

Reference: http://foxtrot.ncsa.uiuc.edu:8900/public/MPI/

Message Passing
Fundamentals

Topics

• The topics to be discussed in this chapter are
– The basics of parallel computer architectures.

– The difference between domain and functional
decomposition.

– The difference between data parallel and message
passing models.

– A brief survey of important parallel programming
issues.

Reference: http://foxtrot.ncsa.uiuc.edu:8900/public/MPI/

Parallel Architectures

Parallel Architectures

• Parallel computers have two basic architectures: distributed
memory and shared memory.
– Distributed memory parallel computers are essentially a collection

of serial computers (nodes) working together to solve a problem.
Each node has rapid access to its own local memory and access to
the memory of other nodes via some sort of communications
network, usually a proprietary high-speed communications network.
Data are exchanged between nodes as messages over the network.

– In a shared memory computer, multiple processor units share
access to a global memory space via a high-speed memory bus.
This global memory space allows the processors to efficiently
exchange or share access to data. Typically, the number of
processors used in shared memory architectures is limited to only a
handful (2 - 16) of processors. This is because the amount of data
that can be processed is limited by the bandwidth of the memory
bus connecting the processors.

Parallel Architectures

• The latest generation of parallel computers now
uses a mixed shared/distributed memory
architecture. Each node consists of a group of 2
to 16 processors connected via local, shared
memory and the multiprocessor nodes are, in
turn, connected via a high-speed
communications fabric.

Reference: http://foxtrot.ncsa.uiuc.edu:8900/public/MPI/

Problem Decomposition

Problem Decomposition

• Roughly speaking, there are two kinds of
decompositions.
– Domain decomposition
– Functional decomposition

Domain Decomposition

• In domain decomposition or "data parallelism",
data are divided into pieces of approximately the
same size and then mapped to different
processors.

• Each processor then works only on the portion of
the data that is assigned to it. Of course, the
processes may need to communicate periodically
in order to exchange data.

Domain Decomposition

• Data parallelism provides the advantage of maintaining a
single flow of control. A data parallel algorithm consists of
a sequence of elementary instructions applied to the
data: an instruction is initiated only if the previous
instruction is ended. Single-Program-Multiple-Data
(SPMD) follows this model where the code is identical on
all processors.

• Such strategies are commonly employed in finite
differencing algorithms where processors can operate
independently on large portions of data, communicating
only the much smaller shared border data at each
iteration.

Functional Decomposition

• Frequently, the domain decomposition strategy turns out
not to be the most efficient algorithm for a parallel
program. This is the case when the pieces of data
assigned to the different processes require greatly
different lengths of time to process. The performance of
the code is then limited by the speed of the slowest
process. The remaining idle processes do no useful work.
In this case, functional decomposition or "task
parallelism" makes more sense than domain
decomposition. In task parallelism, the problem is
decomposed into a large number of smaller tasks and
then, the tasks are assigned to the processors as they
become available. Processors that finish quickly are
simply assigned more work.

Functional Decomposition

• Task parallelism is implemented in a client-server
paradigm. The tasks are allocated to a group of slave
processes by a master process that may also perform
some of the tasks.

• The client-server paradigm can be implemented at
virtually any level in a program.
– For example, if you simply wish to run a program with multiple

inputs, a parallel client-server implementation might just run
multiple copies of the code serially with the server assigning the
different inputs to each client process. As each processor finishes
its task, it is assigned a new input.

– Alternately, task parallelism can be implemented at a deeper
level within the code.

Functional Decomposition

Reference: http://foxtrot.ncsa.uiuc.edu:8900/public/MPI/

Data Parallel and Message
Passing Models

Data Parallel and Message Passing
Models

• There have been two approaches to writing
parallel programs. They are
– use of a directives-based data-parallel language, and
– explicit message passing via library calls from

standard programming languages.

Data Parallel and Message Passing
Models

• In a directives-based data-parallel language
– Such as High Performance Fortran (HPF) or OpenMP
– Serial code is made parallel by adding directives (which appear

as comments in the serial code) that tell the compiler how to
distribute data and work across the processors.

– The details of how data distribution, computation, and
communications are to be done are left to the compiler.

– Usually implemented on shared memory architectures because
the global memory space greatly simplifies the writing of
compilers.

• In the message passing approach
– It is left up to the programmer to explicitly divide data and work

across the processors as well as manage the communications
among them.

– This approach is very flexible.

Reference: http://foxtrot.ncsa.uiuc.edu:8900/public/MPI/

Parallel Programming
Issues

Parallel Programming Issues

• The main goal of writing a parallel program is to
get better performance over the serial version.
Several issues that you need to consider:
– Load balancing

– Minimizing communication
– Overlapping communication and computation

Load Balancing

• Load balancing is the task of equally dividing
work among the available processes.

• This can be easy to do when the same
operations are being performed by all the
processes (on different pieces of data).

• When there are large variations in processing
time, you may be required to adopt a different
method for solving the problem.

Minimizing Communication

• Total execution time is a major concern in parallel
programming because it is an essential
component for comparing and improving all
programs.

• Three components make up execution time:
– Computation time

– Idle time
– Communication time

Minimizing Communication

• Computation time is the time spent performing
computations on the data.

• Idle time is the time a process spends waiting for data
from other processors.

• Finally, communication time is the time it takes for
processes to send and receive messages.
– The cost of communication in the execution time can be

measured in terms of latency and bandwidth.
– Latency is the time it takes to set up the envelope for

communication, where bandwidth is the actual speed of
transmission, or bits per unit time.

– Serial programs do not use inter-process communication.
Therefore, you must minimize this use of time to get the best
performance improvements.

Overlapping Communication and
Computation

• There are several ways to minimize idle time
within processes, and one example is
overlapping communication and computation.
This involves occupying a process with one or
more new tasks while it waits for communication
to finish so it can proceed on another task.

• Careful use of nonblocking communication and
data unspecific computation make this possible. It
is very difficult in practice to interleave
communication with computation.

Reference: http://foxtrot.ncsa.uiuc.edu:8900/public/MPI/

END

Reference:
http://foxtrot.ncsa.uiuc.edu:8900/public/MPI/

	Diapositivo 1
	Diapositivo 2
	Diapositivo 3
	Diapositivo 4
	Diapositivo 5
	Diapositivo 6
	Diapositivo 7
	Diapositivo 8
	Diapositivo 9
	Diapositivo 10
	Diapositivo 11
	Diapositivo 12
	Diapositivo 13
	Diapositivo 14
	Diapositivo 15
	Diapositivo 16
	Diapositivo 17
	Diapositivo 18
	Diapositivo 19
	Diapositivo 20
	Diapositivo 21
	Diapositivo 22

