
 Reference: http://foxtrot.ncsa.uiuc.edu:8900/public/MPI/

Getting Started with MPI

Topics

• This chapter will familiarize you with some basic concepts
of MPI programming, including the basic structure of
messages and the main modes of communication.

• The topics that will be discussed are
– The basic message passing model

– What is MPI?
– The goals and scope of MPI

– A first program: Hello World!

– Point-to-point communications and messages
– Blocking and nonblocking communications

– Collective communications

 Reference: http://foxtrot.ncsa.uiuc.edu:8900/public/MPI/

The Message Passing
Model

The Message Passing Model

• MPI is intended as a standard implementation of the
"message passing" model of parallel computing.
– A parallel computation consists of a number of processes, each

working on some local data. Each process has purely local
variables, and there is no mechanism for any process to directly
access the memory of another.

– Sharing of data between processes takes place by message
passing, that is, by explicitly sending and receiving data between
processes.

• Note that the model involves processes, which need not,
in principle, be running on different processors. In this
course, it is generally assumed that different processes
are running on different processors and the terms
"processes" and "processors" are used interchangeably

The Message Passing Model

• The usefulness of the model is that it:
– can be implemented on a wide variety of platforms,

from shared-memory multiprocessors to networks of
workstations and even single-processor machines.

– generally allows more control over data location and
flow within a parallel application than in, for example,
the shared memory model. Thus programs can often
achieve higher performance using explicit message
passing. Indeed, performance is a primary reason why
message passing is unlikely to ever disappear from
the parallel programming world.

 Reference: http://foxtrot.ncsa.uiuc.edu:8900/public/MPI/

What is MPI?

What is MPI?

• MPI stands for "Message Passing Interface". It is
a library of functions (in C) or subroutines (in
Fortran) that you insert into source code to
perform data communication between processes.

MPI-1

• The MPI-1 standard was defined in Spring of 1994.
– This standard specifies the names, calling sequences, and

results of subroutines and functions to be called from Fortran 77
and C, respectively. All implementations of MPI must conform to
these rules, thus ensuring portability. MPI programs should
compile and run on any platform that supports the MPI standard.

– The detailed implementation of the library is left to individual
vendors, who are thus free to produce optimized versions for
their machines.

– Implementations of the MPI-1 standard are available for a wide
variety of platforms.

MPI-2

• An MPI-2 standard has also been defined. It
provides for additional features not present in
MPI-1, including tools for parallel I/O, C++ and
Fortran 90 bindings, and dynamic process
management.

 Reference: http://foxtrot.ncsa.uiuc.edu:8900/public/MPI/

Goals of MPI

Goals of MPI

• The primary goals addressed by MPI are to
– Provide source code portability. MPI programs should

compile and run as-is on any platform.
– Allow efficient implementations across a range of

architectures.

• MPI also offers
– A great deal of functionality, including a number of

different types of communication, special routines for
common "collective" operations, and the ability to
handle user-defined data types and topologies.

– Support for heterogeneous parallel architectures.

 Reference: http://foxtrot.ncsa.uiuc.edu:8900/public/MPI/

Why (Not) Use MPI?

Why Use MPI?

• You should use MPI when you need to
– Write portable parallel code.

– Achieve high performance in parallel programming,
e.g. when writing parallel libraries.

– Handle a problem that involves irregular or dynamic
data relationships that do not fit well into the "data-
parallel" model.

Why Not Use MPI?

• You should not use MPI when you
– Can achieve sufficient performance and portability

using a data-parallel (e.g., High-Performance Fortran)
or shared-memory approach (e.g., OpenMP, or
proprietary directive-based paradigms).

– Can use a pre-existing library of parallel routines
(which may themselves be written using MPI).

– Don't need parallelism at all!

 Reference: http://foxtrot.ncsa.uiuc.edu:8900/public/MPI/

Basic Features of Message
Passing Programs

Basic Features of Message Passing
Programs

• Message passing programs consist of multiple
instances of a serial program that communicate
by library calls. These calls may be roughly
divided into four classes:
1. Calls used to initialize, manage, and finally terminate

communications.
2. Calls used to communicate between pairs of

processors.
3. Calls that perform communications operations among

groups of processors.
4. Calls used to create arbitrary data types.

 Reference: http://foxtrot.ncsa.uiuc.edu:8900/public/MPI/

A First Program: Hello
World!

A First Program: Hello World!

#include <stdio.h>

#include <mpi.h>

void main (int argc, char *argv[]) {

int err;

err = MPI_Init(&argc, &argv);

printf("Hello world!\n");

err = MPI_Finalize();

}

A First Program: Hello World!

• For the moment note from the example that
– MPI functions/subroutines have names that begin with

MPI_.
– There is an MPI header file (mpi.h or mpif.h)

containing definitions and function prototypes that is
imported via an "include" statement.

– MPI routines return an error code indicating whether or
not the routine ran successfully.

A First Program: Hello World!

– Each process executes a copy of the entire code. Thus, when
run on four processors, the output of this program is

Hello world!

Hello world!

Hello world!

Hello world!

• However, different processors can be made to do
different things using program branches, e.g.

if (I am processor 1)

...do something...

if (I am processor 2)

...do something else...

 Reference: http://foxtrot.ncsa.uiuc.edu:8900/public/MPI/

Point-to-Point
Communications and
Messages

Point-to-Point Communications

• direct communication between two processors,
one of which sends and the other receives

• In a generic send or receive, a message
consisting of some block of data is transferred
between processors. A message consists of an
envelope, indicating the source and destination
processors, and a body, containing the actual
data to be sent.

Point-to-Point Communications

• MPI uses three pieces of information to characterize the
message body

1. Buffer - the starting location in memory where outgoing data is
to be found (for a send) or incoming data is to be stored (for a
receive).
– In C, buffer is the actual address of the array element where

the data transfer begins.
1. Datatype - the type of data to be sent.

– In the simplest cases this is an elementary type such as float,
int, etc. In more advanced applications this can be a user-
defined type built from the basic types. These can be thought
of as roughly analogous to C structures, and can contain data
located anywhere, i.e., not necessarily in contiguous memory
locations. This ability to make use of user-defined types allows
complete flexibility in defining the message content.

1. Count - the number of items of type datatype to be sent.

 Reference: http://foxtrot.ncsa.uiuc.edu:8900/public/MPI/

Communication Modes
and Completion Criteria

Communication Modes and
Completion Criteria

• There are a variety of communication modes that define the
procedure used to transmit the message, as well as a set of criteria
for determining when the communication event (i.e., a particular
send or receive) is complete.
– For example, a synchronous send is defined to be complete when

receipt of the message at its destination has been acknowledged.
– A buffered send, however, is complete when the outgoing data has

been copied to a (local) buffer; nothing is implied about the arrival of the
message at its destination.

– In all cases, completion of a send implies that it is safe to overwrite the
memory areas where the data were originally stored.

• There are four communication modes available for sends:
– Standard
– Synchronous
– Buffered
– Ready

• For receives there is only a single communication mode.

 Reference: http://foxtrot.ncsa.uiuc.edu:8900/public/MPI/

Blocking and Nonblocking
Communication

Blocking and Nonblocking
Communication

• In addition to the communication mode used, a send or
receive may be blocking or nonblocking.

• A blocking send or receive does not return from the
subroutine call until the operation has actually completed.
Thus it insures that the relevant completion criteria have
been satisfied before the calling process is allowed to
proceed.
– With a blocking send, for example, you are sure that the

variables sent can safely be overwritten on the sending
processor. With a blocking receive, you are sure that the data
has actually arrived and is ready for use.

Blocking and Nonblocking
Communication

• A nonblocking send or receive returns immediately, with
no information about whether the completion criteria have
been satisfied. This has the advantage that the processor
is free to do other things while the communication
proceeds "in the background." You can test later to see
whether the operation has actually completed.
– For example, a nonblocking synchronous send returns

immediately, although the send will not be complete until receipt
of the message has been acknowledged. The sending processor
can then do other useful work, testing later to see if the send is
complete. Until it is complete, however, you can not assume that
the message has been received or that the variables to be sent
may be safely overwritten.

 Reference: http://foxtrot.ncsa.uiuc.edu:8900/public/MPI/

Collective
Communications

Collective Communications

• Collective communications allow larger groups of
processors to communicate in various ways, for example,
one-to-several or several-to-one.

• advantages of using the collective communication
– Error is significantly reduced. One line of collective routine

typically replaces several point-to-point calls.

– The source code is much more readable
– Optimized forms of the collective routines are often faster

• Examples of collective communications include broadcast
operations, gather and scatter operations, and reduction
operations.

Broadcast Operations

• A single process sends a copy of some data to all the
other processes in a group.

Gather and Scatter Operations

• Perhaps the most important classes of collective
operations are those that distribute data from one
processor onto a group of processors or vice
versa. These are called scatter and gather
operations. MPI provides two kinds of scatter and
gather operations, depending upon whether the
data can be evenly distributed across processors.
These scatter and gather operations are
illustrated below.

Scatter Operation

• In a scatter operation, all of the data (an array of some type) are
initially collected on a single processor (the left side of the figure).
After the scatter operation, pieces of the data are distributed on
different processors (the right side of the figure). The multicolored
box reflects the possibility that the data may not be evenly divisible
across the processors.

Gather Operation

• The gather operation is the inverse operation to scatter: it
collects pieces of the data that are distributed across a
group of processors and reassembles them in the proper
order on a single processor.

Reduction Operations

• A reduction is a collective operation in which a
single process (the root process) collects data
from the other processes in a group and
combines them into a single data item.

• For example, you might use a reduction to
compute the sum of the elements of an array that
is distributed over several processors. Operations
other than arithmetic ones are also possible, for
example, maximum and minimum, as well as
various logical and bitwise operations.

Reduction Operations

• The data, which may be array or scalar values, are
initially distributed across the processors. After the
reduction operation, the reduced data (array or scalar)
are located on the root processor.

 Reference: http://foxtrot.ncsa.uiuc.edu:8900/public/MPI/

Compiling and Running
MPI Programs

Compiling and Running MPI
Programs

• When compiling an MPI program, it may be
necessary to link against the MPI library.

mpicc program.c –o program
• To run an MPI code, you commonly use a

"wrapper" called mpirun. The following command
would run the executable program on four
processors:

mpirun –np 4 program

 Reference: http://foxtrot.ncsa.uiuc.edu:8900/public/MPI/

END

Reference:
http://foxtrot.ncsa.uiuc.edu:8900/public/MPI/

	Diapositivo 1
	Diapositivo 2
	Diapositivo 3
	Diapositivo 4
	Diapositivo 5
	Diapositivo 6
	Diapositivo 7
	Diapositivo 8
	Diapositivo 9
	Diapositivo 10
	Diapositivo 11
	Diapositivo 12
	Diapositivo 13
	Diapositivo 14
	Diapositivo 15
	Diapositivo 16
	Diapositivo 17
	Diapositivo 18
	Diapositivo 19
	Diapositivo 20
	Diapositivo 21
	Diapositivo 22
	Diapositivo 23
	Diapositivo 24
	Diapositivo 25
	Diapositivo 26
	Diapositivo 27
	Diapositivo 28
	Diapositivo 29
	Diapositivo 30
	Diapositivo 31
	Diapositivo 32
	Diapositivo 33
	Diapositivo 34
	Diapositivo 35
	Diapositivo 36
	Diapositivo 37
	Diapositivo 38
	Diapositivo 39

