
J U L Y 1 9 8 9

WRL
Research Report 89/7

Available Instruction-
Level Parallelism for
Superscalar and
Superpipelined Machines

Norman P. Jouppi and David W. Wall

d i g i t a l Western Research Laboratory 100 Hamilton Avenue Palo Alto, California 94301 USA

The Western Research Laboratory (WRL) is a computer systems research group that
was founded by Digital Equipment Corporation in 1982. Our focus is computer science
research relevant to the design and application of high performance scientific computers.
We test our ideas by designing, building, and using real systems. The systems we build
are research prototypes; they are not intended to become products.

There is a second research laboratory located in Palo Alto, the Systems Research Cen-
ter (SRC). Other Digital research groups are located in Paris (PRL) and in Cambridge,
Massachusetts (CRL).

Our research is directed towards mainstream high-performance computer systems. Our
prototypes are intended to foreshadow the future computing environments used by many
Digital customers. The long-term goal of WRL is to aid and accelerate the development
of high-performance uni- and multi-processors. The research projects within WRL will
address various aspects of high-performance computing.

We believe that significant advances in computer systems do not come from any single
technological advance. Technologies, both hardware and software, do not all advance at
the same pace. System design is the art of composing systems which use each level of
technology in an appropriate balance. A major advance in overall system performance
will require reexamination of all aspects of the system.

We do work in the design, fabrication and packaging of hardware; language processing
and scaling issues in system software design; and the exploration of new applications
areas that are opening up with the advent of higher performance systems. Researchers at
WRL cooperate closely and move freely among the various levels of system design. This
allows us to explore a wide range of tradeoffs to meet system goals.

We publish the results of our work in a variety of journals, conferences, research
reports, and technical notes. This document is a research report. Research reports are
normally accounts of completed research and may include material from earlier technical
notes. We use technical notes for rapid distribution of technical material; usually this
represents research in progress.

Research reports and technical notes may be ordered from us. You may mail your
order to:

Technical Report Distribution
DEC Western Research Laboratory, UCO-4
100 Hamilton Avenue
Palo Alto, California 94301 USA

Reports and notes may also be ordered by electronic mail. Use one of the following
addresses:

Digital E-net: DECWRL::WRL-TECHREPORTS

DARPA Internet: WRL-Techreports@decwrl.dec.com

CSnet: WRL-Techreports@decwrl.dec.com

UUCP: decwrl!wrl-techreports

To obtain more details on ordering by electronic mail, send a message to one of these
addresses with the word ‘‘help’’ in the Subject line; you will receive detailed instruc-
tions.

Available Instruction-Level Parallelism for
Superscalar and Superpipelined Machines

Norman P. Jouppi and David W. Wall

July, 1989

d i g i t a l Western Research Laboratory 100 Hamilton Avenue Palo Alto, California 94301 USA

Abstract

Superscalar machines can issue several instructions per cycle. Super-
pipelined machines can issue only one instruction per cycle, but they have
cycle times shorter than the latency of any functional unit. In this paper
these two techniques are shown to be roughly equivalent ways of exploiting
instruction-level parallelism. A parameterizable code reorganization and
simulation system was developed and used to measure instruction-level
parallelism for a series of benchmarks. Results of these simulations in the
presence of various compiler optimizations are presented. The average de-
gree of superpipelining metric is introduced. Our simulations suggest that
this metric is already high for many machines. These machines already ex-
ploit all of the instruction-level parallelism available in many non-numeric
applications, even without parallel instruction issue or higher degrees of
pipelining.

This is a preprint of a paper that will be presented at the
3rd International Conference on Architectural Support for

Programming Languages and Operating Systems,
IEEE and ACM, Boston, Massachusetts, April 3-6, 1989.

An early draft of this paper appeared as WRL Technical Note TN-2.

Copyright 1989 ACM

i

1. Introduction
Computer designers and computer architects have been striving to improve uniprocessor com-

puter performance since the first computer was designed. The most significant advances in
uniprocessor performance have come from exploiting advances in implementation technology.
Architectural innovations have also played a part, and one of the most significant of these over
the last decade has been the rediscovery of RISC architectures. Now that RISC architectures
have gained acceptance both in scientific and marketing circles, computer architects have been
thinking of new ways to improve uniprocessor performance. Many of these proposals such as
VLIW [12], superscalar, and even relatively old ideas such as vector processing try to improve
computer performance by exploiting instruction-level parallelism. They take advantage of this
parallelism by issuing more than one instruction per cycle explicitly (as in VLIW or superscalar
machines) or implicitly (as in vector machines). In this paper we will limit ourselves to improv-
ing uniprocessor performance, and will not discuss methods of improving application perfor-
mance by using multiple processors in parallel.

As an example of instruction-level parallelism, consider the two code fragments in Figure 1.
The three instructions in (a) are independent; there are no data dependencies between them, and
in theory they could all be executed in parallel. In contrast, the three instructions in (b) cannot
be executed in parallel, because the second instruction uses the result of the first, and the third
instruction uses the result of the second.

Load C1<-23(R2) Add R3<-R3+1
Add R3<-R3+1 Add R4<-R3+R2
FPAdd C4<-C4+C3 Store 0[R4]<-R0

(a) parallelism=3 (b) parallelism=1

Figure 1: Instruction-level parallelism

The amount of instruction-level parallelism varies widely depending on the type of code being
executed. When we consider uniprocessor performance improvements due to exploitation of
instruction-level parallelism, it is important to keep in mind the type of application environment.
If the applications are dominated by highly parallel code (e.g., weather forecasting), any of a
number of different parallel computers (e.g., vector, MIMD) would improve application perfor-
mance. However, if the dominant applications have little instruction-level parallelism (e.g.,
compilers, editors, event-driven simulators, lisp interpreters), the performance improvements
will be much smaller.

1

AVAILABLE INSTRUCTION-LEVEL PARALLELISM FOR SUPERSCALAR AND SUPERPIPELINED MACHINES

In Section 2 we present a machine taxonomy helpful for understanding the duality of opera-
tion latency and parallel instruction issue. Section 3 describes the compilation and simulation
environment we used to measure the parallelism in benchmarks and its exploitation by different
architectures. Section 4 presents the results of these simulations. These results confirm the
duality of superscalar and superpipelined machines, and show serious limits on the instruction-
level parallelism available in most applications. They also show that most classical code op-
timizations do nothing to relieve these limits. The importance of cache miss latencies, design
complexity, and technology constraints are considered in Section 5. Section 6 summarizes the
results of the paper.

2. A Machine Taxonomy
There are several different ways to execute instructions in parallel. Before we examine these

methods in detail, we need to start with some definitions:

operation latency The time (in cycles) until the result of an instruction is available for use as
an operand in a subsequent instruction. For example, if the result of an
Add instruction can be used as an operand of an instruction that is issued
in the cycle after the Add is issued, we say that the Add has an operation
latency of one.

simple operations The vast majority of operations executed by the machine. Operations such
as integer add, logical ops, loads, stores, branches, and even floating-point
addition and multiplication are simple operations. Not included as simple
operations are instructions which take an order of magnitude more time
and occur less frequently, such as divide and cache misses.

instruction class A group of instructions all issued to the same type of functional unit.

issue latency The time (in cycles) required between issuing two instructions. This can
vary depending on the instruction classes of the two instructions.

2.1. The Base Machine
In order to properly compare increases in performance due to exploitation of instruction-level

parallelism, we define a base machine that has an execution pipestage parallelism of exactly one.
This base machine is defined as follows:

• Instructions issued per cycle = 1

• Simple operation latency measured in cycles = 1

• Instruction-level parallelism required to fully utilize = 1

The one-cycle latency specifies that if one instruction follows another, the result of the first is
always available for the use of the second without delay. Thus, there are never any operation-
latency interlocks, stalls, or NOP’s in a base machine. A pipeline diagram for a machine satis-
fying the requirements of a base machine is shown in Figure 2. The execution pipestage is cross-
hatched while the others are unfilled. Note that although several instructions are executing con-
currently, only one instruction is in its execution stage at any one time. Other pipestages, such as
instruction fetch, decode, or write back, do not contribute to operation latency if they are
bypassed, and do not contribute to control latency assuming perfect branch slot filling and/or
branch prediction.

2

AVAILABLE INSTRUCTION-LEVEL PARALLELISM FOR SUPERSCALAR AND SUPERPIPELINED MACHINES

Time in Base Cycles

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Successive
Instructions

IFetch Decode WriteBack

Key:

Execute

Figure 2: Execution in a base machine

2.2. Underpipelined Machines
The single-cycle latency of simple operations also sets the base machine cycle time. Although

one could build a base machine where the cycle time was much larger than the time required for
each simple operation, it would be a waste of execution time and resources. This would be an
underpipelined machine. An underpipelined machine that executes an operation and writes back
the result in the same pipestage is shown in Figure 3.

131211109876543210

Time in Base Cycles

Successive
Instructions

Execute & write back

Key:

IFetch & decode

Figure 3: Underpipelined: cycle > operation latency

The assumption made in many paper architecture proposals is that the cycle time of a machine
is many times larger than the add or load latency, and hence several adders can be stacked in
series without affecting the cycle time. If this were really the case, then something would be
wrong with the machine cycle time. When the add latency is given as one, for example, we
assume that the time to read the operands has been piped into an earlier pipestage, and the time

3

AVAILABLE INSTRUCTION-LEVEL PARALLELISM FOR SUPERSCALAR AND SUPERPIPELINED MACHINES

to write back the result has been pipelined into the next pipestage. Then the base cycle time is
simply the minimum time required to do a fixed-point add and bypass the result to the next
instruction. In this sense machines like the Stanford MIPS chip [8] are underpipelined, because
they read operands out of the register file, do an ALU operation, and write back the result all in
one cycle.

Another example of underpipelining would be a machine like the Berkeley RISC II chip [10],
where loads can only be issued every other cycle. Obviously this reduces the instruction-level
parallelism below one instruction per cycle. An underpipelined machine that can only issue an
instruction every other cycle is illustrated in Figure 4. Note that this machine’s performance is
the same as the machine in Figure 3, which is half of the performance attainable by the base
machine.

Successive
Instructions

131211109876543210

Time in Base Cycles

Execute WriteBackDecodeIFetch

Key:

Figure 4: Underpipelined: issues < 1 instr. per cycle

In summary, an underpipelined machine has worse performance than the base machine be-
cause it either has:

• a cycle time greater than the latency of a simple operation, or

• it issues less than one instruction per cycle.
For this reason underpipelined machines will not be considered in the rest of this paper.

2.3. Superscalar Machines
As their name suggests, superscalar machines were originally developed as an alternative to

vector machines. A superscalar machine of degree n can issue n instructions per cycle. A super-
scalar machine could issue all three parallel instructions in Figure 1(a) in the same cycle. Super-
scalar execution of instructions is illustrated in Figure 5.

In order to fully utilize a superscalar machine of degree n, there must be n instructions ex-
ecutable in parallel at all times. If an instruction-level parallelism of n is not available, stalls and
dead time will result where instructions are forced to wait for the results of prior instructions.

4

AVAILABLE INSTRUCTION-LEVEL PARALLELISM FOR SUPERSCALAR AND SUPERPIPELINED MACHINES

131211109876543210

Time in Base Cycles

Successive
Instructions

Execute

Key:

WriteBackDecodeIFetch

Figure 5: Execution in a superscalar machine (n=3)

Formalizing a superscalar machine according to our definitions:

• Instructions issued per cycle = n

• Simple operation latency measured in cycles = 1

• Instruction-level parallelism required to fully utilize = n

A superscalar machine can attain the same performance as a machine with vector hardware.
Consider the operations performed when a vector machine executes a vector load chained into a
vector add, with one element loaded and added per cycle. The vector machine performs four
operations: load, floating-point add, a fixed-point add to generate the next load address, and a
compare and branch to see if we have loaded and added the last vector element. A superscalar
machine that can issue a fixed-point, floating-point, load, and a branch all in one cycle achieves
the same effective parallelism.

2.3.1. VLIW Machines
VLIW, or very long instruction word, machines typically have instructions hundreds of bits

long. Each instruction can specify many operations, so each instruction exploits instruction-level
parallelism. Many performance studies have been performed on VLIW machines [12]. The ex-
ecution of instructions by an ideal VLIW machine is shown in Figure 6. Each instruction
specifies multiple operations, and this is denoted in the Figure by having multiple crosshatched
execution stages in parallel for each instruction.

VLIW machines are much like superscalar machines, with three differences.

First, the decoding of VLIW instructions is easier than superscalar instructions. Since the
VLIW instructions have a fixed format, the operations specifiable in one instruction do not
exceed the resources of the machine. However in the superscalar case, the instruction decode
unit must look at a sequence of instructions and base the issue of each instruction on the number
of instructions already issued of each instruction class, as well as checking for data dependencies
between results and operands of instructions. In effect, the selection of which operations to issue

5

AVAILABLE INSTRUCTION-LEVEL PARALLELISM FOR SUPERSCALAR AND SUPERPIPELINED MACHINES

Successive
Instructions

Time in Base Cycles

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Key:

Decode WriteBackExecuteIFetch

(3 operations)

Figure 6: Execution in a VLIW machine

in a given cycle is performed at compile time in a VLIW machine, and at run time in a super-
scalar machine. Thus the instruction decode logic for the VLIW machine should be much
simpler than the superscalar.

A second difference is that when the available instruction-level parallelism is less than that
exploitable by the VLIW machine, the code density of the superscalar machine will be better.
This is because the fixed VLIW format includes bits for unused operations while the superscalar
machine only has instruction bits for useful operations.

A third difference is that a superscalar machine could be object-code compatible with a large
family of non-parallel machines, but VLIW machines exploiting different amounts of parallelism
would require different instruction sets. This is because the VLIW’s that are able to exploit more
parallelism would require larger instructions.

In spite of these differences, in terms of run time exploitation of instruction-level parallelism,
the superscalar and VLIW will have similar characteristics. Because of the close relationship
between these two machines, we will only discuss superscalar machines in general and not dwell
further on distinctions between VLIW and superscalar machines.

2.3.2. Class Conflicts
There are two ways to develop a superscalar machine of degree n from a base machine.

1. Duplicate all functional units n times, including register ports, bypasses, busses,
and instruction decode logic.

2. Duplicate only the register ports, bypasses, busses, and instruction decode logic.
Of course these two methods are extreme cases, and one could duplicate some units and not
others. But if all the functional units are not duplicated, then potential class conflicts will be
created. A class conflict occurs when some instruction is followed by another instruction for the
same functional unit. If the busy functional unit has not been duplicated, the superscalar
machine must stop issuing instructions and wait until the next cycle to issue the second instruc-
tion. Thus class conflicts can substantially reduce the parallelism exploitable by a superscalar

6

AVAILABLE INSTRUCTION-LEVEL PARALLELISM FOR SUPERSCALAR AND SUPERPIPELINED MACHINES

machine. (We will not consider superscalar machines or any other machines that issue instruc-
tions out of order. Techniques to reorder instructions at compile time instead of at run time are
almost as good [6, 7, 17], and are dramatically simpler than doing it in hardware.)

2.4. Superpipelined Machines
Superpipelined machines exploit instruction-level parallelism in another way. In a super-

pipelined machine of degree m, the cycle time is 1/m the cycle time of the base machine. Since a
fixed-point add took a whole cycle in the base machine, given the same implementation tech-
nology it must take m cycles in the superpipelined machine. The three parallel instructions in
Figure 1(a) would be issued in three successive cycles, and by the time the third has been issued,
there are three operations in progress at the same time. Figure 7 shows the execution of instruc-
tions by a superpipelined machine.

Formalizing a superpipelined machine according to our definitions:

• Instructions issued per cycle = 1, but the cycle time is 1/m of the base machine

• Simple operation latency measured in cycles = m

• Instruction-level parallelism required to fully utilize = m

131211109876543210

Time in Base Cycles

Successive
Instructions

Execute

Key:

WriteBackDecodeIFetch

Figure 7: Superpipelined execution (m=3)

Superpipelined machines have been around a long time. Seymour Cray has a long history of
building superpipelined machines: for example, the latency of a fixed-point add in both the CDC
6600 and the Cray-1 is 3 cycles. Note that since the functional units of the 6600 are not
pipelined (two are duplicated), the 6600 is an example of a superpipelined machine with class
conflicts. The CDC 7600 is probably the purest example of an existing superpipelined machine
since its functional units are pipelined.

7

AVAILABLE INSTRUCTION-LEVEL PARALLELISM FOR SUPERSCALAR AND SUPERPIPELINED MACHINES

2.5. Superpipelined Superscalar Machines
Since the number of instructions issued per cycle and the cycle time are theoretically or-

thogonal, we could have a superpipelined superscalar machine. A superpipelined superscalar
machine of degree (m,n) has a cycle time 1/m that of the base machine, and it can execute n
instructions every cycle. This is illustrated in Figure 8.

IFetch Decode WriteBack

Key:

Execute

Time in Base Cycles

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 8: A superpipelined superscalar (n=3,m=3)

Formalizing a superpipelined superscalar machine according to our definitions:

• Instructions issued per cycle = n, and the cycle time is 1/m that of the base machine

• Simple operation latency measured in cycles = m

• Instruction-level parallelism required to fully utilize = n*m

2.6. Vector Machines
Although vector machines also take advantage of (unrolled-loop) instruction-level parallelism,

whether a machine supports vectors is really independent of whether it is a superpipelined, su-
perscalar, or base machine. Each of these machines could have an attached vector unit.
However, to the extent that the highly parallel code was run in vector mode, it would reduce the
use of superpipelined or superscalar aspects of the machine to the code that had only moderate
instruction-level parallelism. Figure 9 shows serial issue (for diagram readability only) and
parallel execution of vector instructions. Each vector instruction results in a string of operations,
one for each element in the vector.

2.7. Supersymmetry
The most important thing to keep in mind when comparing superscalar and superpipelined

machines of equal degree is that they have basically the same performance.

A superscalar machine of degree three can have three instructions executing at the same time
by issuing three at the same time. The superpipelined machine can have three instructions ex-
ecuting at the same time by having a cycle time 1/3 that of the superscalar machine, and issuing

8

AVAILABLE INSTRUCTION-LEVEL PARALLELISM FOR SUPERSCALAR AND SUPERPIPELINED MACHINES

131211109876543210

Time in Base Cycles

Successive
Instructions

Figure 9: Execution in a vector machine

three instructions in successive cycles. Each of these machines issues instructions at the same
rate, so superscalar and superpipelined machines of equal degree have basically the same perfor-
mance.

So far our assumption has been that the latency of all operations, or at least the simple opera-
tions, is one base machine cycle. As we discussed previously, no known machines have this
characteristic. For example, few machines have one cycle loads without a possible data interlock
either before or after the load. Similarly, few machines can execute floating-point operations in
one cycle. What are the effects of longer latencies? Consider the MultiTitan [9], where ALU
operations are one cycle, but loads, stores, and branches are two cycles, and all floating-point
operations are three cycles. The MultiTitan is therefore a slightly superpipelined machine. If we
multiply the latency of each instruction class by the frequency we observe for that instruction
class when we perform our benchmark set, we get the average degree of superpipelining. The
average degree of superpipelining is computed in Table 1 for the MultiTitan and the CRAY-1.
To the extent that some operation latencies are greater than one base machine cycle, the remain-
ing amount of exploitable instruction-level parallelism will be reduced. In this example, if the
average degree of instruction-level parallelism in slightly parallel code is around two, the Mul-
tiTitan should not stall often because of data-dependency interlocks, but data-dependency inter-
locks should occur frequently on the CRAY-1.

3. Machine Evaluation Environment
The language system for the MultiTitan consists of an optimizing compiler (which includes

the linker) and a fast instruction-level simulator. The compiler includes an intermodule register
allocator and a pipeline instruction scheduler [16, 17]. For this study, we gave the system an
interface that allowed us to alter the characteristics of the target machine. This interface allows
us to specify details about the pipeline, functional units, cache, and register set. The language
system then optimizes the code, allocates registers, and schedules the instructions for the
pipeline, all according to this specification. The simulator executes the program according to the
same specification.

9

AVAILABLE INSTRUCTION-LEVEL PARALLELISM FOR SUPERSCALAR AND SUPERPIPELINED MACHINES

Instr. Fre- MultiTitan CRAY-1
class quency latency latency
logical 10% x 1 = 0.1 x 1 = 0.1
shift 10% x 1 = 0.1 x 2 = 0.2
add/sub 20% x 1 = 0.2 x 3 = 0.6
load 20% x 2 = 0.4 x11 = 2.2
store 15% x 2 = 0.3 x 1 = 0.15
branch 15% x 2 = 0.3 x 3 = 0.45
FP 10% x 3 = 0.3 x 7 = 0.7
Average Degree
of Superpipelining 1.7 4.4

Table 1: Average degree of superpipelining

To specify the pipeline structure and functional units, we need to be able to talk about specific
instructions. We therefore group the MultiTitan operations into fourteen classes, selected so that
operations in a given class are likely to have identical pipeline behavior in any machine. For
example, integer add and subtract form one class, integer multiply forms another class, and
single-word load forms a third class.

For each of these classes we can specify an operation latency. If an instruction requires the
result of a previous instruction, the machine will stall unless the operation latency of the previous
instruction has elapsed. The compile-time pipeline instruction scheduler knows this and
schedules the instructions in a basic block so that the resulting stall time will be minimized.

We can also group the operations into functional units, and specify an issue latency and mul-
tiplicity for each. For instance, suppose we want to issue an instruction associated with a func-
tional unit with issue latency 3 and multiplicity 2. This means that there are two units we might
use to issue the instruction. If both are busy then the machine will stall until one is idle. It then
issues the instruction on the idle unit, and that unit is unable to issue another instruction until
three cycles later. The issue latency is independent of the operation latency; the former affects
later operations using the same functional unit, and the latter affects later instructions using the
result of this one. In either case, the pipeline instruction scheduler tries to minimize the resulting
stall time.

Superscalar machines may have an upper limit on the number of instructions that may be
issued in the same cycle, independent of the availability of functional units. We can specify this
upper limit. If no upper limit is desired, we can set it to the total number of functional units.

Our compiler divides the register set into two disjoint parts. It uses one part as temporaries for
short-term expressions, including values loaded from variables residing in memory. It uses the
other part as home locations for local and global variables that are used enough to warrant keep-
ing them in registers rather than in memory. When number of operations executing in parallel is
large, it becomes important to increase the number of registers used as temporaries. This is
because using the same temporary register for two different values in the same basic block intro-
duces an artificial dependency that can interfere with pipeline scheduling. Our interface lets us
specify how the compiler should divide the registers between these two uses.

10

AVAILABLE INSTRUCTION-LEVEL PARALLELISM FOR SUPERSCALAR AND SUPERPIPELINED MACHINES

4. Results
We used our programmable reorganization and simulation system to investigate the perfor-

mance of various superpipelined and superscalar machine organizations. We ran eight different
benchmarks on each different configuration. All of the benchmarks are written in Modula-2
except for yacc.

ccom Our own C compiler.

grr A PC board router.

linpack Linpack, double precision, unrolled 4x unless noted otherwise.

livermore The first 14 Livermore Loops, double precision, not unrolled unless noted otherwise.

met Metronome, a board-level timing verifier.

stan The collection of Hennessy benchmarks from Stanford (including puzzle, tower,
queens, etc.).

whet Whetsones.

yacc The Unix parser generator.

Unless noted otherwise, the effects of cache misses and systems effects such as interrupts and
TLB misses are ignored in the simulations. Moreover, when available instruction-level paral-
lelism is discussed, it is assumed that all operations execute in one cycle. To determine the
actual number of instructions issuable per cycle in a specific machine, the available parallelism
must be divided by the average operation latency.

4.1. The Duality of Latency and Parallel Issue
In section 2.7 we stated that a superpipelined machine and an ideal superscalar machine (i.e.,

without class conflicts) should have the same performance, since they both have the same num-
ber of instructions executing in parallel. To confirm this we simulated the eight benchmarks on
an ideal base machine, and on superpipelined and ideal superscalar machines of degrees 2
through 8. Figure 10 shows the results of this simulation. The superpipelined machine actually
has less performance than the superscalar machine, but the performance difference decreases
with increasing degree.

Consider a superscalar and superpipelined machine, both of degree three, issuing a basic block
of six independent instructions (see Figure 11). The superscalar machine will issue the last in-
struction at time t (assuming execution starts at t). In contrast, the superpipelined machine will1 0
take 1/3 cycle to issue each instruction, so it will not issue the last instruction until time t .5/3
Thus although the superscalar and superpipelined machines have the same number of instruc-
tions executing at the same time in the steady state, the superpipelined machine has a larger
startup transient and it gets behind the superscalar machine at the start of the program and at each
branch target. This effect diminishes as the degree of the superpipelined machine increases and
all of the issuable instructions are issued closer and closer together. This effect is seen in Figure
10 as the superpipelined performance approaches that of the ideal superscalar machine with in-
creasing degree.

Another difference between superscalar and superpipelined machines involves operation
latencies that are non-integer multiples of a base machine cycle time. In particular, consider

11

AVAILABLE INSTRUCTION-LEVEL PARALLELISM FOR SUPERSCALAR AND SUPERPIPELINED MACHINES

1 82 3 4 5 6 7
Degree of Superscalar or Superpipeline

0

2.5

0.5

1

1.5

2

2.5

Pe
rf

or
m

an
ce

 r
el

at
iv

e
to

 b
as

e
m

ac
hi

ne

Superpipelined

Superscalar

Figure 10: Supersymmetry

Execute

Key:

WriteBackDecodeIFetch

Time in Base Cycles

0 1 2 12 133 4 5 6 7 8 9 10 11

Superscalar

Superpipelined

Figure 11: Start-up in superscalar vs. superpipelined

operations which can be performed in less time than a base machine cycle set by the integer add
latency, such as logical operations or register-to-register moves. In a base or superscalar
machine these operations would require an entire clock because that is by definition the smallest
time unit. In a superpipelined machine these instructions might be executed in one super-

12

AVAILABLE INSTRUCTION-LEVEL PARALLELISM FOR SUPERSCALAR AND SUPERPIPELINED MACHINES

pipelined cycle. Then in a superscalar machine of degree 3 the latency of a logical or move
operation might be 2/3 longer than in a superpipelined machine of degree 3. Since the latency is
longer for the superscalar machine, the superpipelined machine will perform better than a super-
scalar machine of equal degree. In general, when the inherent operation latency is divided by the
clock period, the remainder is less on average for machines with shorter clock periods. We have
not quantified the effect of this difference to date.

4.2. Limits to Instruction-Level Parallelism
Studies dating from the late 1960’s and early 1970’s [14, 15] and continuing today have ob-

served average instruction-level parallelism of around 2 for code without loop unrolling. Thus,
for these codes there is not much benefit gained from building a machine with superpipelining
greater than degree 3 or a superscalar machine of degree greater than 3. The instruction-level
parallelism required to fully utilize machines is plotted in Figure 12. On this graph, the X dimen-
sion is the degree of superscalar machine, and the Y dimension is the degree of superpipelining.
Since a superpipelined superscalar machine of only degree (2,2) would require an instruction-
level parallelism of 4, it seems unlikely that it would ever be worth building a superpipelined
superscalar machine for moderately or slightly parallel code. The superpipelining axis is marked
with the average degree of superpipelining in the CRAY-1 that was computed in Section 2.7.
From this it is clear that vast amounts of instruction-level parallelism would be required before
the issuing of multiple instructions per cycle would be warranted in the CRAY-1.

superpipelined
|

5 | 10 15 20 25
|

CRAY-1|
4 | 8 12 16 20

cycles |
per op |
(i.e., 3 | 6 9 12 15
1/cycle | superpipelined
time) | superscalar machines

2 | 4 6 8 10
MultiTitan|

|
1 +-------------------- super-
1 2 3 4 5 scalar

instr. issued per cycle

Figure 12: Parallelism required for full utilization

Unfortunately, latency is often ignored. For example, every time peak performance is quoted,
maximum bandwidth independent of latency is given. Similarly, latency is often ignored in
simulation studies. For example, instruction issue methods have been compared for the CRAY-1
assuming all functional units have 1 cycle latency [1]. This results in speedups of up to 2.7 from
parallel issue of instructions, and leads to the mistaken conclusion that the CRAY-1 would
benefit substantially from concurrent instruction issuing. In reality, based on Figure 12, we
would expect the performance of the CRAY-1 to benefit very little from parallel instruction is-

13

AVAILABLE INSTRUCTION-LEVEL PARALLELISM FOR SUPERSCALAR AND SUPERPIPELINED MACHINES

sue. We simulated the performance of the CRAY-1 assuming single cycle functional unit
latency and actual functional unit latencies, and the results are given in Figure 13.

1 82 3 4 5 6 7
Instruction issue multiplicity

0

120

20

40

60

80

100

Pe
rf

or
m

an
ce

 (
M

IP
S)

all latencies = 1

actual CRAY-1 latencies

Figure 13: Parallel issue with unit and real latencies

As expected, since the CRAY-1 already executes several instructions concurrently due to its
average degree of superpipelining of 4.4, there is almost no benefit from issuing multiple instruc-
tions per cycle when the actual functional unit latencies are taken into account.

4.3. Variations in Instruction-Level Parallelism
So far we have been plotting a single curve for the harmonic mean of all eight benchmarks.

The different benchmarks actually have different amounts of instruction-level parallelism. The
performance improvement in each benchmark when executed on an ideal superscalar machine of
varying degree is given in Figure 14. Yacc has the least amount of instruction-level parallelism.
Many programs have approximately two instructions executable in parallel on the average, in-
cluding the C compiler, PC board router, the Stanford collection, metronome, and whetstones.
The Livermore loops approaches an instruction-level parallelism of 2.5. The official version of
Linpack has its inner loops unrolled four times, and has an instruction-level parallelism of 3.2.
We can see that there is a factor of two difference in the amount of instruction-level parallelism
available in the different benchmarks, but the ceiling is still quite low.

14

AVAILABLE INSTRUCTION-LEVEL PARALLELISM FOR SUPERSCALAR AND SUPERPIPELINED MACHINES

1 82 3 4 5 6 7
Instruction issue multiplicity

1

4

2

3

Su
pe

rs
ca

la
r

pe
rf

or
m

an
ce

 r
ea

lti
ve

 to
 b

as
e

m
ac

hi
ne

ccom
grr

linpack.unroll4x

livermore

metronomestanford
whetsones

yacc

Figure 14: Instruction-level parallelism by benchmark

4.4. Effects of Optimizing Compilers
Compilers have been useful in detecting and exploiting instruction-level parallelism. Highly

parallel loops can be vectorized [3]. Somewhat less parallel loops can be unrolled and then
trace-scheduled [5] or software-pipelined [4, 11]. Even code that is only slightly parallel can be
scheduled [6, 7, 17] to exploit a superscalar or superpipelined machine.

The effect of loop-unrolling on instruction-level parallelism is shown in Figure 15. The Lin-
pack and Livermore benchmarks were simulated without loop unrolling and also unrolled two,
four, and ten times. In either case we did the unrolling in two ways: naively and carefully.
Naive unrolling consists simply of duplicating the loop body inside the loop, and allowing the
normal code optimizer and scheduler to remove redundant computations and to re-order the in-
structions to maximize parallelism. Careful unrolling goes farther. In careful unrolling, we reas-
sociate long strings of additions or multiplications to maximize the parallelism, and we analyze
the stores in the unrolled loop so that stores from early copies of the loop do not interfere with
loads in later copies. Both the naive and the careful unrolling were done by hand.

The parallelism improvement from naive unrolling is mostly flat after unrolling by four. This
is largely because of false conflicts between the different copies of an unrolled loop body, im-
posing a sequential framework on some or all of the computation. Careful unrolling gives us a
more dramatic improvement, but the parallelism available is still limited even for tenfold unroll-

15

AVAILABLE INSTRUCTION-LEVEL PARALLELISM FOR SUPERSCALAR AND SUPERPIPELINED MACHINES

1 102 4 6 8
Number of iterations unrolled

0

7

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

In
st

ru
ct

io
n-

le
ve

l p
ar

al
le

lis
m

livermore.naive

linpack.naive

livermore.careful

linpack.careful

Figure 15: Parallelism vs. loop unrolling

ing. One reason for this is that we have only forty temporary registers available, which limits the
amount of parallelism we can exploit.

In practice, the peak parallelism was quite high. The parallelism was 11 for the carefully
unrolled inner loop of Linpack, and 22 for one of the carefully unrolled Livermore loops.
However, in either case there is still a lot of inherently sequential computation, even in important
places. Three of the Livermore loops, for example, implement recurrences that benefit little
from unrolling. If we spend half the time in a very parallel inner loop, and we manage to make
this inner loop take nearly zero time by executing its code in parallel, we only double the speed
of the program.

In all cases, cache effects were ignored. If limited instruction caches were present, the actual
performance would decline for large degrees of unrolling.

Although we see that moderate loop-unrolling can increase the instruction-level parallelism, it
is dangerous to generalize this claim. Most classical optimizations [2] have little effect on the
amount of parallelism available, and often actually decrease it. This makes sense; unoptimized
code often contains useless or redundant computations that are removed by optimization. These
useless computations give us an artificially high degree of parallelism, but we are filling the
parallelism with make-work.

16

AVAILABLE INSTRUCTION-LEVEL PARALLELISM FOR SUPERSCALAR AND SUPERPIPELINED MACHINES

In general, however, classical optimizations can either add to or subtract from parallelism.
This is illustrated by the expression graph in Figure 16. If our computation consists of two
branches of comparable complexity that can be executed in parallel, then optimizing one branch
reduces the parallelism. On the other hand, if the computation contains a bottleneck on which
other operations wait, then optimizing the bottleneck increases the parallelism. This argument
holds equally well for most global optimizations, which are usually just combinations of local
optimizations that require global information to detect. For example, to move invariant code out
of a loop, we just remove a large computation and replace it with a reference to a single tem-
porary. We also insert a large computation before the loop, but if the loop is executed many
times then changing the parallelism of code outside the loop won’t make much difference.

Parallelism = 1.67 Parallelism = 1.50Parallelism = 1.33

Figure 16: Parallelism vs. compiler optimizations

Global allocation of registers to local and global variables [16] is not usually considered a
classical optimization, because it has been widespread only since the advent of machines with
large register sets. However, it too can either increase or decrease parallelism. A basic block in
which all variables reside in memory must load those variables into registers before it can
operate on them. Since these loads can be done in parallel, we would expect to reduce the over-
all parallelism by globally allocating the variables to registers and removing these loads. On the
other hand, assignments of new values to these variables may be easier for the pipeline scheduler
to re-order if they are assignments to registers rather than stores to memory.

We simulated our test suite with various levels of optimization. Figure 17 shows the results.
The leftmost point is the parallelism with no optimization at all. Each time we move to the right,
we add a new set of optimizations. In order, these are pipeline scheduling, intra-block optimiza-
tions, global optimizations, and global register allocation. In this comparison we used 16
registers for expression temporaries and 26 for global register allocation. The dotted and dashed
lines allow the different benchmarks to be distinguished, and are not otherwise significant.

Doing pipeline scheduling can increase the available parallelism by 10% to 60%. Throughout
the remainder of this paper we assume that pipeline scheduling is performed. For most
programs, further optimization has little effect on the instruction-level parallelism (although of
course it has a large effect on the performance). On the average across our test suite, optimiza-
tion reduces the parallelism, but the average reduction is very close to zero.

17

AVAILABLE INSTRUCTION-LEVEL PARALLELISM FOR SUPERSCALAR AND SUPERPIPELINED MACHINES

0 1 2 3 4
Optimization Level

0

3.5

0.5

1

1.5

2

2.5

3

B
as

e
M

ac
hi

ne
 I

ns
tr

uc
tio

n-
L

ev
el

 P
ar

al
le

lis
m

scheduling
scheduling
local opt

scheduling
local opt

global opt

scheduling
local opt

global opt
reg alloc

stan

livermore

yacc

whet
ccom
met

linpack.unroll4x

grr

Figure 17: Effect of optimization on parallelism

The behavior of the Livermore benchmark is anomalous. A large decrease in parallelism oc-
curs when we add optimization because the inner loops of these benchmarks contain redundant
address calculations that are recognized as common subexpressions. For example, without com-
mon subexpression elimination the address of A[I] would be computed twice in the expression
"A[I] = A[I] + 1". It happens that these redundant calculations are not bottlenecks, so removing
them decreases the parallelism.

Global register allocation causes a slight decrease in parallelism for most of the benchmarks.
This is because operand loads can be done in parallel, and are removed by register allocation.

The numeric benchmarks Livermore, Linpack, and Whetstones are exceptions to this. Global
register allocation increases the parallelism of these three. This is because key inner loops con-
tain intermixed references to scalars and to array elements. Loads from the former may appear
to depend on previous stores to the latter, because the scheduler must assume that two memory
locations are the same unless it can prove otherwise. If global register allocation chooses to keep
a scalar in a register instead of memory, this spurious dependency disappears.

In any event, it is clear that very few programs will derive an increase in the available paral-
lelism from the application of code optimization. Programs that make heavy use of arrays may
actually lose parallelism from common subexpression removal, though they may also gain paral-
lelism from global register allocation. The net result seems hard to predict. The single optimiza-
tion that does reliably increase parallelism is pipeline scheduling itself, which makes manifest

18

AVAILABLE INSTRUCTION-LEVEL PARALLELISM FOR SUPERSCALAR AND SUPERPIPELINED MACHINES

the parallelism that is already present. Even the benefit from scheduling varies widely between
programs.

5. Other Important Factors
The preceding simulations have concentrated on the duality of latency and parallel instruction

issue under ideal circumstances. Unfortunately there are a number of other factors which will
have a very important effect on machine performance in reality. In this section we will briefly
discuss some of these factors.

5.1. Cache Performance
Cache performance is becoming increasingly important, and it can have a dramatic effect on

speedups obtained from parallel instruction execution. Figure 2 lists some cache miss times and
the effect of a miss on machine performance. Over the last decade, cycle time has been decreas-
ing much faster than main memory access time. The average number of machine cycles per
instruction has also been decreasing dramatically, especially when the transition from CISC
machines to RISC machines is included. These two effects are multiplicative and result in
tremendous increases in miss cost. For example, a cache miss on a VAX 11/780 only costs 60%
of the average instruction execution. Thus even if every instruction had a cache miss, the
machine performance would only slow down by 60%! However, if a RISC machine like the
WRL Titan [13] has a miss, the cost is almost ten instruction times. Moreover, these trends seem
to be continuing, especially the increasing ratio of memory access time to machine cycle time.
In the future a cache miss on a superscalar machine executing two instructions per cycle could
cost well over 100 instruction times!

Machine cycles cycle mem miss miss
per time time cost cost
instr (ns) (ns) cycles instr

VAX11/780 10.0 200 1200 6 .6
WRL Titan 1.4 45 540 12 8.6

? 0.5 5 350 70 140.0

Table 2: The cost of cache misses

Cache miss effects decrease the benefit of parallel instruction issue. Consider a 2.0cpi (i.e.,
2.0 cycles per instruction) machine, where 1.0cpi is from issuing one instruction per cycle, and
1.0 cpi is cache miss burden. Now assume the machine is given the capability to issue three
instructions per cycle, to get a net decrease down to 0.5cpi for issuing instructions when data
dependencies are taken into account. Performance is proportional to the inverse of the cpi
change. Thus the overall performance improvement will be from 1/2.0cpi to 1/1.5cpi, or 33%.
This is much less than the improvement of 1/1.0cpi to 1/0.5cpi, or 100%, as when cache misses
are ignored.

5.2. Design Complexity and Technology Constraints
When machines are made more complicated in order to exploit instruction-level parallelism,

care must be taken not to slow down the machine cycle time (as a result of adding the
complexity) more than the speedup derived from the increased parallelism. This can happen in

19

AVAILABLE INSTRUCTION-LEVEL PARALLELISM FOR SUPERSCALAR AND SUPERPIPELINED MACHINES

two ways, both of which are hard to quantify. First, the added complexity can slow down the
machine by adding to the critical path, not only in terms of logic stages but in terms of greater
distances to be traversed when crossing a more complicated and bigger machine. As we have
seen from our analysis of the importance of latency, hiding additional complexity by adding ex-
tra pipeline stages will not make it go away. Also, the machine can be slowed down by having a
fixed resource (e.g., good circuit designers) spread thinner because of a larger design. Finally,
added complexity can negate performance improvements by increasing time to market. If the
implementation technologies are fixed at the start of a design, and processor performance is
quadrupling every three years, a one or two year slip because of extra complexity can easily
negate any additional performance gained from the complexity.

Since a superpipelined machine and a superscalar machine have approximately the same per-
formance, the decision as to whether to implement a superscalar or a superpipelined machine
should be based largely on their feasibility and cost in various technologies. For example, if a
TTL machine was being built from off-the-shelf components, the designers would not have the
freedom to insert pipeline stages wherever they desired. For example, they would be required to
use several multiplier chips in parallel (i.e., superscalar), instead of pipelining one multiplier chip
more heavily (i.e., superpipelined). Another factor is the shorter cycle times required by the
superpipelined machine. For example, if short cycle times are possible though the use of fast
interchip signalling (e.g., ECL with terminated transmission lines), a superpipelined machine
would be feasible. However, relatively slow TTL off-chip signaling might require the use of a
superscalar organization. In general, if it is feasible, a superpipelined machine would be
preferred since it only pipelines existing logic more heavily by adding latches instead of
duplicating functional units as in the superscalar machine.

6. Concluding Comments
In this paper we have shown superscalar and superpipelined machines to be roughly equiv-

alent ways to exploit instruction-level parallelism. The duality of latency and parallel instruction
issue was documented by simulations. Ignoring class conflicts and implementation complexity,
a superscalar machine will have slightly better performance (by less than 10% on our
benchmarks) than a superpipelined machine of the same degree due to the larger startup transient
of the superpipelined machine. However, class conflicts and the extra complexity of parallel
over pipelined instruction decode could easily negate this advantage. These tradeoffs merit in-
vestigation in future work.

The available parallelism after normal optimizations and global register allocation ranges from
a low of 1.6 for Yacc to 3.2 for Linpack. In heavily parallel programs like the numeric
benchmarks, we can improve the parallelism somewhat by loop unrolling. However, dramatic
improvements are possible only when we carefully restructure the unrolled loops. This restruc-
turing requires us to use knowledge of operator associativity, and to do interprocedural alias
analysis to determine when memory references are independent. Even when we do this, the
performance improvements are limited by the non-parallel code in the application, and the im-
provements in parallelism are not as large as the degree of unrolling. In any case, loop unrolling
is of little use in non-parallel applications like Yacc or the C compiler.

Pipeline scheduling is necessary in order to exploit the parallelism that is available; it im-
proved performance by around 20%. However, classical code optimization had very little effect

20

AVAILABLE INSTRUCTION-LEVEL PARALLELISM FOR SUPERSCALAR AND SUPERPIPELINED MACHINES

on the parallelism available in non-numeric applications, even when it had a large effect on the
performance. Optimization had a larger effect on the parallelism of numeric benchmarks, but the
size and even the direction of the the effect depended heavily on the code’s context and the
availability of temporary registers.

Finally, many machines already exploit most of the parallelism available in non-numeric code
because they can issue an instruction every cycle but have operation latencies greater than one.
Thus for many applications, significant performance improvements from parallel instruction is-
sue or higher degrees of pipelining should not be expected.

7. Acknowledgements
Jeremy Dion, Mary Jo Doherty, John Ousterhout, Richard Swan, Neil Wilhelm, and the

reviewers provided valuable comments on an early draft of this paper.

References
[1] Acosta, R. D., Kjelstrup, J., and Torng, H. C.

An Instruction Issuing Approach to Enhancing Performance in Multiple Functional Unit
Processors.

IEEE Transactions on Computers C-35(9):815-828, September, 1986.

[2] Aho, Alfred V., Sethi, Ravi, and Ullman, Jeffrey D.
Compilers: Principles, Techniques, and Tools.
Addison-Wesley, 1986.

[3] Allen, Randy, and Kennedy, Ken.
Automatic Translation of FORTRAN Programs to Vector Form.
ACM Transactions on Programming Languages and Systems 9(4):491-542, October,

1987.

[4] Charlesworth, Alan E.
An Approach to Scientific Array Processing: The Architectural Design of the

AP-120B/FPS-164 Family.
Computer 14(9):18-27, September, 1981.

[5] Ellis, John R.
Bulldog: A Compiler for VLIW Architectures.
PhD thesis, Yale University, 1985.

[6] Foster, Caxton C., and Riseman, Edward M.
Percolation of Code to Enhance Parallel Dispatching and Execution.
IEEE Transactions on Computers C-21(12):1411-1415, December, 1972.

[7] Gross, Thomas.
Code Optimization of Pipeline Constraints.
Technical Report 83-255, Stanford University, Computer Systems Lab, December, 1983.

21

AVAILABLE INSTRUCTION-LEVEL PARALLELISM FOR SUPERSCALAR AND SUPERPIPELINED MACHINES

[8] Hennessy, John L., Jouppi, Norman P., Przybylski, Steven, Rowen, Christopher, and
Gross, Thomas.
Design of a High Performance VLSI Processor.
In Bryant, Randal (editor), Third Caltech Conference on VLSI, pages 33-54. Computer

Science Press, March, 1983.

[9] Jouppi, Norman P., Dion, Jeremy, Boggs, David, and Nielsen, Michael J. K.
MultiTitan: Four Architecture Papers.
Technical Report 87/8, Digital Equipment Corporation Western Research Lab, April,

1988.

[10] Katevenis, Manolis G. H.
Reduced Instruction Set Architectures for VLSI.
Technical Report UCB/CSD 83/141, University of California, Berkeley, Computer

Science Division of EECS, October, 1983.

[11] Lam, Monica.
Software Pipelining: An Effective Scheduling Technique for VLIW Machines.
In SIGPLAN ’88 Conference on Programming Language Design and Implementation,

pages 318-328. June, 1988.

[12] Nicolau, Alexandru, and Fisher, Joseph A.
Measuring the Parallelism Available for Very Long Instruction Word Architectures.
IEEE Transactions on Computers C-33(11):968-976, November, 1984.

[13] Nielsen, Michael J. K.
Titan System Manual.
Technical Report 86/1, Digital Equipment Corporation Western Research Lab, Septem-

ber, 1986.

[14] Riseman, Edward M., and Foster, Caxton C.
The Inhibition of Potential Parallelism by Conditional Jumps.
IEEE Transactions on Computers C-21(12):1405-1411, December, 1972.

[15] Tjaden, Garold S., and Flynn, Michael J.
Detection and Parallel Execution of Independent Instructions.
IEEE Transactions on Computers C-19(10):889-895, October, 1970.

[16] Wall, David W.
Global Register Allocation at Link-Time.
In SIGPLAN ’86 Conference on Compiler Construction, pages 264-275. June, 1986.

[17] Wall, David W., and Powell, Michael L.
The Mahler Experience: Using an Intermediate Language as the Machine Description.
In Second International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, pages 100-104. IEEE Computer Society Press, Oc-
tober, 1987.

22

AVAILABLE INSTRUCTION-LEVEL PARALLELISM FOR SUPERSCALAR AND SUPERPIPELINED MACHINES

WRL Research Reports

‘‘Titan System Manual.’’ ‘‘MultiTitan: Four Architecture Papers.’’

Michael J. K. Nielsen. Norman P. Jouppi, Jeremy Dion, David Boggs, Mich-

WRL Research Report 86/1, September 1986. ael J. K. Nielsen.

WRL Research Report 87/8, April 1988.
‘‘Global Register Allocation at Link Time.’’

David W. Wall. ‘‘Fast Printed Circuit Board Routing.’’

WRL Research Report 86/3, October 1986. Jeremy Dion.

WRL Research Report 88/1, March 1988.
‘‘Optimal Finned Heat Sinks.’’

William R. Hamburgen. ‘‘Compacting Garbage Collection with Ambiguous

WRL Research Report 86/4, October 1986. Roots.’’

Joel F. Bartlett.
‘‘The Mahler Experience: Using an Intermediate WRL Research Report 88/2, February 1988.

Language as the Machine Description.’’

David W. Wall and Michael L. Powell. ‘‘The Experimental Literature of The Internet: An

WRL Research Report 87/1, August 1987. Annotated Bibliography.’’

Jeffrey C. Mogul.
‘‘The Packet Filter: An Efficient Mechanism for WRL Research Report 88/3, August 1988.

User-level Network Code.’’

Jeffrey C. Mogul, Richard F. Rashid, Michael ‘‘Measured Capacity of an Ethernet: Myths and

J. Accetta. Reality.’’

WRL Research Report 87/2, November 1987. David R. Boggs, Jeffrey C. Mogul, Christopher

A. Kent.
‘‘Fragmentation Considered Harmful.’’ WRL Research Report 88/4, September 1988.
Christopher A. Kent, Jeffrey C. Mogul.

WRL Research Report 87/3, December 1987. ‘‘Visa Protocols for Controlling Inter-Organizational

Datagram Flow: Extended Description.’’
‘‘Cache Coherence in Distributed Systems.’’ Deborah Estrin, Jeffrey C. Mogul, Gene Tsudik,
Christopher A. Kent. Kamaljit Anand.
WRL Research Report 87/4, December 1987. WRL Research Report 88/5, December 1988.

‘‘Register Windows vs. Register Allocation.’’ ‘‘SCHEME->C A Portable Scheme-to-C Compiler.’’
David W. Wall. Joel F. Bartlett.
WRL Research Report 87/5, December 1987. WRL Research Report 89/1, January 1989.

‘‘Editing Graphical Objects Using Procedural ‘‘Optimal Group Distribution in Carry-Skip
Representations.’’ Adders.’’

Paul J. Asente. Silvio Turrini.
WRL Research Report 87/6, November 1987. WRL Research Report 89/2, February 1989.

‘‘The USENET Cookbook: an Experiment in ‘‘Precise Robotic Paste Dot Dispensing.’’
Electronic Publication.’’ William R. Hamburgen.

Brian K. Reid. WRL Research Report 89/3, February 1989.
WRL Research Report 87/7, December 1987.

23

AVAILABLE INSTRUCTION-LEVEL PARALLELISM FOR SUPERSCALAR AND SUPERPIPELINED MACHINES

‘‘Simple and Flexible Datagram Access Controls for

Unix-based Gateways.’’

Jeffrey C. Mogul.

WRL Research Report 89/4, March 1989.

‘‘Spritely NFS: Implementation and Performance of

Cache-Consistency Protocols.’’

V. Srinivasan and Jeffrey C. Mogul.

WRL Research Report 89/5, May 1989.

‘‘Available Instruction-Level Parallelism for Super-

scalar and Superpipelined Machines.’’

Norman P. Jouppi and David W. Wall.

WRL Research Report 89/7, July 1989.

‘‘A Unified Vector/Scalar Floating-Point

Architecture.’’

Norman P. Jouppi, Jonathan Bertoni, and David

W. Wall.

WRL Research Report 89/8, July 1989.

‘‘Architectural and Organizational Tradeoffs in the

Design of the MultiTitan CPU.’’

Norman P. Jouppi.

WRL Research Report 89/9, July 1989.

‘‘Integration and Packaging Plateaus of Processor

Performance.’’

Norman P. Jouppi.

WRL Research Report 89/10, July 1989.

‘‘A 20-MIPS Sustained 32-bit CMOS Microproces-

sor with High Ratio of Sustained to Peak

Performance.’’

Norman P. Jouppi and Jeffrey Y. F. Tang.
WRL Research Report 89/11, July 1989.

‘‘Leaf: A Netlist to Layout Converter for ECL

Gates.’’

Robert L. Alverson and Norman P. Jouppi.

WRL Research Report 89/12, July 1989.

24

AVAILABLE INSTRUCTION-LEVEL PARALLELISM FOR SUPERSCALAR AND SUPERPIPELINED MACHINES

WRL Technical Notes

‘‘TCP/IP PrintServer: Print Server Protocol.’’

Brian K. Reid and Christopher A. Kent.

WRL Technical Note TN-4, September 1988.

‘‘TCP/IP PrintServer: Server Architecture and

Implementation.’’

Christopher A. Kent.

WRL Technical Note TN-7, November 1988.

25

AVAILABLE INSTRUCTION-LEVEL PARALLELISM FOR SUPERSCALAR AND SUPERPIPELINED MACHINES

ii

AVAILABLE INSTRUCTION-LEVEL PARALLELISM FOR SUPERSCALAR AND SUPERPIPELINED MACHINES

Table of Contents
1. Introduction 1
2. A Machine Taxonomy 2

2.1. The Base Machine 2
2.2. Underpipelined Machines 3
2.3. Superscalar Machines 4

2.3.1. VLIW Machines 5
2.3.2. Class Conflicts 6

2.4. Superpipelined Machines 7
2.5. Superpipelined Superscalar Machines 8
2.6. Vector Machines 8
2.7. Supersymmetry 8

3. Machine Evaluation Environment 9
4. Results 11

4.1. The Duality of Latency and Parallel Issue 11
4.2. Limits to Instruction-Level Parallelism 13
4.3. Variations in Instruction-Level Parallelism 14
4.4. Effects of Optimizing Compilers 15

5. Other Important Factors 19
5.1. Cache Performance 19
5.2. Design Complexity and Technology Constraints 19

6. Concluding Comments 20
7. Acknowledgements 21
References 21

iii

AVAILABLE INSTRUCTION-LEVEL PARALLELISM FOR SUPERSCALAR AND SUPERPIPELINED MACHINES

iv

AVAILABLE INSTRUCTION-LEVEL PARALLELISM FOR SUPERSCALAR AND SUPERPIPELINED MACHINES

List of Figures
Figure 1: Instruction-level parallelism 1
Figure 2: Execution in a base machine 3
Figure 3: Underpipelined: cycle > operation latency 3
Figure 4: Underpipelined: issues < 1 instr. per cycle 4
Figure 5: Execution in a superscalar machine (n=3) 5
Figure 6: Execution in a VLIW machine 6
Figure 7: Superpipelined execution (m=3) 7
Figure 8: A superpipelined superscalar (n=3,m=3) 8
Figure 9: Execution in a vector machine 9
Figure 10: Supersymmetry 12
Figure 11: Start-up in superscalar vs. superpipelined 12
Figure 12: Parallelism required for full utilization 13
Figure 13: Parallel issue with unit and real latencies 14
Figure 14: Instruction-level parallelism by benchmark 15
Figure 15: Parallelism vs. loop unrolling 16
Figure 16: Parallelism vs. compiler optimizations 17
Figure 17: Effect of optimization on parallelism 18

v

AVAILABLE INSTRUCTION-LEVEL PARALLELISM FOR SUPERSCALAR AND SUPERPIPELINED MACHINES

vi

AVAILABLE INSTRUCTION-LEVEL PARALLELISM FOR SUPERSCALAR AND SUPERPIPELINED MACHINES

List of Tables
Table 1: Average degree of superpipelining 10
Table 2: The cost of cache misses 19

vii

