
A COST-BENEFIT FRAMEWORK FOR
ONLINE MANAGEMENT OF A METACOMPUTING SYSTEM

Yair Amir, Baruch Awerbuch, R. Sean Borgstrom
Department of Computer Science

The Johns Hopkins University
Baltimore MD 21218

{yairamir, baruch, rsean}@cs.jhu.edu

1. Abstract

Managing a large collection of networked
machines, with a series of incoming jobs,
requires that the jobs be assigned to machines
wisely. A new approach to this problem is
presented, inspired by economic principles: the
Cost-Benefit Framework. This framework
simplifies complex assignment and admission
control decisions, and performs well in
practice. We demonstrate this framework in
the context of an Internet-wide market for
computational services and verify its utility for
a classic network of workstations.

1.1 Keywords
Networks, resource allocation, markets.

2. Introduction

Collections of networked machines are common in the
modern world. Using each individual machine as a
completely independent computer is obviously inefficient –
one machine could be working on a dozen jobs while the
others sit idle. A metacomputing system is a set of
networked machines that can pool their computational
resources to avoid this problem. Each machine has several
computational resources associated with it. Intelligent
management of a metacomputing system requires a good
strategy for assigning computational resources to jobs the
system must perform.

Computational resources are heterogeneous. A given task
may require a certain amount of normalized CPU seconds,
Megabytes of memory, and network bandwidth. Not only
are these resources independent, they are not even directly
comparable – they are measured in unrelated units. This can
make it difficult to determine the optimal machine to which
to assign a given computational task. This situation can be
further complicated by tasks with different priority levels

and different requirements in terms of completion time.
More generally, tasks can have different rewards that the
system will receive for completing them.

The Cost-Benefit framework is a unified approach to these
two problems, inspired by economic principles. The
approach is straightforward: we assign a homogeneous cost
to each resource, which depends on that resource’s current
utilization. The total cost for all resources used is the cost of
a given scenario. The marginal cost method for assigning
jobs puts a job on the machine where its resource
consumption has the minimum marginal cost. The resulting
scenario has the minimum total cost.

This relatively simple concept turns out to have useful
theoretical properties. In particular, when certain exponential
cost functions are used, the marginal cost strategy is
competitive – its consumption of resources is at most
O(log n) greater than that of an optimal strategy that knows
the future (where n is the number of machines with
resources). This "system-friendly" strategy effectively
predicts a system's future needs, regardless of the correlation
between past and future.

In our framework, jobs with different priorities and demands
are also assigned a homogeneous benefit, which depends on
the time in which that job is completed. Benefits and costs
are measured in the same units. Maximizing system benefit
directly improves the system's value to its users. We cannot
simultaneously minimize system cost and maximize
received benefit. We have therefore developed additional
strategies that attempt to strike a balance between the two.

We do not control the benefit functions. Therefore, in order
to guarantee competitive acquisition of benefit we must
perform admission control. We will only accept jobs with
benefit larger than the minimum marginal cost. We assign
them to maximize our "profit" - the benefit minus the
marginal cost. This "miserly" strategy is competitive in
benefit achieved.

It is important to emphasize that the Cost-Benefit framework
is not intended to help a metacomputing system reach a
steady state. Instead, it is designed to maximize the system’s
transient performance. The framework does not deal with

“offline” optimization problems where all the variables are
known in advance; it must manage the system “online,”
making decisions based on the system’s current state and
online demands at any given time.

In this paper, we study how the Cost-Benefit framework
helps manage online metacomputing systems. Our test case
is the Java Market, a computational market designed for use
with this framework. The Java Market “buys” spare cycles
from interested machines anywhere on the Internet and
“sells” their computational services to anyone on the Internet
with a job written in Java. The concepts of costs, benefits,
and negotiations between the two are fundamental to its
design.

The Java Market has been shown to produce good
performance in practice. Using a handful of machines
connected only by the Internet, the Java Market produced a
3.6x speedup in our sample application. Because these
machines used only Web browsers to connect to the Market,
they could have been anywhere in the world, running any
operating system -- and the machines would still have been
secure. The Cost-Benefit framework has also been shown
efficient in a more general context. Applying the Cost-
Benefit framework to the more traditional problem of
resource allocation on a cluster of workstations, we
improved the performance of naïve strategies by 38% and
intelligent, optimized strategies by about 13%.

3. RELATED WORK

The LYDIA project [1] studies single-resource resource
allocation on a system where there are many kinds of jobs,
and each "class" of jobs has different performance
expectations. The performance of each class is given a
homogeneous cost called the "performance index", much
like our job benefit functions. The LYDIA project does not
yet address the complex issues involved in balancing several
of the diverse system resources simultaneously.

SPAWN [2] and other systems like it provide computational
markets where tasks bid competitively for resources. This
approach uses economic principles conceptually similar to
ours. The Cost-Benefit framework, however, integrates the
computer science notions of competitive algorithms and
analysis with the economics concepts of marginal costs and
markets for services.

The Condor system [3] is similar to the Java Market, our
testbed. The Condor team has created a set of software tools
for utilizing the wasted CPU cycles in a cluster of
workstations. Condor provides a checkpointing mechanism
for the jobs it schedules, allowing interrupted jobs to be
resumed later when a machine of the appropriate
architecture is available. Although Condor is a mature
system, proven to work efficiently with hundreds of

machines at a time, it has very limited support for
heterogeneous machine architectures. The Java Market,
while limited by the speed of the virtual Java machines
available, is 100% cross-platform.

The Popcorn project [4], independently developed at the
Hebrew University in Israel, is an online market for
computational services that shares many features with the
Java Market. The project differs from the Java Market
primarily in that it provides a new programming model. Its
users must write their applications with the Popcorn project
in mind -- Popcorn cannot be used with ordinary Java
applications. A key Java Market design decision is that users
submit their jobs as regular Java applications, and the
Market itself does all necessary modifications.

The Milan project [5], like the Popcorn project, provides a
programming model that can take advantage of
heterogeneous Internet-connected machines. Also like the
Popcorn project, Milan is not designed for use with standard
Java applications.

4. THE COST-BENEFIT FRAMEWORK

We will use the same conceptual structure for the
computational market and the metacomputing system that
we will study. In both cases, we will examine the system in
terms of benefits and costs, where the system tries to
maximize its benefit and minimize its cost.

4.1 Cost

The key to our Cost-Benefit framework is that the cost of a
resource is an exponential function of its utilization. Each
time a certain amount (e.g. 10%) of the resource is used, the
cost for that resource doubles. In its simplest form, this
could be used to perform admission control: if the benefit of
a job is higher than its cost, the job is admitted. (See Figure
4.1).

Benefit for a Job

Cost vs. Benefit

Utilization: (Accept Job) (Reject)

C
o
s
t

 Figure 4.1: Exponential Costs

The picture becomes more interesting when we have
multiple resources that can be exhausted. Normally,
decision-making in this circumstance is difficult – but with
the Cost-Benefit model, we can simply add these costs
together. This makes decision-making very easy. For
example, suppose we have two machines. A job comes in for
one of these machines requiring m Megabytes of memory
and c normalized seconds of CPU time. The cost for this
job’s memory usage will be different on each machine,
based on how much memory is already used. Similarly, the
cost to share the CPU will be different on each machine,
based on how many jobs are already using that machine. We
place the job on the machine where the sum of these
marginal costs is minimized. (See Figure 4.2).

0

5

10

15

20

25

30

35

40

45

50

Costs

Memory Cost CPU Cost Total Cost

Decisions Made Simple

Costs for
Scenario 1

Costs for
Scenario 2

Figure 4.2 Our Cost Function Makes Choosing the Right
Machine Simple!

Our framework's "costs" and real-world costs like poor
machine performance are related as follows. Using our cost
function when performing admission control and job
assignment provides an upper bound on these real-world
costs. In practice, this upper bound has been shown to be
pessimistic - the Cost-Benefit framework performs much
better than the theoretical bound requires. (See section 4.3.)

4.2 Benefit

The other half of the Cost-Benefit framework is the benefit
earned from jobs. This benefit can be compared to the
marginal cost for running a job to see whether running the
job on a given machine is worthwhile. If the job cannot
make a “profit” on any machine, then the job is rejected or
delayed, depending on the system.

In the simplest case, the benefit for completing a job is equal
to its priority, much as in Figure 4.1. Jobs with low benefit
will be rejected or delayed when the system is heavily
loaded. Jobs with high benefit are more likely to be admitted
immediately. A job whose benefit is greater than the highest

possible cost will always be accepted and placed on a
machine.

Things become more interesting when jobs have benefit
functions. For example, a job might give no benefit at all
unless it is completed within a given time frame, or its
benefit might reduce linearly over time. (See Figure 4.3.)
The benefit for a job might even become negative, if enough
time passes, meaning that the party that submitted the job
must be compensated for lost time.

Possible Benefit Functions

0 1 2 3 4 5 6

Time to Completion

Benefit

Function 1

 Function 2

Figure 4.3: Benefit as a Function of Time Taken

When benefit functions are variable, as seen above, the
system has a more complicated decision to make. Faster
machines will complete jobs more rapidly, earning more
benefit, but the more jobs are running on a given machine,
the higher its cost will be. In this context, the job and the
system will have to “negotiate” to determine where to place
the job.

4.3 Cost Function

One particular cost function, used with our Cost-Benefit
framework, shows very nice theoretical properties. This cost
function, in a cluster of n machines, charges:

n(usage / maximum usage)

for each resource.

Using the marginal cost strategy with this particular cost
function has a beneficial theoretical property. Over the
system’s continuously operating lifetime, the maximum
usage of each resource is within O(log n) of the optimal
assignment strategy’s maximum usage [6]. Further, this
holds even when the optimal strategy knows the future.

This theoretical guarantee is weak, but most job assignment
strategies have no theoretical guarantees at all. Further, this
particular strategy has been shown in tests to perform
extremely well in practice. (See Sections 5 and 6.)

Note that the maximum usage of a resource is not defined in
terms of our abstract costs. Restricting these maxima
translates directly into bounded CPU loads, bounded
memory usage, limited network congestion, etc.

4.4 A Decentralized Approach

The Cost-Benefit framework uses a centralized scheduler in
both of our test-beds. Experience with the Condor system [3]
shows that one scheduler can manage hundreds of producer
machines, as long as it acts only as a decision-maker.

For a more distributed approach, our framework can be
extended as follows. Assign each scheduler a subset of the
producer machines, which it must choose from when
assigning jobs. These subsets can intersect, and they can be
changed on-line. Clients can deliver their job to any
scheduler, or even shop among schedulers for the lowest
price. Assuming that the optimal assignment strategy is
restricted to the same clients and the same producer subsets,
the theoretical guarantee above will still apply.

5. THE JAVA MARKET

The Java Market is an Internet-wide market for
computational services that is being developed at the Johns
Hopkins University. It is the first testbed built for our Cost-
Benefit framework. (For more details, see
http://www.cnds.jhu.edu/publications, technical report
CNDS-98-1.)

5.1 Basic Concepts

The Java Market’s world is defined by two entities:
machines and jobs. Both machines and jobs contract with the
Java Market: one sells computational services to the Market
and one buys such services from the Market.

The Java Market "pays" producer machines for their services
and "charges" consumers for each job it runs. These
payments and charges might be measured in terms of virtual
money, usable only to buy Java Market services, or real
currency. For example, a consumer might be willing to pay
$20 to complete a large simulation in 6 hours or less.
Similarly, a machine owner might charge the Java Market
$10 for eight hours of their machine's services.

5.2 The System

The Java Market brokers the distribution of computational
resources among machines scattered across the world. As
depicted in Figure 5.1, the Java Market is designed to
transfer jobs from any machine on the Internet to any
machine on the Internet that wishes to participate. There is
no installation or platform-dependent code – the only
requirement is that the jobs be written in Java. Further, the
Java job does not need to be written especially for the
Market -- the Market can rewrite Java applications into
Applets automatically, and provides services that can
overcome some of the inherent Applet restrictions. These
applications can then be ported automatically to any
producer machine. Using the Market is only slightly more
difficult than clicking on a browser bookmark.

The Java Market has no dependence on any given
architecture. Producers and consumers can be running any
kind of machine, and any operating system, that has a Java-
capable Web browser. In other words, it can handle
heterogeneous machines as easily as the Cost-Benefit
framework handles heterogeneous resources. The program-
transfer technology associated with the Market has already
been implemented. Further development will implement
several variants of the Cost-Benefit decision strategy.

The Java Market uses the Web and the Java language as its
primary tools. A producer makes their machine available as
a resource by directing its browser to one of the Market web

ProducersConsumers

The Java Market

The Internet

I-Explorer

Producer
Web Page

Netscape

Consumer
Web Page

Web Server

Figure 5.1: An Internet-Wide Metacomputer

pages. A consumer registers its request for computational
resources by contacting another of the Market’s web pages,
and posting its program (written in Java) in a
Web-accessible location. The Java Market is a
metacomputing system that performs admission control for
tasks, signs contracts with and manages producer machines,
and places tasks on producer machines based on advanced
resource allocation algorithms.

The Java Market is composed of three main entities, as
depicted in Figure 5.2:

• The Resource Manager keeps track of the available
machines – those that have registered themselves as
producers.

• The Task Manager keeps track of the consumer-
submitted tasks.

• The Market Manager mediates between the Resource
Manager and the Task Manager.

Figure 5.2: Java Market Components

5.2.1. The Resource Manager

The Resource Manager is run on the Market machine. When
a producer registers with the Market web pages, they
automatically run a special applet, the Launch Applet, that

tells the Resource Manager about the producer's machine's
power. The Resource Manager stores this information, as
well as the state of the machine (in this case, 'available,') the
IP address, and so on. This information forms a machine
profile.

The Launch Applet is the part of the Resource Manager
executed on the producer’s machine. This gives it two
responsibilities. The first is resource discovery, that is,
assessing the machine’s computational and networking
capabilities. The second is directing the producer’s browser
to a page containing whatever task is assigned to it.

5.2.2. The Task Manager

The Task Manager is run on the Market machine. When a
consumer registers their task with the Market web pages,
they run another special applet, the Request Applet, that
gathers information about the task they want the Market to
perform. Once this information is gathered, it is sent to the
Task Manager. The Task Manager then gathers all the Java
files and input files associated with the task from the Web,
edits the Java files as necessary, compiles them, and then
passes the entire task to the Market Manager.

The Request applet is the part of the Task Manager that is
executed on the consumer's machine. Its primary
responsibility is to wait. First, it waits while the consumer
types in the necessary data about their task. It sends this
information to the Task Manager proper and then waits
again. As it waits, the Task Manager downloads, edits, and
compiles all of the Java code associated with the task. When
this is complete, it tells the Request Applet that the task has
been accepted or rejected by the Market. The Request
Applet displays this information and ceases computation.

5.2.3. The Market Manager

The Market Manager acts as an overseer, performing
resource allocation and admission control. There are two
issues that must be addressed: the uncertain availability of a
producer machine for the length of time a given task
requires, and the on-line decision-making necessary to
maximize the profit of the market.

Market Manager
(negotiations)

Resource Manager

Task Manager

Request applet

Launch applet

Library

Task applets

Task application Task applicationTask application

Producers:

Market:

Consumers:

Request applet Request applet

Launch applet Launch applet

 5.2.4. An Example Scenario

The scenario presented in Figure 5.3 demonstrates how the
Java Market metacomputing system works.

1. A producer machine registers its availability over the
network with the Java Market.

2. A second producer machine registers its availability
with the Java Market.

3. A consumer connects to the Java Market and registers a
task.

4. The Task Manager downloads the task information from
the Web and modifies and compiles the code. It then
notifies the consumer of the consumer’s success at
launching the task.

5. The Market Manager mediates between the Task
Manager and the Resource Manager in order to find an
appropriate producer to execute the task.

6. The selected producer’s browser automatically begins
executing the task.

7. The task completes and its results are mailed to the
consumer.

8. A producer leaves the Java Market.

5.3 Implementation Status & Experimental
Results

Current Implementation Status

The Java Market metacomputing system is fully
implemented and is publicly accessible at
http://www.cnds.jhu.edu/projects/metacomputing. The
publicly accessible version differs from the description in
this paper only in that it uses simpler decision algorithms
within the Market Manager. Optimizing and refining these
resource allocation and admission control algorithms is a
subject of continuing research within our group. Future
releases will incorporate refined versions of the decision
making mechanisms.

The complete software package is roughly 5000 lines of
Java code. This includes about 2000 lines implementing the
Task Manager, the Resource Manager and the Market
Manager. About 2000 lines implement the Market Library.

ProducersConsumers

The Java Market

ProducersConsumers

The Java Market

ProducersConsumers

The Java Market

ProducersConsumers

The Java Market

ProducersConsumers

The Java Market

ProducersConsumers

The Java Market

ProducersConsumers

The Java Market

ProducersConsumers

The Java Market

5.3.1 5.3.2

5.3.3 5.3.4

5.3.5 5.3.6

5.3.7 5.3.8

Figure 5.3: A Sample Scenario

The additional 1000 lines implement the Request, Launch,
and Monitor applets.

Experimental Results

The first major test of the Java Market was performed in the
Johns Hopkins Center for Networking and Distributed
Systems (CNDS). A CPU-intensive simulation (about 1000
lines of Java code) evaluating five different job scheduling
policies for the Mosix system [7] and a stream of jobs was
run on the CNDS lab machines. One hundred simulations,
each of them representing 10,000 real-time seconds, were
run in the following two ways:

1. Running on a standalone Pentium II machine using the
Java Developer’s Kit.

2. Using the Java Market with six producer machines (two
Pentium IIs and four Pentium Pros) using Netscape.

The execution time of the complete simulation on the
standalone machine, without compilation and, of course,
without remote I/O, was approximately 127 minutes. The
execution time of the complete simulation using the Java
Market, including downloading, compilation, and remote
I/O was approximately 35 minutes. This shows a speedup of
about 3.6 on a system with a combined power roughly 4.7
times greater than that of the standalone machine.

Accessing our web site, the interested reader is able to
become either a producer or a consumer. Moreover, demo
applications, including the above simulation, are available
on our web site and ready to be launched.

5.4 Key Features

Producers and consumers can use the Java Market with
minimal effort. The only programs that they need to run are
secure Applets, which can be executed automatically by
their Web browsers when they connect to the Market web
pages. There can be no deleterious effects to the producer’s
machine.

As mentioned above, the Java Market is platform-
independent. It can handle machines and task requests from
anywhere on the Internet. A single Market can handle
potentially hundreds of machines at a time -- almost all of
the Market's work is done on the producer machines.

5.5 Implementation of the Cost-Benefit
Framework

The Java Market uses the Cost-Benefit framework to
determine what it is willing to pay for a resource and what it
requires to accept a job. This built-in economic framework
makes it easy to create limited Markets for exchanging

resources between specific companies (using real money) or
within a single organization (using virtual money.) It can
also be used to make an Internet-wide computational market.

The Java Market can convert the abstract cost functions
associated with the marginal cost assignment strategy into
real costs. This means that the Java Market’s decisions are
inherently comparable to those of the optimal off-line
prescient Market.

5.5.1 Jobs

Each job j submitted to the system is defined by the
following properties:

• Its arrival time, a(j),
• Its resource vector, r(j),
• The benefit function for this job, b(j,t), where t is the

time the job takes to complete.

The resource vector r(j) represents the various system
resources the job requires to complete. In the current
implementation of the Java Market, these resources are CPU
speed and network connectivity. As the power of the Java
language grows, it will become feasible to add resources
such as memory and disk I/O to this model.

The benefit b(j,t) is the reward the system receives for
completing job j in t time. In the Java Market, this is literally
the amount the consumer of computational resources will
pay to have their job completed in that time.

Only one job can be run on a given machine, which requires
thinking about resource allocation in a new way. Instead of
treating each producer as an independent entity, we group
them together into a pool of resources on a single conceptual
machine. This machine has two resources: messages and
computations per second.

This conceptual division gives us a normalized unit cost.
Observed trends in what people want to sell their machines
for and buy resources for can be used to convert this to real
money (if necessary). We then use the "miserly" strategy for
assigning resources.

5.5.2 Machines

Machines can be dedicated machines, which guarantee their
availability to the system for a certain length of time, or
opportunistic machines, which offer unreliable service for an
indefinite period of time.

Each machine m that is made available to the system is
defined by the following properties:

• Its arrival time, at(m),
• Its resource vector, r(m),

• Its departure time, dp(m),
• (For dedicated machines) its total cost, c(m), and
• (For opportunistic machines) its cost per second of use,

cps(m).

The arrival time at(m) is the time that the machine signals its
availability to the Market. The departure time dp(m),
similarly, is the time when the machine will signal that it is
no longer available or breaks off its connection with the
Market. (e.g. when the machine’s owner returns and removes
the machine from the Market.)

The resource vector r(m) describes the relevant resources
associated with the machine. These are, naturally, the same
resources that are associated with jobs.

When a dedicated machine d is offered to the system, all of
these properties are known. This is not a bidding system, and
c(d) is assumed to be the "true" cost for d. The system must
either accept d and pay the cost c(d) or reject d and pay
nothing. If it accepts that machine, it can use d’s
computational resources until time dp(d).

When an opportunistic machine o is offered to the system,
all of these properties except the departure time dp(o) are
known. No immediate decision is necessary. At any point
before the (unknown) departure time, the system can use o’s
computational resources. If it completes a t-second job on
machine o, it must pay the cost t * cps(o). In other words, it
must pay for each second of successful use.

In the Java Market, the costs represented by c(m) and cps(m)
are literally paid to the machines used.

The Java Market cannot expect its providers to charge based
on the cost model in Section 4. It can, however, determine
whether to buy a dedicated machine's time and whether to
use an opportunistic machine's resources using the value
calculations above. Deterministic machines should be
purchased based on the price the system would put on that
resource immediately after accepting it.

5.6 Discussion

A metacomputing environment can be evaluated generally
based on its performance in the following areas:

• Awareness of changing resource availability;
• Ability to handle resource heterogeneity;
• Guarantees regarding QoS (Quality of Service);
• Security;
• Scalability;
• Ability to impose a desirable scheduling policy;
• Transparency -- how much extra work the user must do;

and
• Speed.

Our two specific goals for the Java Market are:

• It should be able to apply the Cost-Benefit framework,
and its associated algorithms, and

• It should be successful as a metacomputing system, able
to use the power of the machines available to it to
improve every user's performance.

How does the Java Market fare, regarding these measures?

Our system is continuously aware of all of its resources;
when one of them disconnects or crashes, the Market will
detect the loss of this resource and remove the relevant
machine from its list of producers.

The Java Market can handle machines and task requests
from anywhere on the Internet, and can impose its Cost-
Benefit-based scheduling policy on them.

For these reasons, the Java Market is able to meet its first
specific goal -- it can use the resource allocation algorithms
associated with our framework.

The Java Market is optimized for security, at the expense of
QoS guarantees. Rather than using the producer machines to
the full extent possible, it operates within the Java
"sandbox". This is a set of restrictions typically applied to
Java applets that (in this case) protect the producer machines
fully from hostile consumers. The Java Market also
implements additional security to protect the integrity of the
Market itself from hostile users.

The Market operates on the Java "virtual machine," which is
an integral part of all Java-capable Web browsers. Such
browsers are available on the vast majority of platforms.

The basic Market design does not allow transparency, but
the Market has the next best thing -- ease of use. Using the
Market is not the same as running a job on the local system,
but it is a matter of a minute to upload a job or make one's
machine available.

To measure speed, we performed 100 executions of a
complex simulation, once distributing it via the Java Market
and once doing it on a single machine. As mentioned above,
the Java Market was able to complete this 127-minute
calculation in 35 minutes.

The Market's "resources" are machines throughout the
Internet. It has the technical ability to manage these
machines -- regardless of their architecture or location. The
security of the Java sandbox makes offering one's machine
to the Market in its off-hours a reasonable course of action.
The Market has proven ability to harness this vast
computational power; therefore, we believe it has met both
of its specific goals.

6. Enhancing Local Networks
We also studied the Cost-Benefit framework in an
environment where standard resource allocation methods
applied -- a network of workstations. In this work, found in
[8], we created two new policies for resource allocation and
compared them to standard methods. These policies were
based on the "system-friendly" strategy and did not use
admission control.

PVM is a popular resource allocation system with a naïve
default strategy. Designed for networks of workstations
where jobs can only be assigned to a machine once, it
distributes jobs using a straightforward round robin policy.
(Programmers can override this policy.) In comparison, our
strategy for an identical network of workstations completed
the average job 38% faster.

Mosix [7] is a set of kernel enhancements to the BSDI Unix-
like operating system [9] that allows jobs to be moved from
machine to machine without interrupting their execution.
Mosix also has an experimentally tuned resource allocation
strategy based on load balancing. A Cost-Benefit-based
strategy for Mosix networks, also able to move jobs around,
improved over the current Mosix strategy by about 13%.

References

[1] The LYDIA Project (goal-oriented scheduling).
http://www.ics.forth.gr/pleiades/projects/LYDIA/.

[2] C. Waldspurger. A distributed computational economy
for utilizing idle resources. Master's thesis, MIT, Dept.

of Electrical Engineering and Computer Science, May
1989.

[3] Condor. http://www.cs.wisc.edu/condor/.

[4] N. Camiel, S. London, N. Nisan, O. Regev. The Popcorn
Project -- An Interim Report, Distributed Computation
over the Internet in Java. Sixth International World
Wide Web Conference, April 1997

[5] MILAN: http://www.cs.nyu.edu/milan/milan/index.html

[6] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin and O. Waarts.
On-Line Machine Scheduling with Applications to Load
Balancing and Virtual Circuit Routing. In Proceedings
of the ACM Symposium on Theory Of Computing
(STOC), May 1993.

[7] A. Barak, S. Guday and R. Wheeler. The Mosix
distributed operating system, load balancing for Unix,
Volume 672, May 1993.

[8] Y. Amir, B. Awerbuch, A. Barak, R. Borgstrom, A.
Keren. An Opportunity Cost Approach for Job
Assignment in a Scalable Computing Cluster. In
Proceedings of the 10th IASTED International
Conference on Parallel and Distributed Computing and
Systems (PDCS), October 1998. Available as tech report
CNDS-98-2 at http://www.cnds.jhu.edu/publications.

[9] Berkeley Software Design, Inc. http://www.bsdi.com.

