevent
multiprocessors from effectively exploiting ILP in parallel applications.
Then, we show that SMT (1) avoids these inefficiencies, because its re-
sources are not statically partitioned, and (2) benefits from being able to
run more threads on a single processor. This is especially advantageous
when per-thread ILP is limited. The ease of designing in more thread
contexts on an SMT (relative to adding more processors on an MP) allows
simultaneous multithreading to expose more thread-level parallelism, fur-
ther increasing functional unit utilization and attaining a 52% average
speedup (versus a four-processor, single-chip multiprocessor with compara-
ble execution resources).

Finally, we analyze how TLP stresses other hardware structures (such as
the memory system and branch prediction hardware) on an SMT. First, we
investigate the amount of interthread interference in the shared cache.
Second, we assess the impact resulting from SMT’s increased memory
bandwidth requirements. We find that, although SMT increases the aver-
age memory latency, it is able to hide the increase by executing instruc-
tions from multiple threads. Consequently, interthread conflicts in the
memory system have only a small impact on total program performance
and do not inhibit significant program speedups. Third, we find that in
parallel applications, the additional threads only minimally degrade
branch and jump prediction accuracy.

The remainder of this article is organized as follows. Section 2 describes
the out-of-order superscalar processor that serves as the base for the SMT
and MP architectures. Section 2 also discusses the extensions that are
needed to build the SMT and MPs. Section 3 discusses the methodology
used for our experimentation. In Section 4, we examine the shortcomings of
small-scale multiprocessors and demonstrate how SMT addresses these
flaws. Section 5 presents an analysis of SMT’s effect on the memory system
and branch prediction hardware. Section 6 discusses some implications
that SMT has for architects, compiler writers, and operating systems
developers, and suggests areas of further research. In Section 7, we discuss
related work, including a comparison with our previous results. Finally, we
conclude in Section 8.

2. SIMULTANEOUS MULTITHREADING AND MULTIPROCESSORS

Both the SMT processor and the on-chip shared-memory MPs we examine
are built from a common out-of-order superscalar base processor. The

Simultaneous Multithreading • 325

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

multiprocessor combines several of these superscalar CPUs in a small-scale
MP, whereas simultaneous multithreading uses a wider-issue superscalar,
and then adds support for multiple contexts. In the rest of this section, we
describe all three of these processor architectures.

2.1 Base Processor Architecture

The base processor is a sophisticated, out-of-order superscalar processor
with a dynamic scheduling core similar to the MIPS R10000 [Yeager 1996].
Figure 2 illustrates the organization of this processor, and Figure 3 (top)
shows its processor pipeline. On each cycle, the processor fetches a block of
instructions from the instruction cache. After decoding these instructions,
the register-renaming logic maps the logical registers to a pool of physical
renaming registers to remove false dependencies. Instructions are then fed
to either the integer or floating-point instruction queues. When their
operands become available, instructions are issued from these queues to
the corresponding functional units. Instructions are retired in order.

2.2 SMT Architecture

Our SMT architecture, which can simultaneously execute threads from up
to eight hardware contexts, is a straightforward extension of the base
processor. To support simultaneous multithreading, the base processor
architecture requires significant changes in only two primary areas: the
instruction fetch mechanism and the register file.

A conventional system of branch prediction hardware (branch target
buffer and pattern history table) drives instruction fetching, although we
now have 8 program counters and 8 subroutine return stacks (1 per
context). On each cycle, the fetch mechanism selects up to 2 threads (among
threads not already incurring I-cache misses) and fetches up to 4 instruc-

Fig. 2. Organization of the dynamically scheduled superscalar processor used in this study.

326 • Jack L. Lo et al.

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

tions from each thread (the 2.4 scheme from Tullsen et al. [1996]). The total
fetch bandwidth of 8 instructions is therefore equivalent to that required
for an 8-wide superscalar processor, and only 2 I-cache ports are required.
Additional logic, however, is necessary in the SMT to prioritize thread
selection. Thread priorities are assigned using the icount feedback tech-
nique [Tullsen et al. 1996], which favors threads that are using processor
resources most effectively. Under icount, highest priority is given to the
threads that have the least number of instructions in the decode, renaming,
and queue pipeline stages. This approach prevents a single thread from
clogging the instruction queue, avoids thread starvation, and provides a
more even distribution of instructions from all threads, thereby heighten-
ing interthread parallelism. The peak throughput of our machine is limited
by the fetch and decode bandwidth of 8 instructions per cycle.

Following instruction fetch and decode, register renaming is performed,
as in the base processor. Each thread can address 32 architectural integer
(and FP) registers. The register-renaming mechanism maps these architec-
tural registers (1 set per thread) onto the machine’s physical registers. An
8-context SMT will require at least 8 * 32 5 256 physical registers, plus
additional physical registers for register renaming. With a larger register
file, longer access times will be required, so the SMT processor pipeline is
extended by 2 cycles to avoid an increase in the cycle time. Figure 3
compares the pipeline for the SMT versus that of the base superscalar. On
the SMT, register reads take 2 pipe stages and are pipelined. Writers to the
register file behave in a similar manner, also using an extra pipeline stage.
In practice, we found that the lengthened pipeline degraded performance
by less than 2% when running a single thread. The additional pipe stage
requires an extra level of bypass logic, but the number of stages has a
smaller impact on the complexity and delay of this logic (O(n)) than the
issue width (O(n2)) [Palacharla et al. 1997]. Our previous study [Tullsen et
al. 1996] contains more details regarding the effects of the two-stage
register read/write pipelines on the architecture and performance.

In addition to the new fetch mechanism and the larger register file and
longer pipeline, only three processor resources are replicated or added to
support SMT: per-thread instruction retirement, trap mechanisms, and an
additional thread id field in each branch target buffer entry. No additional
hardware is required to perform multithreaded scheduling of instructions
to functional units. The register-renaming phase removes any apparent
interthread register dependencies, so that the conventional instruction

Fig. 3. Comparison of the pipelines for a conventional superscalar processor (top) and the
SMT processor’s modified pipeline (bottom).

Simultaneous Multithreading • 327

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

queues can be used to dynamically schedule instructions from multiple
threads. Instructions from all threads are dumped into the instruction
queues, and an instruction from any thread can be issued from the queues
once its operands become available.

In this design, few resources are statically partitioned among contexts;
consequently, almost all hardware resources are available even when only
one thread is executing. The architecture allows us to achieve the perfor-
mance advantages of simultaneous multithreading, while keeping intact
the design and single-thread peak performance of the dynamically sched-
uled CPU core present in modern superscalar architectures.

2.3 Single-Chip Multiprocessor Hardware Configurations

In our analysis of SMT and multiprocessing, we focus on a particular region
of the MP design space, specifically, small-scale, single-chip, shared-mem-
ory multiprocessors. As chip densities increase, single-chip multiprocessing
will be possible, and some architects have already begun to investigate this
use of chip real estate [Olukotun et al. 1996]. An SMT processor and a
small-scale, on-chip multiprocessor have many similarities: for example,
both have large numbers of registers and functional units, on-chip caches,
and the ability to issue multiple instructions each cycle. In this study, we
keep these resources approximately similar for the SMT and MP compari-
sons, and in some cases we give a hardware advantage to the MP.1

We look at both two- and four-processor multiprocessors, partitioning the
scheduling unit resources of the multiprocessor CPUs (the functional units,
instruction queues, and renaming registers) differently for each case. In the
two-processor MP (MP2), each processor receives half of the on-chip execu-
tion resources previously described, so that the total resources relative to
an SMT are comparable (Table I). For a four-processor MP (MP4), each
processor contains approximately one-fourth of the chip resources. The
issue width for each processor in these two MP models is indicated by the
total number of functional units. Note that even within the MP design
space, these two alternatives (MP2 and MP4) represent an interesting
tradeoff between TLP and ILP. The two-processor machine can exploit
more ILP, because each processor has more functional units than its MP4
counterpart, whereas MP4 has additional processors to take advantage of
more TLP.

Table I also includes several multiprocessor configurations in which we
increase hardware resources. These configurations are designed to reduce
bottlenecks in resource usage in order to improve aggregate performance.
MP2fu (MP4fu), MP2q (MP4q), and MP2r (MP4r) address bottlenecks of
functional units, instruction queues, and renaming registers, respectively.
MP2a increases all three of these resources, so that the total execution

1Note that simultaneous multithreading does not preclude multichip multiprocessing, in
which each of the individual processors of the multiprocessor could use SMT.

328 • Jack L. Lo et al.

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

resources of each processor are equivalent to a single SMT processor.2

(MP4a is similarly augmented in all three resource classes, so that the
entire MP4a multiprocessor also has twice as many resources as our SMT.)

For all MP configurations, the base processor uses the out-of-order
scheduling processor described earlier and the base pipeline from Figure 3
(top). Each MP processor only supports one context; therefore its register
file will be smaller, and access will be faster than the SMT. Hence the
shorter pipeline is more appropriate.

2.4 Synchronization Mechanisms and Memory Hierarchy

SMT has three key advantages over multiprocessing: flexible use of ILP
and TLP, the potential for fast synchronization, and a shared L1 cache.
This study focuses on SMT’s ability to exploit the first advantage by
determining the costs of partitioning execution resources; we therefore

2Each thread can access integer and FP register files, each of which has 32 logical registers
plus a pool of renaming registers. When limiting SMT to only 2 threads, our SMT processor
requires 32 * 2 1 100 5 164 registers, which is the same number as in the MP2 base
configuration. When we use all 8 contexts on our SMT processor, each register file has a total
of 32 * 8 logical registers plus 100 renaming registers (356 total). We equalize the total
number of registers in the MP2r and MP2a configurations with the SMT by giving each MP
processor 146 physical renaming registers in addition to the 32 logical registers, so that the
total in the MP system is 2 * (32 1 146) 5 356.

Table I. Processor Configurations

Configuration

Number of
Functional
Units per
Processor

Entries per Processor
in:

Number per
Processor Number of

Instructions
Fetched per

Cycle per
Processor

Integer
(load/store) FP

Integer
Instruction

Queue

FP
Instruction

Queue

Integer
Renaming
Registers

FP
Renaming
Registers

SMT 6 (4) 4 32 32 100 100 8
MP2 3 (2) 2 16 16 50 50 4
MP4 2 (1) 1 16 16 25 25 2
MP2fu 6 (4) 4 16 16 50 50 4
MP2q 3 (2) 2 32 32 50 50 4
MP2r 3 (2) 2 16 16 146 146 4
MP2a 6 (4) 4 32 32 146 146 4
MP4fu 3 (2) 2 16 16 25 25 2
MP4q 2 (1) 1 32 32 25 25 2
MP4r 2 (1) 1 16 16 57 57 2
MP4a 3 (2) 2 32 32 57 57 2

For the enhanced MP2 and MP4 configurations, the resources that have been increased from
the base configurations are listed in boldface. In our processor, not all integer functional units
can handle load and store instructions. The integer (load/store) column indicates the total
number of integer units and the number of these units that can be used for memory
references.

Simultaneous Multithreading • 329

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

allow the multiprocessor to use SMT’s synchronization mechanisms and
cache hierarchy to avoid tainting our results with effects of the latter two.

We implement a set of synchronization primitives for thread creation and
termination, as well as hardware blocking locks. Because the threads in an
SMT processor share the same scheduling core, inexpensive hardware
blocking locks can be implemented in a synchronization functional unit.
This cheap synchronization is not available to multiprocessors, because the
distinct processors cannot share functional units. In our workload, most
interthread synchronization is in the form of barrier synchronization or
simple locks, and we found that synchronization time is not critical to
performance. Therefore, we allow the MPs to use the same cheap synchro-
nization techniques, so that our comparisons are not colored by synchroni-
zation effects.

The entire cache hierarchy, including the L1 caches, is shared by all
threads in an SMT processor. Multiprocessors typically do not use a shared
L1 cache to exploit data sharing between parallel threads. Each processor
in an MP usually has its own private cache (as in the commercial multipro-
cessors described by Sun Microsystems [1997], Slater [1992], IBM [1997],
and Silicon Graphics [1996]) and therefore incurs some coherence overhead
when data sharing occurs. Because we allow the MP to use the SMT’s
shared L1 cache, this coherence overhead is eliminated. Although multiple
threads may have working sets that interfere in a shared cache, we show in
Section 5 that interthread interference is not a problem.

2.5 Comparing SMT and MP

In comparing the total hardware dedicated to our multiprocessor and SMT
configurations, we have not taken into account chip area required for buses
or the cycle-time effects of a wider-issue machine. In our study, the intent
is not to claim that SMT has an absolute “x percent” performance advan-
tage over MP, but instead to demonstrate that SMT can overcome some
fundamental limitations of multiprocessors, namely, their inability to ex-
ploit changing levels of ILP and TLP. We believe that in the target design
space we are studying, the intrinsic flaws resulting from resource partition-
ing in MPs will limit their effectiveness relative to SMT, even taking into
consideration cycle time. (We discuss this further in Section 4.6.)

3. METHODOLOGY

3.1 Why Parallel Applications?

SMT is most effective when threads have complementary hardware re-
source requirements. Multiprogrammed workloads and workloads consist-
ing of parallel applications both provide TLP via independent streams of
control, but they compete for hardware resources differently. Because a
multiprogrammed workload (used in our previous work [Tullsen et al. 1995;
1996]) does not share memory references across threads, it places more
stress on the caches. Furthermore, its threads have different instruction

330 • Jack L. Lo et al.

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

execution patterns, causing interference in branch prediction hardware. On
the other hand, multiprogrammed workloads are less likely to compete for
identical functional units.

Although parallel applications have the benefit of sharing the caches and
branch prediction hardware, they are an interesting and different test of
SMT for several reasons. First, unlike the multiprogrammed workload, all
threads in a parallel application execute the same code and, therefore, have
similar execution resource requirements, memory reference patterns, and
levels of ILP. Because all threads tend to have the same resource needs at
the same time, there is potentially more contention for these resources
compared to a multiprogrammed workload. For example, a particular loop
may have a large degree of instruction-level parallelism, so each thread will
require a large number of renaming registers and functional units. Because
all threads have the same resource needs, they may exacerbate or create
bottlenecks in these resources. Parallel applications are therefore particu-
larly appropriate for this study, which focuses on these execution resources.

Second, parallel applications illustrate the promise of SMT as an archi-
tecture for improving the performance of single applications. By using
threads to parallelize programs, SMT can improve processor utilization,
but more important, it can achieve program speedups. Finally, parallel
applications are a natural workload for traditional parallel architectures
and therefore serve as a fair basis for comparing SMT and multiprocessors.
For the sake of comparison, in Section 7, we also briefly contrast our
parallel results with the multiprogrammed results from Tullsen et al.
[1996].

3.2 Workload

Our workload of parallel programs includes both explicitly and implicitly
parallel applications (Table II). Many multiprocessor studies look only at

Table II. Benchmark Suite

Program Language Parallelism Description

FFT C explicit Complex, one-dimensional fast fourier
transform

hydro2d Fortran implicit Solves hydrodynamical Navier Stokes
equations to solve galactical jets

linpackd Fortran implicit Linear systems solver
LU C explicit LU factorization
radix C explicit Integer radix sort
shallow Fortran implicit Shallow water benchmark
tomcatv Fortran implicit Vectorized mesh generation program
water-nsquared C explicit Molecular dynamics N-body problem,

partitioned by molecule
water-spatial C explicit Molecular dynamics N-body problem,

using 3D spatial data structure

FFT, LU, radix, water-nsquared, and water-spatial are taken from the SPLASH-2 benchmark
suite; linpackd is from the Argonne National Laboratories; shallow is from the Applied
Parallel Research HPF test suite; and hydro2d and tomcatv are from SPEC 92.

Simultaneous Multithreading • 331

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

the parallel portions of a program for measuring speedups; we look at the
execution of the entire program, including the sequential portions, for two
reasons: a parallel program typically has a section of sequential code—in
order to obtain a complete performance picture, it should be included
(Amdahl’s Law); and performance on the sequential sections is an indica-
tion of an architecture’s effectiveness on applications that cannot be
efficiently parallelized. Processor architectures need not sacrifice single-
thread performance for good parallel performance. Because of its resource
partitioning, a multiprocessor typically cannot get good single-thread per-
formance; SMT can, by taking better advantage of ILP, even in sequential
sections.3

Five of our benchmarks are explicitly parallel programs from the
SPLASH-2 suite [Woo et al. 1995], which are built on the Argonne National
Laboratories parallel macro library [Boyle et al. 1987]. Tomcatv and
hydro2d from SPEC92 [Dixit 1992], as well as shallow and linpack, are
implicitly parallel programs for which we use the SUIF compiler [Wilson et
al. 1994] to extract loop-level parallelism. SUIF generates transformed C
output files that contain calls to a parallel run-time library to create
threads and execute loop iterations in parallel. In each application, all
threads share the same address space, but each thread has its own private
data and stack, which are stored in a distinct location in the address space.

For all programs in our workload, we use the Multiflow trace scheduling
compiler [Lowney et al. 1993] to generate DEC Alpha object files. The
compiler generates highly optimized code using aggressive static schedul-
ing, loop unrolling, and other ILP-exposing optimizations, so that single-
thread performance is maximized. These object files are linked with our
versions of the ANL and SUIF run-time libraries to create executables.

3.3 Simulation Framework

Our simulator measures the performance of these benchmarks on the
multiprocessor and SMT configurations described in Section 2.3. For each
application on each of the hardware configurations, we look at how our
results vary when we change the number of threads used (1 or 2 threads for
MP2; 1, 2, or 4 for MP4; and up to 8 for SMT). To distinguish between the
MP configurations and the number of threads running on them, we use the
designation MPx.Ty, where x refers to the particular hardware configura-
tion (as named in Table I), and y is the total number of threads that are

3The SPLASH benchmark data sets are smaller than those typically used in practice. With
these data sets, the ratio of initialization time to computation time is larger than with real
data sets; therefore results for these programs typically include only the parallel computation
time, not initialization and cleanup. Most parallel architectures can only achieve performance
improvements in the parallel computation phases, and, therefore, speedups refer to improve-
ments on just this portion. In this study, we would like to evaluate performance improvement
of the entire application on various parallel architectures, so we use the entire program in our
experiments. Note that in addition to these results, we also present SMT simulation results
for the parallel computation phases only in Section 4.5.

332 • Jack L. Lo et al.

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

running on the multiprocessor. In our MP experiments, we limit each MP
processor to a single thread. A user-level threads package could be used to
execute more than 1 thread, but without hardware support for multithread-
ing, context switch overhead would overwhelm the performance benefits of
software multithreading.

For both the SMT and MP architectures, the simulator takes unmodified
Alpha executables and uses emulation-based, instruction-level simulation
to model the processor pipelines, the TLBs, and the entire memory hierar-
chy. The instruction latencies for the functional units are similar to those of
the DEC Alpha 21164 [Edmondson et al. 1995] and are listed in Table III.

The memory hierarchy in our processor consists of three levels of cache,
with sizes, latencies, and bandwidth characteristics as shown in Table IV.
We model the cache behavior, as well as the contention at the L1 banks, L2
banks, L2 bus, and L3 bank. For branch prediction, we use a 256-entry,
4-way set associative branch target buffer and a 2K 3 2-bit pattern history
table [Calder and Grunwald 1994]. These structures are shared by all
running threads (even if less than 8 are executing), allowing more flexible
and therefore higher utilization. Most important, these structures are fully
available even if only a single thread is executing. Of course, the competi-
tion for the shared resources among the threads may increase the fre-
quency of cache misses and branch mispredictions. We discuss and quantify
these effects in Section 5.

Table III. Processor Instruction Latencies

Instruction Class Latency

integer multiply 8, 16
conditional move 2
compare 0
all other integers 1
FP divide 17, 30
all other FPs 4
load (cache hit) 1

These values are the minimum latencies from when the source operands are ready to when the
result becomes ready for a dependent instruction.

Table IV. Memory Hierarchy Details

L1 I-Cache L1 D-Cache L2 Cache L3 Cache

Size 32KB 32KB 256KB 8MB
Associativity direct-mapped direct-mapped 4-way direct-mapped
Line size (bytes) 64 64 64 64
Banks 8 8 8 1
Transfer time/bank 1 cycle 1 cycle 1 cycle 4 cycles
Accesses/cycle 2 4 1 1/4
Cache fill time (cycles) 2 2 2 8
Latency to next level 6 6 12 62

Simultaneous Multithreading • 333

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

4. EXPLOITING PARALLELISM

4.1 SMT and Multiprocessing Performance Results

Performance on parallel applications is maximized when both instruction-
level and thread-level parallelism can be effectively used by the architec-
ture. In order to understand the benefits of both types of parallelism, we
first compare the average speedup (Figure 4) and throughput (Table V) for
simultaneous multithreading and the 2 multiprocessors, MP2 and MP4, as
more threads are used in the programs. With 1 and 2 threads, MP2
outperforms MP4 (by more than 40%), because its configuration of hard-
ware resources allows each processor to exploit more ILP. MP4, on the
other hand, has 2 additional processors to take advantage of TLP. When
each MP configuration is given its maximum number of threads (2 for MP2
and 4 for MP4), MP4.T4 has a 1.76 speedup, whereas MP2.T2 only reaches
1.63.

Because of static partitioning, both multiprocessor configurations fall
short of the performance possible with simultaneous multithreading. When
all three architectures use the same number of threads, SMT gets the best
speedups, because the dynamic resource sharing permits better use of ILP.
When more threads are used, simultaneous multithreading improves
speedups even further by taking advantage of both ILP and TLP. With 4
threads, SMT has a 2.17 speedup over the base configuration, and with all
8 contexts, its average speedup reaches 2.68.

Fig. 4. Speedups normalized to MP2.T1. We measure both speedup and instruction through-
put for applications in various configurations. These two metrics are not identical, because as
we change the number of threads, the dynamic instruction count varies slightly. The extra
instructions are the parallelization overhead required by each thread to load necessary
register state when executing a parallel loop. Speedup is therefore the most important metric,
but throughput is often more useful for illustrating how the architecture is exploiting
parallelism in the programs.

334 • Jack L. Lo et al.

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

The key insight is that SMT has the unique ability to ignore the
distinction between TLP and ILP. Because resources are not statically
partitioned, SMT avoids the MP’s hardware constraints on program paral-
lelism.

The following three subsections analyze the results from Table V in
detail to understand why inefficiency exists in multiprocessors.

4.2 Measuring MP Inefficiency

We measured the amount of resource inefficiency due to static partitioning
by counting the cycles in which these two conditions hold: (1) a processor
runs out of a particular resource and (2) that same resource is unused on
another processor. If all processors run out of the same resource in a given
cycle, then the total number of resources, not the partitioning, is the
limiting factor.

The following classes of metrics allow us to analyze the performance of
our parallel applications on multiprocessor configurations.

(1) Issue limits. The number of functional units in each processor deter-
mines how many instructions of a particular type can be issued in a
single cycle. We identify the number of cycles in which both (1) an
instruction cannot be issued because there are insufficient functional
units on a processor and (2) an appropriate functional unit is free on
another processor. We subcategorize this metric, based on the particu-
lar functional unit type: integer issue, load/store issue, and FP issue.

(2) Too few renaming registers. When one processor uses up its entire pool
of renaming registers, we increment this metric if another processor
still has available registers. Metrics for integer and FP registers are
specified as integer reg and FP reg.

(3) Instruction queue full. The instruction-queue-full condition refers to the
situation when one processor incurs a fetch stall because its instruction
queue is full, while another processor still has free slots in its queue.
We keep counts for both queues, integer IQ and FP IQ.

In our results, we present the frequency of these events as a percentage of
total execution cycles. The metrics are independent (i.e., more than one of
them can occur in each cycle); therefore we also include a metric that
identifies the percentage of cycles in which any of the inefficiencies occurs,
to account for overlaps between the metrics. Although a reduction in these

Table V. Throughput Comparison of MP2, MP4, and SMT, Measured in Instructions per
Cycle

Configuration

Number of Threads

1 2 4 8

MP2 2.08 3.32 — —
MP4 1.38 2.25 3.27 —
SMT 2.40 3.49 4.24 4.88

Simultaneous Multithreading • 335

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

inefficiency metrics does not directly correlate with a performance improve-
ment, the metrics are useful for identifying system bottlenecks introduced
by partitioning resources that prevent better program performance.

4.3 Exploiting ILP

We examine in detail the performance of the multiprocessor-scheduling
unit (instruction issue, functional units, instruction queues, and renaming
registers) by graphing the frequency of the metrics for MP2.T2 and MP4.T4
in Figures 5(a) and (b), respectively. The high frequencies illustrate that (1)
many of the programs have per-thread ILP that exceeds the amount that
can be supported by a single MP2 or MP4 processor and (2) there is a large
degree of inefficiency for all programs but one.

For most benchmarks, instruction issue metrics highlight the biggest
inefficiencies. For MP2.T2 (MP4.T4), the integer and load/store units are
used inefficiently in 23.5% (18.0%) and 17.3% (38.7%) of total execution
cycles, respectively. The third issue metric, FP issue, is a much larger
problem for MP4.T4 than MP2.T2 (25.1% vs. 7.7%), because MP4 only has
one FP functional unit, and most of the applications are floating-point
intensive.

For shallow and tomcatv, however, the FP-renaming registers are also a
large contributor to inefficiency. These two benchmarks have two of the
highest average memory latencies (Section 5 shows this data in detail),
which extends register lifetimes. This heightened register pressure in-
creases the likelihood that an individual processor will run out of FP-
renaming registers. In contrast, the integer-renaming registers and the
integer IQ are not a frequent source of waste in our programs, again
because the applications tend to be more floating-point intensive.

For radix, the inefficiency metrics are much smaller, with no metric
greater than 5.7% in MP2.T2. Inefficiencies are infrequent, because ILP (an
average of 0.46 instructions per cycle per thread) is rarely high enough to
require more resources than are available on a single processor. During
part of the program, instructions are almost exclusively floating-point
operations. Because of their long latencies and the dependencies between
them, these instructions quickly fill the FP IQs in both processors, causing
the processor to stall.

4.3.1 Addressing Resource Inefficiencies. In this section, we examine
the performance of two sets of enhanced MP configurations, which are
designed to address the resource inefficiencies indicated by Figures 5(a)
and (b). The first set of configurations serves two purposes. First, it
determines if there is a single class of resources that is critical for
effectively using ILP. Second, if there is a single resource bottleneck in an
MP system, any reasonable MP implementation would be redesigned in a
manner to compensate for that problem. As shown in Table I, the MP2fu
(MP4fu), MP2q (MP4q), and MP2r (MP4r) configurations have twice as
many resources dedicated to functional units, queues, and renaming regis-
ters, respectively, relative to the base MP2 (MP4) configuration. Table VI

336 • Jack L. Lo et al.

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

Fig. 5. Frequencies of partitioning inefficiencies for MP2.T2 and MP4.T4. Each of the 7
inefficiency metrics indicates the percentage of total execution cycles in which (1) one of the
processors runs out of a resource and (2) that same resource is available on another processor.
In a single cycle, more than one of the inefficiencies may occur, so the sum of all 7 metrics may
be greater than 100%.

Simultaneous Multithreading • 337

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

shows the average frequencies for each of the seven inefficiency metrics for
these configurations. Each configuration pinpoints a subset of the metrics
and virtually eliminates the inefficiencies in that subset. Speedups how-
ever are small: Table VII shows that these enhanced MP2 (MP4) configura-
tions get speedups of 3% (4%) or less relative to MP2.T2 (MP4.T4).
Performance is limited, because removing a subset of bottlenecks merely
exposes other bottlenecks (Table VI).

As Table VII demonstrates, the three classes of resources have different
impacts on program performance, with renaming registers having the

Table VI. Average Frequencies of Inefficiency Metrics

Metric

Configuration

MP2.T2 MP2fu.T2 MP2q.T2 MP2r.T2 MP2a.T2

Integer issue 23.5% 0.4% 27.9% 23.6% 1.3%
Load/store issue 17.3% 1.1% 18.0% 18.1% 1.8%
FP issue 7.7% 0.9% 8.9% 7.9% 1.4%
Integer IQ 7.7% 5.7% 2.2% 9.5% 2.8%
FP IQ 12.1% 11.3% 1.1% 15.6% 4.1%
Integer reg 3.1% 3.1% 5.4% 0.0% 0.0%
FP reg 10.1% 10.3% 17.0% 0.0% 0.0%
Any inefficiency 58.9% 31.9% 55.9% 56.0% 12.0%

Metric

Configuration

MP4.T4 MP4fu.T4 MP4q.T4 MP4r.T4 MP4a.T4

Integer issue 18.0% 1.5% 18.0% 21.6% 2.5%
Load/store issue 38.7% 2.7% 38.2% 42.2% 3.8%
FP issue 25.1% 2.3% 24.5% 27.6% 3.2%
Integer IQ 1.6% 1.3% 0.0% 4.2% 0.7%
FP IQ 4.4% 7.5% 0.0% 10.4% 1.4%
Integer reg 5.9% 7.1% 1.2% 0.2% 1.3%
FP reg 14.9% 23.1% 6.5% 3.9% 6.3%
Any inefficiency 67.9% 26.5% 67.6% 71.4% 16.6%

Each configuration focuses on a particular subset of the metrics for MP2.T2 and MP4.T4,
printed in boldface. Notice that the boldface percentages are small, showing that each
configuration successfully addresses the targeted inefficiencies. The inefficiency metrics can
overlap (i.e., more than one bottleneck can occur in a single cycle); consequently, in the last
row, we also show the percentage of cycles in which at least one of the inefficiencies occurs.

Table VII. Speedups for MP2 and MP4 Configurations

Configuration
Speedups Relative to

1-Thread MP2 Configuration
Speedups Relative to

1-Thread MP2

MP2.T2 1.63 MP4.T4 1.76
MP2fu.T2 1.66 MP4fu.T4 1.78
MP2q.T2 1.66 MP4q.T4 1.75
MP2r.T2 1.68 MP4r.T4 1.85
MP2a.T2 1.80 MP4a.T4 1.92

338 • Jack L. Lo et al.

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

greatest impact. There are two reasons for this behavior. First, when all
renaming registers are in use, the processor must stop fetching, which
imposes a large performance penalty in an area that is already a primary
bottleneck. In contrast, a lack of available functional units will typically
only delay a particular instruction until the next cycle. Second, the life-
times of renaming registers are very long, so a lack of registers may
actually prevent fetching for several cycles. On the other hand, instruction
queue entries and functional units can become available more quickly.

Although the renaming registers are the most critical resource, the
variety of inefficiencies means that effective use of ILP (i.e., better perfor-
mance) cannot be attained by simply addressing a single class of resources.
In the second set of MP enhancements (MP2a and MP4a), we increase all
execution resources to address the entire range of inefficiencies. Tables VI
and VII show that MP2a significantly reduces all metrics to attain a 1.80
speedup. Although this speedup is greater than the 1.69 speedup we saw
for SMT.T2 in Figure 4, MP2a is not a cost-effective solution (compared to
SMT) for increasing performance. First, each of the 2 processors in the

Fig. 6. MP2 and MP4 speedups versus one-thread MP2 baseline. Programs are listed in
descending order based on the amount of ILP in the program. MP2.T2 outperforms MP4.T4 in
the programs to the left of the dashed line. MP4.T4 has the edge for those on the right.

Table VIII. Benchmark Throughput (Instructions per Cycle) for SMT.T1

Benchmark LU linpack FFT
water-

nsquared shallow
water-
spatial hydro2d tomcatv radix

IPC 4.01 3.00 2.65 2.60 2.27 2.25 2.21 2.10 0.47

The SMT.T1 configuration gives an indication of the amount of instruction-level parallelism in
each program, using the decomposed application running one thread.

Simultaneous Multithreading • 339

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

MP2a configuration has the same total execution resources as our single
SMT processor, but resource utilization in MP2a is still very poor. For
example, the 2 processors now have a total of 20 functional units, but, on
average, fail to issue more than 4 instructions per cycle. Second, Figure 4
shows that when allowed to use all of its resources (i.e., all 8 threads), a
single SMT processor can attain a much larger speedup of 2.68 (Section 4.5
discusses this further). Resource partitioning prevents the multiprocessor
configuration from improving performance in a more cost-effective manner
that would be competitive with simultaneous multithreading.

4.4 Exploiting TLP

Although individual processors in a superscalar MP can exploit ILP in a
single thread, the architecture as a whole is specifically designed to obtain
speedups by using thread-level parallelism. The amount of TLP that can be
exploited by an MP architecture is limited to the number of processors.
Consequently, MP4 is better suited (than the two-processor MP) for this
type of parallelism. The MP4 configuration trades off the ability to exploit
large amounts of ILP for the opportunity to exploit more TLP.

In Figure 6, we compare MP2 and MP4 speedups as we increase the
number of threads. On average, MP4.T4 outperforms MP2.T2, but for
individual programs, the relative performance of the two varies, depending
on the amount of per-thread ILP in the benchmark. (We approximate the
level of ILP by using the single-thread throughput data shown in Table
VIII.) In the programs with higher per-thread ILP (LU, linpack, FFT, and
water-nsquared), MP2 has the performance edge over MP4, because there
is sufficient ILP to compensate for having fewer processors. When pro-
grams lack ILP (the other five applications), however, MP4 uses the
additional processors to exploit TLP, compensating for individual proces-
sors that have limited execution resources. The best examples are hydro2d
and the ILP-starved radix, where MP4.T4 gets speedups of 1.95 and 3.46,
whereas MP2.T2 only gets speedups of 1.79 and 1.95, respectively.

TLP and ILP are identical in that they expose independent instructions
that can be executed in parallel and can therefore take advantage of
parallel hardware. In multiprocessors, however, static resource partition-
ing forces a tradeoff; TLP can only be exploited by adding more processors,
whereas ILP can only be exploited by adding more resources on each

Table IX. SMT Speedups Relative to 1-Thread MP2

Configuration LU linpack FFT
water-

nsquared shallow
water-
spatial hydro2d tomcatv radix Average

SMT.T1 1.15 1.16 1.11 1.07 1.18 1.04 1.13 1.10 1.01 1.11
SMT.T2 1.76 1.39 1.47 1.71 1.89 1.84 1.81 1.38 1.95 1.69
SMT.T4 1.82 1.34 1.61 2.18 2.03 2.50 2.38 2.00 3.65 2.17
SMT.T8 1.89 1.15 1.64 2.42 2.80 2.71 2.72 2.44 6.36 2.68

Benchmarks are listed from left to right in descending order, based on the amount of
single-thread ILP.

340 • Jack L. Lo et al.

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

processor. Multiprocessors lack the flexibility to adapt to fluctuations in
both forms of parallelism, and their performance suffers when resource
partitioning fails to match the ILP and TLP characteristics of a program.

4.5 Effectively Using Parallelism on an SMT Processor

Rather than adding more execution resources (like the MP2a and MP4a
configurations) to improve performance, SMT boosts performance and
improves utilization of existing resources by using parallelism more effec-
tively. Unlike multiprocessors that suffer from rigid partitioning, simulta-
neous multithreading permits dynamic resource sharing, so that resources
can be flexibly partitioned on a per-cycle basis to match the ILP and TLP
needs of the program. When a thread has a lot of ILP, it can access all
processor resources; and TLP can compensate for a lack of per-thread ILP.
Table IX shows that simultaneous multithreading exploits the two types of
parallelism to improve speedups significantly. As more threads are used,
speedups increase (up to 2.68 on average with 8 threads), exceeding the
performance gains attained by the enhanced MP configurations.

The degree of SMT’s improvement varies across the benchmarks, de-
pending on the amount of per-thread ILP. The five programs with the least
ILP (radix, tomcatv, hydro2d, water-spatial, and shallow) get the five
largest speedups for SMT.T8, because TLP compensates for low ILP;
programs that already have a large amount of ILP (LU and FFT) benefit
less from using additional threads, because resources are already busy
executing useful instructions. In linpack, performance tails off after two
threads, because the granularity of parallelism in the program is very
small. The gain from parallelism is outweighed by the overhead of parallel-
ization (not only thread creation, but also the work required to set up the
loops in each thread).

Table X. SMT Throughput in Instructions per Cycle

Configuration LU linpack FFT
water-

nsquared shallow
water-
spatial hydro2d tomcatv radix Average

SMT.T1 4.01 3.00 2.65 2.60 2.27 2.25 2.21 2.10 0.47 2.40
SMT.T2 5.26 3.78 3.53 4.17 3.64 3.98 3.54 2.63 0.91 3.49
SMT.T4 5.43 4.01 3.88 5.34 3.90 5.41 4.68 3.83 1.71 4.24
SMT.T8 5.70 4.04 3.92 5.94 5.38 5.87 5.37 4.71 3.02 4.88

Table XI. SMT Throughput (Measured in Instructions per Cycle) in the Computation Phase
of SPLASH-2 Benchmarks

Configuration LU FFT
water-

nsquared
water-
spatial radix Average

SMT.T1 3.50 2.70 2.60 2.24 3.02 2.81
SMT.T2 6.09 4.63 4.21 4.01 3.96 4.58
SMT.T4 6.41 5.77 5.42 5.50 4.52 5.52
SMT.T8 6.83 5.95 6.07 5.99 4.73 5.91

Simultaneous Multithreading • 341

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

For all programs, as we use more threads, the combined use of ILP and
TLP increases processor utilization significantly. On average, throughput
reaches 4.88 instructions per cycle, and several benchmarks attain an IPC
of greater than 5.7 with 8 threads, as shown in Table X. These results,
however, fall short of peak processor throughput (the 8 instructions per
cycle limit imposed by instruction fetch and decode bandwidth), in part
because they encompass the execution of the entire program, including the
sequential parts of the code. In the parallel computation portions of the
code, throughput is closer to the maximum. Table XI shows that with 8
threads in the computation phase of the SPLASH-2 benchmarks, average
throughput reaches 5.91 instructions per cycle and peaks at 6.83 IPC for
LU.

Simultaneous multithreading thus offers an alternative architecture for
parallel programs that uses processor resources more cost-effectively than
multiprocessors. SMT adapts to fluctuating levels of TLP and ILP across
the entire workload, or within an individual program, to effectively in-
crease processor utilization and, therefore, performance.

5. EFFECTS OF THREAD INTERFERENCE IN SHARED STRUCTURES

From the perspective of the execution resources, ILP and TLP are identical.
From the perspective of the memory system and branching hardware,

Fig. 7. Categorization of L1 D-cache misses (shown for each benchmark with 1, 2, 4, and 8
threads).

342 • Jack L. Lo et al.

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

however, TLP introduces slightly different behavior. In this section, we
examine several ways in which simultaneous multithreading affects other
resources when using thread-level parallelism. First, the working sets of
multiple threads may interfere in the cache. Second, the increased proces-
sor throughput places greater demands on the memory system. Third,
multithreading can introduce interference in the BTB and branch predic-
tion tables. We quantify these effects by measuring the hit and miss rates
on the shared-memory and branch prediction structures. We also measure
the impact they have on memory latency and total program performance.

5.1 Interthread Cache Interference

Threads on an SMT processor share the same cache hierarchy, so their
working sets may introduce interthread conflict misses. Figure 7 catego-
rizes L1 misses as first-reference misses, interthread conflict misses, and
intrathread conflict misses. (We identify interthread misses as the misses
that would have been hits, if each thread had its own private 32KB L1

Fig. 8. Memory references are categorized based on which level of the memory hierarchy
satisfied the request (hit in the L1, L2, or L3 caches, or in main memory). Data are shown for
1, 2, 4, and 8 threads for each benchmark. Notice that as the number of threads increases, the
combined percentage of memory references satisfied by either the L1 or L2 caches remains
fairly constant. Most of our applications fit in the 8 MB L3 cache, so very few references reach
main memory.

Simultaneous Multithreading • 343

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

D-cache.) As the number of threads increases, the number of interthread
conflict misses also rises, from 1.4% (2 threads) to 4.8% (4 threads) to 5.3%
(8 threads) of total memory references. The primary concern, however, is
not the impact on the hit rate, but the impact on overall program perfor-
mance.

In order to assess the effect of interthread misses on program perfor-
mance, we simulated program behavior as if there were no interthread
interference, treating interthread conflict misses as if they were hits. We
found that with 8 threads, performance was, on average, only 0.1% better
than the SMT results. There are two reasons why interthread cache

Fig. 9. Components of average memory access time (shown for each benchmark with 1, 2, 4,
and 8 threads). Each bar shows how cache misses and contention contribute to average
memory access time. The lower four sections correspond to latencies due to cache misses, and
the upper four sections represent additional latencies that result from conflicts in various
parts of the memory system.

Table XII. Average Number of Memory References per Cycle

Configuration FFT hydro2d linpack LU radix shallow tomcatv
water-

nsquared
water-
spatial Average

SMT.T1 0.76 0.75 1.06 1.47 0.07 0.70 0.87 0.91 0.77 0.82
SMT.T2 1.01 1.19 1.36 2.05 0.13 1.12 1.08 1.45 1.34 1.19
SMT.T4 1.10 1.55 1.46 2.34 0.25 1.20 1.58 1.81 1.79 1.45
SMT.T8 1.11 1.77 1.46 2.45 0.45 1.65 1.94 1.97 1.93 1.64

344 • Jack L. Lo et al.

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

interference is not a significant problem for our workload. First, the
additional interthread conflict misses in the direct-mapped L1 cache are
almost entirely covered by the 4-way set associative L2 cache, as shown in
Figure 8. The fully pipelined L2 cache has a relatively low latency (6
additional cycles) and high bandwidth, so average memory access time
(AMAT) increases only slightly. Figure 9 graphs the various components of
average memory access time (including components for both cache misses
and bank or bus contention) for each benchmark. When increasing the
number of threads from 1 to 8, the cache miss component of AMAT
increases by less than 1.5 cycles on average, indicating the small effect of
interthread conflict misses. Second, out-of-of-order execution, write buffer-
ing, and the use of multiple threads allow SMT to hide the small increases
in additional memory latency, and as shown in Section 4, large speedups
can be attained.

In addition, our study somewhat overstates the amount of interthread
interference, because we have not applied compiler optimizations (such as
cache tiling [Gannon et al. 1988; Porterfield 1989]) to minimize interfer-
ence by reducing the size of the working sets. Thekkath and Eggers [1994]
found that for traditional multithreaded architectures, programmer- or
compiler-based locality optimizations can significantly reduce interthread
interference. We believe that the same should hold for simultaneous
multithreading, and this is an area of further research.

5.2 Increased Memory Requirements

We also investigated the impact of the increased demand placed on the
memory system by SMT. As more threads are used in our applications,
total program execution time drops and utilization rises, thus increasing
the density of memory references per cycle. Table XII shows that our
memory requirements have doubled from 0.82 to 1.64 memory references
per cycle, as we increase the number of threads from 1 to 8. Looking back to
Figure 9, we can determine how our memory system handles the increased
load. The most important area of concern is the bank conflicts in the L1
cache. (Note that the bus and the L2 cache are not bottlenecks in our
memory system.) For most programs, the L1 bank conflicts account for the
largest component of average memory access time. Many of these bank
conflicts, especially in the 1-thread case, are the result of the long 64-byte
cache lines used in our architecture. For applications with unit-stride
memory accesses, this block size increases the likelihood that bank conflicts
will occur. The demands on a particular bank may also increase as we add
more threads, because the threads may access data that also map to the
same cache line. We found, however, that with longer cache lines, the gains
due to better spatial locality outweighed the costs associated with the
increase in L1 bank contention. Furthermore, some of the contention may
be reduced by using recently proposed architectural techniques to use cache
ports more efficiently [Wilson et al. 1996].

In order to measure the performance degradation due to interthread
bank conflicts, we modeled an L1 cache that ignored interthread bank

Simultaneous Multithreading • 345

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

conflicts, while still accounting for same-thread bank conflicts. These
simulation results showed a 3.4% speedup over the baseline SMT results,
demonstrating that interthread bank conflicts have only a small effect on
performance.

The L3 conflicts are a smaller concern, although Figure 9 illustrates that
they have a noticeable impact on FFT. The L3 cache is slower than the
other cache levels and can only be accessed once every four cycles. This lack
of pipelining means that a burst of references to the L3 cache can result in
queuing delays. For FFT, the L3 queuing delays result from a large burst of
memory writes; however, these latencies are hidden by the write buffer, so
that the impact on overall performance is small. Note that even without
simultaneous multithreading (i.e., only 1 thread), L3 bank conflicts are still
an issue.

5.3 Interference in Branch Prediction Hardware

As with the memory system, branch prediction hardware can experience
interthread interference when multiple threads are executed simulta-
neously. Table XIII compares the branch prediction and jump prediction
accuracy for increasing numbers of threads. In parallel applications, the
distinct threads tend to exhibit very similar branching behavior. Conse-
quently, minimal interference occurs in the branch prediction structures.

In this study, we found that the use of multiple simultaneous threads can
introduce a small degree of interthread cache and branch prediction
interference and can also burden the memory subsystem with a greater
density of memory requests. Fortunately, these effects have only a modest
effect on average memory access time, and simultaneous multithreading
effectively hides the additional latencies. On an SMT processor, the bene-
fits of using additional thread-level parallelism far outweigh its costs, so
that with four and eight threads, significant speedups are realized.

6. PLACING THESE RESULTS IN CONTEXT

When interpreting the results of the previous sections, we can make
several important observations that are relevant for next-generation archi-
tects and compiler and operating systems writers.

6.1 Implications for Architects

As chip densities continue to increase, architects must decide what is the
best use of chip area. In evaluating the merits of SMT and MPs as two

Table XIII. Branch and Jump Misprediction Rates

Number of
Threads

Branch
Misprediction

Jump
Misprediction

1 2.0% 0.0%
2 2.5% 0.1%
4 2.8% 0.1%
8 2.5% 0.0%

346 • Jack L. Lo et al.

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

potential design alternatives, architects should also recognize some addi-
tional factors. First, potential cycle time impacts should be taken into
consideration when interpreting the results of this study, which uses total
execution cycles to compare SMT and MPs. Our SMT architecture (as
described in Section 2) is designed in a manner that limits the cycle time
impact of SMT versus a modern out-of-order execution superscalar of
similar width (i.e., an extra cycle is taken to access the larger register file).
However, the MP2 or MP4 processors could still have a faster cycle time
than the 8-wide SMT. Without specific implementations of each of the
processors, it is difficult to make detailed quantitative comparisons of the
cycle times for 2-, 4-, and 8-wide-issue machines. Our experiments, how-
ever, show that when both SMT and MPs are at full capacity with a
parallel workload (i.e., maximum number of threads—8 for SMT, 2 for
MP2, and 4 for MP4), SMT outperforms MP2 (MP4) by more than 62%
(54%); in order for MPs to overcome SMT’s performance advantage, the
improvement in MP cycle times would have to be comparable. Although
other comparisons can also be made (e.g., SMT.T4 vs. MP.T4), they are less
indicative of SMT’s true potential, because they restrict SMT’s advantage:
its ability to take advantage of extra thread-level parallelism.

Second, workload and program parallelism is highly variable, but in most
conventional parallel processing architectures, hardware resources are
statically allocated at design time. Given a fixed amount of hardware,
multiprocessor designers must determine how much should be used to
exploit ILP and how much should be dedicated to TLP. If the design does
not match the ILP and TLP characteristics of the application, then perfor-
mance suffers. Given the variability of parallelism both within an applica-
tion as well as across a workload, it becomes very difficult to hit this “sweet
spot” for best performance. A simultaneous multithreading architecture
has the ability to adapt to a wider range of applications, by effectively using
both ILP and TLP, and therefore potentially simplifies the task of chip area
allocation.

6.2 Implications for Compiler Writers

Multiprocessors also complicate the task of compilers and programmers,
because ILP and TLP must be extracted in a manner that best matches the
allocation of ILP and TLP hardware in the particular MP. The dynamic
nature of parallelism in a program may make this difficult or even
impossible. In addition to load balancing, the compiler, programmer, or
thread scheduler (operating system or run-time system) must also ensure
that the levels of parallelism (in addition to the total amount of work to be
done) get distributed in a manner that suits the particular machine.

Simultaneous multithreading offers compilers and programmers more
flexibility to extract whatever form of parallelism exists, because the
underlying architecture can use ILP and TLP equally effectively. Aggres-
sive superscalar or VLIW compilers already use many optimizations to
extract large amounts of ILP. An SMT processor gives these compilers yet

Simultaneous Multithreading • 347

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

another mechanism for exploiting parallelism that can be used to fill
wide-issue processors. For example, SMT offers an opportunity to expose
new parallelization techniques, because of the potential for faster synchro-
nization. In comparison to multiprocessors, even those with shared L2
caches, SMT provides an opportunity for cheaper synchronization and
communication, either through a shared L1 cache or through functional
units or registers. SMT could enable the parallelization of loops with tight
do across synchronization because of the reduction in synchronization
overhead. Applications with high communication-to-computation ratios,
such as ear from the SPEC92 suite, can also benefit from cheap synchroni-
zation via the shared L1 cache [Nayfeh et al. 1996].

6.3 Implications for Operating Systems Developers

Simultaneous multithreading also opens a new set of operating systems
issues, in particular, thread scheduling and thread priority. With parallel
applications, improving processor utilization with additional threads trans-
lates to improved program speedups. With multiprogrammed workloads,
however, there may be some threads that are more important than others.
Priority mechanisms are inherent in most operating systems, and an
interesting area of research will be to investigate various schemes to
maximize both processor throughput and the performance of high-priority
threads. Taken one step further, a multiprogrammed workload might
consist of several single-threaded applications, as well as a few parallel
programs. The thread scheduler (whether it is the operating system or a
run-time system) must manage and schedule the threads and applications
in a manner to best utilize both the execution resources and the hardware
contexts.

7. RELATED WORK

Simultaneous multithreading has been the subject of several recent stud-
ies. We first compare this study with our previous work and then discuss
studies done by other researchers. As indicated in the previous section,
SMT may exhibit different behavior for parallel applications when com-

Table XIV. Throughput for Parallel and Multiprogrammed Workloads

Number of
Threads

Throughput: Instructions per Cycle

Multiprogrammed Parallel
Parallel Computation

Only

1 2.2 2.4 2.8
2 4.2 3.5 4.6
4 4.7 4.2 5.5
8 5.4 4.9 5.9

This table compares the throughput (in instructions per cycle) obtained for the multipro-
grammed and parallel workloads, as the number of threads is increased. The last column
compares the throughput achieved in the parallel computation phases of the parallel applica-
tions.

348 • Jack L. Lo et al.

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

pared to a multiprogrammed workload because of different degrees of
interthread interference. Table XIV compares the SMT throughput results
from this study (parallel workload) with the multiprogrammed results in
Tullsen et al. [1996]. Note that because the applications themselves are
different, and the simulation methodology is slightly different (mainly a
2MB L3 cache vs. an 8MB L3), we can only make rough comparisons and
highlight some differences.

Our first observation is that, on average, there is more single-thread ILP
in the parallel workload (2.4 IPC) versus the multiprogrammed workload
(2.2 IPC). This is not surprising, because the loop-based nature of most of
the applications lends itself to larger degrees of ILP. As more threads are
used, however, the parallel applications benefit less than the multipro-
grammed workload. This is primarily because the parallel applications also
include sequential sections of program execution.

Second, when all threads are being used, the multiprogrammed workload
sustains greater throughput than the parallel applications. However, when
using only the parallel computation sections of the SPLASH-2 applications
(last column reproduced from Table XI), parallel throughput is greater than
the multiprogrammed results, for all numbers of threads.

Parallel applications experience less interthread interference in the
branch hardware, because the distinct threads tend to exhibit similar
branching behavior. Table XV compares the parallel applications of this
study with the multiprogrammed workload in our previous study [Tullsen
et al. 1996], in terms of branch and jump misprediction rates. The data
indicate that minimal branch prediction interference occurs in parallel
applications, relative to a multiprogrammed workload.

Parallel applications also suffer from less interthread interference in the
memory system, compared to multiprogrammed applications. For the sake
of comparison, Table XVI presents resource contention statistics from
Tullsen et al. [1996]. Although contention occurs in the parallel applica-
tions, it is much less significant than in multiprogrammed workloads. This
means that the use of multithreading to expose parallelism is truly useful,
as the latency tolerance has the ability to hide additional latencies intro-
duced by cache and branch interference. These results demonstrate that
SMT is particularly well suited for parallel applications, especially in
comparison to multiprocessors.

In Tullsen et al. [1995] we compared the performance of SMT and various
multiprocessor configurations and found that SMT outperforms an MP with

Table XV. Branch and Jump Misprediction Rates

Number of
Threads

Branch Misprediction Jump Misprediction

Parallel Multiprogrammed Parallel Multiprogrammed

1 2.0% 5.0% 0.0% 2.2%
2 2.5% N/A 0.1% N/A
4 2.8% 7.4% 0.1% 6.4%
8 2.5% 9.1% 0.0% 12.9%

Simultaneous Multithreading • 349

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

comparable hardware for a multiprogrammed workload. In contrast to that
study, this article compares the architectures using a parallel workload and
an implementable (rather than idealized) SMT architecture, and identifies
the sources of resource waste in multiprocessor configurations. Further-
more, this study also uses speedup, rather than processor utilization, as the
primary performance metric. In the parallel applications used in this study,
all threads work together toward completing the entire program, so
speedup becomes the critical metric.

7.1 Other Studies

Several variants of simultaneous multithreading have been studied. Gulati
and Bagherzadeh [1996] implemented simultaneous multithreading as an
extension to a superscalar processor and measured speedups for a set of
parallelized programs. In contrast to our processor model, their base
processor was a 4-issue machine with fewer functional units, which limited
the speedups they obtained when using additional threads.

Hirata et al. [1992] proposed an architecture that dynamically packs
instructions from different streams. They evaluated the performance bene-
fits of their architecture by parallelizing a ray-tracing application. Their
simulations do not include caches or TLBs. Prasadh and Wu [1991] as well
as Keckler and Dally [1992] have proposed architectures in which VLIW
operations from multiple threads are dynamically interleaved onto a pro-
cessor.

The architectures described by Govindarajan et al. [1995], Gunther
[1993], and Beckmann and Polychronopoulos [1992] partition issue band-
width among threads, and only one instruction can be issued from each
thread per cycle. These architectures lack flexible resource sharing, which
contributes to resource waste when only a single thread is running.

Studies by Daddis and Torng [1991], Prasadh and Wu [1991], and
Yamamoto et al. [1994; 1995], as well as our previous work [Tullsen et al.
1995; 1996], also examined simultaneous multithreading architectures, but
looked at multiprogrammed workloads, rather than parallel applications.
The simultaneous multithreading in the study by Li and Chu [1995] was
based on an analytic model of performance.

Table XVI. Comparison of Memory System Interference for Parallel and Multiprogrammed
Workloads

Metric

Parallel Multiprogrammed

1 4 8 1 4 8

L1 I-cache miss rate (%) 0 0 0 3 8 14
misses per 1000 completed

instructions (MPCI)
0 0 0 6 17 29

L1 D-cache miss rate (%) 5 9 9 3 7 11
(MPCI) 14 26 27 12 25 43

L2 cache (MPCI) 4 4 5 3 5 9
L3 cache (MPCI) 1 1 1 1 3 4

350 • Jack L. Lo et al.

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

Several other architectures have been designed to exploit multiple levels
of program parallelism. The M-Machine [Fillo et al. 1995], MISC [Tyson et
al. 1992; Tyson and Farrens 1993], and Multiscalar [Sohi et al. 1995]
architectures all require significant compiler support (or hand-coding) to
extract maximum performance. In all three designs, execution resources
are partitioned in a manner that prevents them from being dynamically
shared by all threads. The S-TAM architecture [Vasell 1994] exploits both
instruction- and thread-level parallelism by statically allocating threads to
processors and dynamically allocating each thread to a functional unit. A
primary goal was to expose scheduling and allocation to the compiler. On
their machine intrathread parallelism was avoided; parallelism was in-
stead expressed only between threads. Olukotun et al. [1996] advocate the
design of single-chip multiprocessors, instead of wider-issue superscalars,
to exploit thread-level parallelism.

Cache effects of multithreading have been the subject of several studies.
Yamamoto et al. and Gulati and Bagherzadeh all found that the cache miss
rates in simultaneous multithreading processors increased when more
threads were used. Neither quantified the direct effect from interthread
interference, however.

Thekkath and Eggers [1994] examined the effectiveness of multiple
contexts on conventional, coarse-grained multithreaded architectures. They
found that cache interference between threads varied depending on the
benchmark. For locality-optimized programs, the total number of misses
remained fairly constant as the number of contexts was increased. For
unoptimized programs, however, misses were more significant and resulted
in performance degradations. Weber and Gupta [1989] also studied the
effects of cache interference in conventional multithreaded architectures
and found increases in interthread misses that are comparable to our
results. Agarwal [1992] and Saavedra-Barrera et al. [1990] used analytic
models for studying the efficiency of multithreaded processors. Both models
included factors for cache interference that they correlated with the results
obtained by Weber and Gupta. None of the studies included the effects of
bank contention in their results, since they did not use multiple banks.

Nayfeh and Olukotun [1994] investigated the benefits of a shared cluster
cache on a single-chip multiprocessor. They found that interthread interfer-
ence can cause degradation for multiprogrammed workloads. For parallel
applications, a shared cache could actually obtain superlinear speedups in
some cases because of prefetching effects. They modeled a banked data
cache, but did not discuss the effects of contention in their results.

8. CONCLUSIONS

This study makes several contributions regarding design tradeoffs for
future high-end processors. First, we identify the performance costs of
resource partitioning for various multiprocessor configurations. By parti-
tioning execution resources between processors, multiprocessors enforce
the distinction between instruction- and thread-level parallelism. In this

Simultaneous Multithreading • 351

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

study, we examined two MP design choices with similar hardware cost in
terms of execution resources: one design with more resources per processor
(MP2) and one with twice as many processors, but fewer resources on each
(MP4). Our results showed that both alternatives frequently suffered from
an inefficient use of their resources and that improvements could only be
obtained with costly upgrades in processor resources. The MP designs were
unable to adapt to varying levels of ILP and TLP, so their performance
depended heavily on the parallelism characteristics of the applications. For
programs with more ILP, MP2 outperformed MP4; for programs with less
ILP, MP4 was superior because it exploited more thread-level parallelism.
To maximize performance on an MP, compilers and parallel programmers
are therefore faced with the difficult task of partitioning program parallel-
ism (ILP and TLP) in a manner that matches the physical partitioning of
resources.

Second, we illustrate that, in contrast, simultaneous multithreading
allows compilers and programmers to focus on extracting whatever paral-
lelism exists, by treating instruction- and thread-level parallelism equally.
ILP and TLP are fundamentally identical; they both represent independent
instructions that can be used to increase processor utilization and improve
performance. SMT has the flexibility to use both forms of parallelism
interchangeably, because threads can share resources dynamically. Rather
than adding more resources to further improve performance, existing
resources are used more effectively. By using more hardware contexts, SMT
can take advantage of TLP to expose more parallelism and attain an
average throughput of 4.88 instructions per cycle, while increasing its
performance edge over MP2 and MP4 to 64% and 52%, respectively.

Third, our results demonstrate that SMT can achieve large program
speedups on parallel applications. Even though these parallel threads have
greater potential for interference because of similar resource usage pat-
terns (including memory references and demands for renaming registers
and functional units), simultaneous multithreading has the ability to
compensate for these potential conflicts. We found that interthread cache
interference, bank contention, and branch prediction interference on an
SMT processor had only minimal effects on performance. The latency-
hiding characteristics of simultaneous multithreading allow it to achieve a
2.68 average speedup over a single MP2 processor, whereas MP2 and MP4
speedups are limited to 1.63 and 1.76, respectively. The bottom line is that
simultaneous multithreading makes better utilization of on-chip resources
to run parallel applications effectively.

ACKNOWLEDGMENTS

We would like to thank John O’Donnell of Equator Technologies, Inc. and
Tryggve Fossum of Digital Equipment Corp. for the source to the Alpha
AXP version of the Multiflow compiler.

352 • Jack L. Lo et al.

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

REFERENCES

AGARWAL, A. 1992. Performance tradeoffs in multithreaded processors. IEEE Trans. Paral-
lel Distrib. Syst. 3, 5 (Sept.), 525–539.

BECKMANN, C. AND POLYCHRONOPOULOS, C. 1992. Microarchitecture support for dynamic
scheduling of acyclic task graphs. In the 25th Annual International Symposium on Microar-
chitecture (Portland, Oreg., Dec. 1–4). 140–148.

BOYLE, J., BUTLER, R., DIAZ, T. GLICKFELD, B., LUSK, E., OVERBEEK, R., PATTERSON, J., AND

STEVENS, R. 1987. Portable Programs for Parallel Processors. Holt, Rinehart, and Win-
ston, New York.

CALDER, B. AND GRUNWALD, D. 1994. Fast and accurate instruction fetch and branch
prediction. In the 21st Annual International Symposium on Computer Architecture (Chicago,
Ill., Apr. 18–21). 2–11.

DADDIS, G., JR. AND TORNG, H. 1991. The concurrent execution of multiple instruction
streams on superscalar processors. In the International Conference on Parallel Processing
(Aug.). I:76–83.

DIXIT, K. 1992. New CPU benchmark suites from SPEC. In COMPCON ’92 Digest of Papers.
305–310.

EDMONDSON, J., RUBINFELD, P., PRESTON, R., AND RAJAGOPALAN, V. 1995. Superscalar in-
struction execution in the 21164 Alpha microprocessor. IEEE Micro 15, 2 (Apr.), 33–43.

FILLO, M., KECKLER, S., DALLY, W., CARTER, N., CHANG, A., GUREVICH, Y., AND LEE, W. 1995.
The M-Machine multicomputer. In the 28th Annual International Symposium on Microar-
chitecture (Nov.). 146–156.

GANNON, D., JALBY, W., AND GALLIVAN, K. 1988. Strategies for cache and local memory
management by global program transformation. J. Parallel Distrib. Comput. 5, 587–616.

GOVINDARAJAN, R., NEMAWARKAR, S., AND LENIR, P. 1995. Design and performance evalua-
tion of a multithreaded architecture. In the 1st IEEE Symposium on High-Performance
Computer Architecture (Jan.). IEEE, New York, 298–307.

GULATI, M. AND BAGHERZADEH, N. 1996. Performance study of a multithreaded superscalar
microprocessor. In the 2nd International Symposium on High-Performance Computer Archi-
tecture (Feb.). 291–301.

GUNTHER, B. 1993. Superscalar performance in a multithreaded microprocessor. Ph.D.
Thesis, Univ. of Tasmania (Dec.).

HIRATA, H., KIMURA, K., NAGAMINE, S., MOCHIZUKI, Y., NISHIMURA, A., NAKASE, Y., AND

NISHIZAWA, T. 1992. An elementary processor architecture with simultaneous instruction
issuing from multiple threads. In the 19th Annual International Symposium on Computer
Architecture (May). 136–145.

IBM. 1997. RISC System/6000 model J50. IBM Corp., Armonk, N.Y. Available at http://
www.rs6000.ibm.com/hardware/enterprise/j50.html.

KECKLER, S. W. AND DALLY, W. J. 1992. Processor coupling: Integrating compile time and
runtime scheduling for parallelism. In the 19th Annual International Symposium on
Computer Architecture (May). 202–213.

LI, Y. AND CHU, W. 1995. The effects of STEF in finely parallel multithreaded processors. In
the 1st IEEE Symposium on High-Performance Computer Architecture (Jan.). IEEE, New
York, 318–325.

LOWNEY, P., FREUDENBERGER, S., KARZES, T., LICHTENSTEIN, W., NIX, R., O’DONNELL, J., AND

RUTTENBERG, J. 1993. The Multiflow trace scheduling compiler. J. Supercomput. 7, 1
(May), 51–142.

NAYFEH, B. AND OLUKOTUN, K. 1994. Exploring the design space for a shared-cache multi-
processor. In the 21st Annual International Symposium on Computer Architecture. 166–175.

NAYFEH, B. A., HAMMOND, L., AND OLUKOTUN, K. 1996. Evaluation of design alternatives for
a multiprocessor microprocessor. In the 23rd Annual International Symposium on Computer
Architecture (May). 67–77.

OLUKOTUN, K., NAYFEH, B. A., HAMMOND, L., WILSON, K., AND CHANG, K. 1996. The case for a
single-chip multiprocessor. In the 7th International Conference on Architectural Support for
Programming Languages and Operating Systems (Oct.). ACM, New York, 2–11.

Simultaneous Multithreading • 353

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

PALACHARLA, S., JOUPPI, N. P., AND SMITH, J. E. 1997. Complexity-effective superscalar proces-
sors. In the 24th Annual International Symposium on Computer Architecture (June). 206–218.

PORTERFIELD, A. 1989. Software methods for improvement of cache performance on super-
computer applications. Ph.D. Thesis, Rice Univ., Houston, Tex. May.

PRASADH, R. AND WU, C.-L. 1991. A benchmark evaluation of a multi-threaded RISC processor
architecture. In the International Conference on Parallel Processing, (Aug.), I:84–91.

SAAVEDRA-BARRERA, R. H., CULLER, D. E., AND VON EICKEN, T. 1990. Analysis of mul-
tithreaded architectures for parallel computing. In the 2nd Annual ACM Symposium on
Parallel Algorithms and Architectures (July). ACM, New York, 169–178.

SILICON GRAPHICS 1996. The Onyx system family. Silicon Graphics, Inc., Palo Alto, Calif.
Available at http://www.sgi.com/Products/hardware/Onyx/Products/sys_lineup.html.

SLATER, M. 1992. SuperSPARC premiers in SPARCstation 10. Microprocess. Rep. (May), 11–13.
SOHI, G. S., BREACH, S. E., AND VIJAYKUMAR, T. 1995. Multiscalar processors. In the 22nd

Annual International Symposium on Computer Architecture (June). 414–425.
SUN MICROSYSTEMS. 1997. Ultra HPC Series Overview. Sun Microsystems, Inc., Mountain

View, Calif. Available at http://www.sun. com/hpc/products/index.html.
THEKKATH, R. AND EGGERS, S. 1994. The effectiveness of multiple hardware contexts. In the

6th International Conference on Architectural Support for Programming Languages and
Operating Systems (Oct.). ACM, New York, 328–337.

TULLSEN, D. M., EGGERS, S. J., EMER, J. S., LEVY, H. M., LO, J. L., AND STAMM, R. L. 1996.
Exploiting choice: Instruction fetch and issue on an implementable simultaneous mul-
tithreading processor. In the 23rd Annual International Symposium on Computer Architec-
ture (May). 191–202.

TULLSEN, D. M., EGGERS, S. J., AND LEVY, H. M. 1995. Simultaneous multithreading:
Maximizing on-chip parallelism. In the 22nd Annual International Symposium on Computer
Architecture (June). 392–403.

TYSON, G. AND FARRENS, M. 1993. Techniques for extracting instruction level parallelism on
MIMD architectures. In the 26th International Symposium on Microarchitecture (Dec.).
128–137.

TYSON, G., FARRENS, M., AND PLESZKUN, A. R. 1992. MISC: A multiple instruction stream
computer. In the 25th International Symposium on Microarchitecture (Dec.). 193–196.

VASELL, J. 1994. A fine-grain threaded abstract machine. In the 1994 International Confer-
ence on Parallel Architectures and Compilation Techniques (Aug.). 15–24.

WEBER, W. AND GUPTA, A. 1989. Exploring the benefits of multiple hardware contexts in a
multiprocessor architecture: Preliminary results. In the 16th Annual International Sympo-
sium on Computer Architecture (June). 273–280.

WILSON, K. M., OLUKOTUN, K., AND ROSENBLUM, M. 1996. Increasing cache port efficiency for
dynamic superscalar microprocessors. In the 23rd Annual International Symposium on
Computer Architecture (May). 147–157.

WILSON, R., FRENCH, R., WILSON, C., AMARASINGHE, S., ANDERSON, J., TJIANG, S., LIAO, S.-W.,
TSENG, C.-W., HALL, M., LAM, M., AND HENNESSY, J. 1994. SUIF: An infrastructure for
research on parallelizing and optimizing compilers. ACM SIGPLAN Not. 29, 12 (Dec.), 31–37.

WOO, S. C., OHARA, M., TORRIE, E., SINGH, J. P., AND GUPTA, A. 1995. The SPLASH-2
programs: Characterization and methodological considerations. In the 22nd Annual Interna-
tional Symposium on Computer Architecture (June). 24–36.

YAMAMOTO, W. AND NEMIROVSKY, M. 1995. Increasing superscalar performance through
multistreaming. In IFIP WG10.3 Working Conference on Parallel Architectures and Compi-
lation Techniques (PACT 95) (June). 49–58.

YAMAMOTO, W., SERRANO, M. J., TALCOTT, A. R., WOOD, R. C., AND NEMIROVSKY, M. 1994.
Performance estimation of multistreamed, superscalar processors. In the 27th Hawaii
International Conference on System Sciences (Jan.). IEEE Computer Society, Washington,
D.C., I:195–204.

YEAGER, K. C. 1996. The MIPS R10000 superscalar microprocessor. IEEE Micro. (April),
28–40.

Received July 1996; revised February 1997; accepted May 1997

354 • Jack L. Lo et al.

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

