
 Session 4: Embedded Systems

ICCA’03 - 113 -

A Simple Architecture for Embedded Web Servers

Miguel Domingues

Universidade do Minho
4710 - 057 Braga, Portugal

mig@idite-minho.pt

Abstract. Older technologies can still play an important role in embedded systems. Complex
applications such as a Web server can be embedded implemented, with some restrictions and
assumptions, and still be efficient for current industry demands. This communication makes an
incursion into the hardware architecture behind an embedded Web server based on simple
8051-type processors. It presents and discusses architectural features, limitations, performance
and trends.

1 Introduction

Computer communication systems and especially the Internet are playing a rapidly increas-
ingly important role in our everyday environment. Today this is not only a domain of per-
sonal computers or workstations. We are beginning to see the Internet and associated tech-
nologies manage our work and home environments through the use of intelligent embed-
ded devices. Using this knowledge, many applications are imaginable. Home automation,
utility meters, appliances, security systems, card readers and building controls that can be
easily controlled using either special front-end software or a standard Internet browser cli-
ent from anywhere around the world. Imagine applications that are able to control hard-
ware via a standard Web browser, to transmit and visualize the state of sensors or auto-
matically generate and send emails on the occurrence of special events, for example, for
security purposes. There are not just routers and switches and network infrastructure but
devices used in everyday life, from security systems to vending machines.

Hewlett-Packard filed the following patent “Embedding Web access mechanism in an
appliance for user interface functions including a Web server and Web browser,” on Octo-
ber 25, 1996. The patent was issued on September 21, 1999. The abstract is as follows:
“Web access functionality is embedded in a device to enable low cost widely accessible
and enhanced user interface functions for the device. A Web server in the device provides
access to the user interface functions for the device through a device Web page. A network
interface in the device enables access to the Web page by a Web browser such that a user
of the Web browser accesses the user interface functions for the device through the Web
page” [1]. The idea behind this patent is closely related with the new paradigm for embed-
ded systems. It states that networks have to become flexible and easily integrated, with the
user getting closer to the device without supplementary efforts, using large networks like
the Internet. Such device, which consumes a few bytes of memory and is specifically de-
signed for microcontroller-based embedded systems, allows designers to create modular
components that can be connected to the Internet and controlled remotely using a standard
Web browser. By adding Web server technology, the manufacturer gains an immediate
competitive advantage through standardized access, both in terms of protocol and client
application. With the explosion of the Internet and Web services, companies that have pro-
vided proprietary solutions for networking are rushing to add Internet technologies and

Session 4: Embedded Systems

- 114 - ICCA’03

embedded Web servers to their product lines. It provides a more open and economical al-
ternative of the networking devices, reduces development costs and increases functionality.
Communication solutions about industrial networks, such as Powerline, RS485, RS232,
CAN or 12C have their special qualities and their functional space in real-time application
worlds, where communication reliability and efficiency is an imperative request, but in
other way, they represent an additional handicap when it comes the time to maintain and
support the applications. Actual application designers need a standard communication
model that integrates with the rest of the world, even if it is so small like the local back
office.

Accepting this model for small devices, introduces a reverse engineer process that has to
happen. It is necessary to reduce the Web server to its essential components, requiring just
a few bytes of memory at the device. In larger devices, where more memory is available,
the server should still be kept as small as possible, allowing more room for the device’s
application software. When interfacing with embedded devices, getting the information to
and from the device quickly and easily is essential, so reducing the amount of information
sent to and from the device makes the Web a more efficient communication medium. The
big advantage of a Web server in an embedded environment is that the Web browser man-
ages the whole user interface. The visualizing of information is possible by sending Hyper
Text Markup Language/American Standard Code for Information Interchange
(HTML/ASCII) strings to the client, therefore minimal resources are required. Thanks to
the increased versatility and flexibility of microcontrollers such as Philips 80C51 and XA,
Infineon C500 and C166, Texas Instruments MSP430 ultra low-power microcontroller and
others, manufacturers can create solutions for their customers inexpensively. Companies
are now able to connect large-scale networks to embedded devices using 8 and 16 bit mi-
crocontrollers.

It seems like everything is serving Web pages these days, so why not an 8051? This re-
port presents a simple architecture for an embedded Web server and its requirements. Fi-
nally, an overview of a 8051-type implementation is described and some benchmarks
states its valid functionality.

2 Hardware Architecture Presentation

The application requisites of a Web server are the most important key to determine the
characteristics of any implementation. In fact, issues like file Input/Output (I/O), network
communication model, memory cache, page processing, instruction complexity and virtual
memory directly determine the goals that the architecture has to achieve for a plenty suc-
cess.

In a generalist implementation of a Web server the available operations are to serve
static or dynamic content as response to a Uniform Resource Locator (URL) request. In the
static case, it serves the page’s ASCII code and binary for any other document. A file I/O
instruction gets the requested content and serves it over Hyper Text Transfer Protocol
(HTTP). If the content is dynamic a search and replace is applied. This determines that the
application needs a simple file system for page storage, a small memory footprint for
search and replace and a communication model on which HTTP relies to serve the final
page content. The search and replace operation is a simple set of instructions that do not
require a great calculus power nor complex scientific functions. Catching pages in memory
is an advantage for static and dynamic pages, but there is no need of virtual memory be-
cause some bytes of ASCII tags. With this description, the framework is totally character-
ized, but it must consider that the host hardware is embedded based. So, some considera-

 Session 4: Embedded Systems

ICCA’03 - 115 -

tions impose additional limitations. An embedded Web server architecture limits the scope
of the design for the simple reason that file system is not supported [2]. Remember that the
device must be of easy integration and has low-cost per production unit.

Observing the facts, let us conclude that a conventional 8051-type architecture could
take every of the discussed aspects. The only one that it does not guaranties, has to be with
the network communication model, of course, some assumptions and restrictions had to be
taken, and they will be described later on the article. To illustrate a possible implementa-
tion of a simple embedded Web server architecture, it follows an example that is used to
understand the feasibility of device.

The two main components of the demonstration board are the Local Area Network
(LAN) and Microprocessor Unit (MPU) controllers. The MPU runs the code responsible
for the Web server. The LAN controller offers the physical connection to the Internet with
a downsized Transmission Control Protocol/Internet Protocol (TCP/IP) stack, and guaran-
ties the needs for the network communication model. Its functionality is encapsulated by
an easy-to-use application programming interface, and by using this Application Pro-
gramming Interface (API), creating new applications or modifying existing ones becomes
an easy task.

This architecture uses the C8051F005 MPU from Cygnal and the CS8900A Ethernet
controller from Crystal™ Semiconductor Corporation. [3]

The 8 bits Cygnal 8051 is fast with its 25-MIPS peak performance, and it has a 12-bit
A/D converter and 2.4 KB of RAM [4]. The 32-KB flash memory is large enough for a rea-
sonably sized program plus a few Web pages and therefore this makes it a good choice for
storing and transferring Web pages. It also has general-purpose input/output ports that can
be used for interfacing to the LAN controller. At first, it seems like its lack of a conven-
tional bus with the LAN controller could be a problem, but it turned out to be no problem
at all.

A 22.1184-MHz crystal was soldered onto the board and a new function was written to
make the Computer Processor Unit (CPU) use it instead of the slowest on-chip oscillator.
Most of its Cygnal 8051’s instructions execute in one or two cycles, as compared to 12 or
24 cycles for standard 8051 chips. A good performance is expected, and indeed the
C8051F005 runs the Sieve benchmark about 19 times faster than a standard 8051. It also
ran faster than most 16-bit CPUs that were tested, which is impressive because many of the
Sieve operations are 16-bit.

Table 1. CPUs Benchmark

CPU Crystal (Mhz) Sieve 10 loops (secs)
Cygnal C8051F005 (8 bits) 22.1184 0.43
Intel 80C51 (8 bits) 11.0952 8.2
Intel 80C196 (16 bits) 18.4320 1.3
Philips XA-S3 (16 bits) 22.1184 1.0

For the Ethernet controller, the Cirrus Logic CS8900A with 4 KB of RAM is enough to

hold a satisfactory number of frames. It adds additional buffering capability for incoming
frames, which is the key for allowing the CPU time to process a frame while more are re-
ceived. Browsers running on fast machines can easily fire out two or three Ethernet frames
within a millisecond. The CS8900A is a low-cost Ethernet LAN controller optimized for
Industrial-Standard-Architecture Personal Computers (PCs). The features that made it very
suitable for this project are its highly integrated design, which reduces the amount and cost
of external components, and its very easy-to-handle bus interface. Most LAN controllers
that are on the market have a Peripheral Component Interconnect bus interface. The

Session 4: Embedded Systems

- 116 - ICCA’03

CS8900A bus interface is simple to interface with a microcontroller directly [5]. The
CS8900A includes an integrated 10Base-T transceiver. It contains all the analog and digi-
tal circuitry needed for implementing the LAN interface by the use of a simple isolation
transformer. [6]

Because the CS8900A has more Random-Access Memory (RAM) than the 8051, it
checks for new frames by polling and reads the most recent one. This way the CS8900A
can queue a number of frames while the 8051 pulls them out. This is desirable to hold the
entire segment in RAM to compute its sum. It can also handle IP processing in a small
memory space, as long as it does not try to reassemble and process all at a time. CS8900A
is configured to capture only the frames directed to its Media Access Control address, plus
broadcast frames. If the 8051 had to deal with every Ethernet frame on a busy network, it
would be in big trouble.

A standard RJ45 patch cable can be used to connect the module to either a 10 Mbps or
100 Mbps hub. A 100 Mbps hub automatically switches down its transfer speed to 10
Mbps if it detects the CS8900A running at 10 Mbps. [7]

3 Network Layer Analysis

Today, IEEE 802.3, also known by Ethernet, contains the most common medium access
control to transfer data in a LAN [2]. It belongs to the Network layer in the Internet refer-
ence model. The standard IEEE 802.3 defines possible bit rates, the physical realization of
bit coding, and the frame format used. Over it, IP is designed for use in packet-based net-
works such as the World Wide Web. It provides mechanisms for transmitting datagrams
from a source to a destination, and for fragmentation if necessary for transmission through
small-packet networks. Finally, the hypertext transfer protocol (HTTP) is an application
level protocol. It is a generic, stateless, object oriented protocol that can be used for many
tasks, such as name servers and distributed object management systems, through extension
of its request methods. It uses a client-server relationship and is based on a stream-oriented
transport layer, such as TCP. It works with the principle of request and response. A client
establishes a connection to a server and requests a content referred by URL that specifies
the address, path and name of the resource [2]. After decoding the request, the server starts
transferring the resource to the client. Commonly, this is done by navigating with a Web
browser.

At this point, a reasonable question is - can a CPU with only 2 KB of RAM really handle
large Ethernet messages and the complexities of protocols such as TCP and Address Reso-
lution Protocol (ARP)? Surprisingly, it turns out that even a few hundred bytes would suf-
fice. Small RAM footprints work with TCP because you can tell the other end to limit the
message size. TCP can, for example, advertise a maximum segment size of only 100 bytes.
If it could guarantee that it only responds to TCP segments, rather than initiating them,
then a massive simplification in the TCP/IP stack would result. It can also handle IP proc-
essing in a small memory space, as long as it does not try to reassemble fragmented incom-
ing messages, and it will not occur because the other machine’s TCP layer will limit the
size of the message it sends. [10]

ARP is the last one needed to complete the serving process. A Web server must handle
ARP requests because it will receive them when the other end wants to find out its hard-
ware address. The inverse operation also happens in order to find out the hardware address
of the device it is sending to. ARP is a simple protocol that can cause big problems for a
small server. An ARP request must be sent, and a reply received, while a regular message
is waiting to be transmitted [11]. One send buffer no longer suffices. It needs more space

 Session 4: Embedded Systems

ICCA’03 - 117 -

and must buffer the outgoing and incoming ARP messages. The good thing, is that ARP
messages are only 64 bytes long, so buffering is still possible.

With all significant compromises described above, these are the TCP/IP protocol stack
limitations that a small device can not handle: no reassembling of fragmented incoming IP
frames; no buffering of TCP segments which are delivered out-of-order; no support for IP
type-of-service and security options; ignoring of any other special TCP options.

Next table gives a list of several computers and operating systems where data exchange
over TCP/IP was possible and efficient even with last limitation parameters:

Table 2. Compatible Communication Systems

Computer System / CPU Operating System / TCP/IP Stack
PC / Athlon™/ 1 GHz Windows 2000
PC / Athlon / 1 GHz Linux, kernel v 2.2.16
PC / Pentium™ / 233 MHz Windows 98
PC / 486DX2 / 66 MHz Windows 95
Apple™ Macintosh™ / 68030 / 50 MHz System 7.5, Open Transport™ 1.1.2
AT Amiga™ / 68030 / 50 MHz Kickstart 3.0, Miami 2.1
Cassiopeia™ / MIPS / 150 MHz Windows CE 3.0

Compatibility is achieved by implementing only the important parts of the protocol

specifications, but also is due to the tolerance of the other TCPs.
The maximum transfer speed of the module cannot be defined exactly, as it largely de-

pends on the other TCP. Normally, a TCP that fully implements the protocol specification
is able to receive and buffer more than one segment at a time. Because the C8051 has a
relatively small amount of memory compared with, for example, personal computers, it
can maintain only one receive and one transmit buffer. It needs to wait for an acknowl-
edgement (ACK) from the other TCP before the overwriting of buffer contents is allowed
and new data can be exchanged. Because of the round-trip time of packets sent over the
Internet and the delaying of ACK segments by some TCPs, transfer speed varies signifi-
cantly. During evaluation of the TCP/IP stack, transfer speeds between 2 and some dozens
of Kbps were measured. But most of the applications for an embedded Web server do not
require transfer speeds of several Mbps. If data is transferred in eXtensible Markup Lan-
guage format, smaller messages with more information are produced and that is more than
sufficient to any embedded system.

In spite of the fact that during software development many compromises were made, the
compatibility of the stack in communicating with other TCPs is very good. No other TCP
had problems establishing a connection during the software evaluation. [3]

4 Web Server Analysis

As an example of how to use the previously described module, a demonstration HTTP
server was implemented. The module must have been powered on, properly connected to
LAN and the TCP/IP settings of the local host correctly configured. Then, the embedded
Web server is ready.

The server provides an HTML Web page that is stored in MCU flash memory. The
module waits for an incoming connection, transfers the Web page, closes the connection
and waits for another client to connect. The content of this Web page is adapted dynami-
cally with analog values. Before sending a segment of TCP data, it searches the transmit
buffer for special strings. If such a string is found, it is replaced by an A/D converter value.

Session 4: Embedded Systems

- 118 - ICCA’03

 The page has three HTML labels that display Analog-to-Digital (A/D) values such as
CPU/air temperature and operating voltage and a radio button pair that toggles the main
board Light Emitting Diode (LED) state. One purpose of a small Web server is to make a
product easy of use. This page is bidirectional in that it both displays device information
data and controls the board LED on or off. The new state of the LED is sent to the Web
server in a post message. There is an image, which the browser loads after the HTML por-
tion.

Most of the tested browsers establish a single connection to load both parts of the page,
but others, open two separate connections to the server. Each connection comes from a
different port on the browser’s machine. To handle this situation, all connection specific
information, such as client IP address, port number, sequence number, ACK number, and
TCP state is stored into a structure that is indexed by the connection number. Each element
of this structure can be thought of as a connection. When a TCP segment arrives, if it
matches with an existing connection, then it uses its state information. This method allows
the Web server to handle simultaneous connections from the same PC or from multiple
PCs. [3]

Next photo shows the Web page, as presented on a common browser:

Fig. 1. Browser Web Page

The 0.8 KB HTML portion of the page and the 6.2 KB JPEG graphic combine for a total
of 7 KB. This page is used as the basis for later comparisons in the article. Here is an ex-
ample of the page’s ASCII code:

<HTML>
<HEAD><TITLE>8051 Web Server</TITLE></HEAD>
<BODY>
<FORM ACTION=\"/index.html\" METHOD=\"POST\">
<TABLE BORDER=\"0\">
<TR>
<TD><H1>8051 Web Server</H1>
<TABLE BORDER=\"2\">
<TR>
<TD WIDTH=\"150\" HEIGHT=\"25\">CPU temperature</TD>
<TD WIDTH=\"90\" HEIGHT=\"25\">TAG:TMP1</TD>
</TR>
<TR>
<TD WIDTH=\"150\" HEIGHT=\"25\">Air temperature</TD>
<TD WIDTH=\"90\" HEIGHT=\"25\">TAG:TMP2</TD>
</TR>
<TR>
<TD WIDTH=\"150\" HEIGHT=\"25\">Operating voltage</TD>
<TD WIDTH=\"90\" HEIGHT=\"25\">TAG:VOL1</TD>
</TR>
</TABLE>

LED Control:
<INPUT TYPE=\"RADIO\" NAME=\"switch\" VALUE=\"1\" TAG:CHK1>On

 Session 4: Embedded Systems

ICCA’03 - 119 -

<INPUT TYPE=\"RADIO\" NAME=\"switch\" VALUE=\"0\" TAG:CHK2>Off
 <INPUT TYPE=\"SUBMIT\" VALUE=\"Submit\">
</TD>
<TD>
 </TD>
</TR>
</TABLE>
</FORM>
</BODY>
</HTML>

Web pages in HTML format are for human consumption. Therefore it is reasonable to

say that 100 ms response time is a good reference value. The measured time required for
this 8051-type Web server to serve the 7 KB Web page to a 500 MHz Pentium machine
running Microsoft Internet Explorer 5.5 was 60 ms, 40 ms less under the reference value.
In contrast, it takes to a 100 MHz Pentium server running Apache about 32 ms to serve the
same page. This demonstrates that the response of the 8051 is acceptable. The page related
tasks and its response time values can be observed in the next table:

Table 3. Page Tasks and Response Times

Task Times Run Time (ms)
Search and replace tags 6 23.8
Copy buffers 8 9.1
Write to CS8900A 11 4.6
Parse incoming HTTP headers 2 4.5
Compute checksums 38 4.4
Read from CS8900A 8 0.6
TCP state machine 8 0.4
Total 47.4

How to explain the difference between the announced 60 ms to the presented 47.4 ms?

The answer is so surprisingly that when added all the intervals between the 8051 sending
an Ethernet frame and the browser’s 500 MHz Pentium responding, the result sum is 8.5
ms. Here is the big difference. The 8051 is waiting for a Pentium! [3]

About memory usage, the lower 256 bytes of the 2.4 KB C8051 RAM are used for fre-
quently accessed variables. The 2048 byte area of additional on-chip memory is addressed
as External Data memory. Incoming and outgoing message buffers are dynamically allo-
cated from this space. The server execution code uses 22 KB and more 7 KB are for the
Web page content, what makes a total of 29 KB of the 32-KB on-chip flash memory. Ac-
cess to on-chip flash memory is fast and the page could be transferred into the 8052 in
about 30 ms, this is about 50% of the total time needed to serve the page. The details are
shown in the next table:

Table 4. Memory Usage

Description Code Space (KB)
TCP/IP 9.5
Web Page (plus image) 7.0
HTTP Server 3.8
ARP 2.5
C Library 2.9
UDP 1.4
CS8900A I/O 1.0
RS-232 0.5
Analog 0.3
Priority Task Switcher 0.3
Total 29.2

Session 4: Embedded Systems

- 120 - ICCA’03

5 Summary

This paper has reviewed the key areas associated with a simple embedded Web server de-
sign and implementation, such as typical microcontroller hardware and its constraints, the
network protocols needed for a Web server and the implementation techniques to minimise
resource usage. The presented example has sufficient resources to support the creation of
useful Web pages, including dynamic data. The real challenge in designing a workable and
extensible embedded Web-based server is the data layer.

The 8051 microcontroller family remains one of the most popular processors in the
world. Its ease of use and its relatively high performance make it ideal for many applica-
tions, including portable and handheld products. The introduction of a new line of high-
performance derivatives has many positive implications for improving the power effi-
ciency of 8051-based designs. Its low cost is an advantage when designing embedded sys-
tems for high volume applications. Perhaps there is no need to invest much more to find a
new solution, it has ever been there and only requires a redesign for the new appliances
requirements. The main reason of this paper was to show the performance, reliability, low
cost, adaptability and power of the old 8051 architecture in the new embedded systems
applications. One point has been clarified about the place it could take in these new solu-
tions with old technology: 8051 is respectable.

As more and more devices appear, the issue is no longer if it will have embedded Web
technology but, how and to what extent it will be used. Device designers need to pay close
attention to the features and functions that are allowed through these remote interfaces, and
what are the industrial requirements that make the device production feasible. It is clear,
that the technology was already invented. The work that follows, must prepare and advice
the companies in order to take the right decisions to achieve the right demands.

References

[1] Casterline, R.: Serving Up Web Pages from an Embedded Device. Lighthouse Solutions,
LLC, Embedded Systems Conference, http: www.lhsolutions.com, (2000)

[2] Bentham, J.: Creating a Miniature Web Server from Scratch. Iosoft, Ltd., (2000)

[3] Brady, J.: Build Your Own 8051 Web Server. Circuit Cellar Magazine, Issue 146, http:
www.circuitcellar.com, (2002)

[4] C8051F005 Mixed Signal MCU. Cygnal Integrated Products, Inc., http: www.cygnal.com,
(2000)

[5] Using the Crystal CS8900A in 8-Bit Mode. Cirrus Logic, Inc., (2000)

[6] CS8900A Product Data Sheet. Cirrus Logic, Inc., (1999)

[7] CS8900A Ethernet Controller Technical Reference Manual. Cirrus Logic, Inc., (2001)

[8] Dannenberg, A.: MSP430 Internet Connectivity. Texas Instruments (2001)

[9] Hall, E. A.: Internet Core Protocols. O’Reilly & Associates, Inc., Sebastopol, CA, (2000)

[10] Bentham, J.: TCP/IP Lean - Web Servers for Embedded Systems. CMP Books, R&D Devel-
oper Series, (2000)

[11] Washburn, E.: TCP/IP Running a Successful Network. Addison Wesley (1996)

