

Reference: http://foxtrot.ncsa.uiuc.edu:8900/public/MPI/

Point-to-Point Point-to-Point
CommunicationCommunication

IntroductionIntroduction

• Point-to-point communication is the fundamental
communication facility provided by the MPI
library.

• Point-to-point communication is conceptually
simple: one process sends a message and
another process receives it.

• MPI_Send and MPI_Recv work together to
complete a transfer of data from one process to
another.

Point-to-point communicationPoint-to-point communication

• However, it is less simple in practice. For example,
a process may have many messages waiting to be
received. In that case, a crucial issue is how MPI
and the receiving process determine what
message to receive.

• Another issue is whether send and receive routines
initiate communication operations and return
immediately, or wait for the initiated communication
operation to complete before returning. The
underlying communication operations are the same
in both cases, but the programming interface is
very different.

TopicsTopics

• Fundamentals of point-to-point communication
• Blocking send and receive
• Nonblocking send and receive
• Send modes

Reference: http://foxtrot.ncsa.uiuc.edu:8900/public/MPI/

FundamentalsFundamentals

Fundamentals Fundamentals

• The following issues are fundamental to point-to-
point communication in MPI. These apply to all
versions of send and receive, both blocking and
nonblocking, and to all send modes.
– Source and Destination

– Messages
– Sending and Receiving Messages

Source and Destination Source and Destination

• The point-to-point communication discussed here are
two-sided and require active participation from the
processes on both sides. One process (the source)
sends, and another process (the destination) receives.

• In general, the source and destination processes operate
asynchronously.
– Even the sending and receiving of a single message is typically

not synchronized. The source process may complete sending a
message long before the destination process gets around to
receiving it, and the destination process may initiate receiving a
message that has not yet been sent.

Source and DestinationSource and Destination

• Because sending and receiving are typically not
synchronized, processes often have one or more
messages that have been sent but not yet received.

• These sent, but not yet received messages are called
pending messages.

• It is an important feature of MPI that pending messages
are not maintained in a simple FIFO queue. Instead, each
pending message has several attributes and the
destination process (the receiving process) can use the
attributes to determine which message to receive.

Messages Messages

• Messages consist of 2 parts: the envelope and the
message body.
MPI_Send(sendbuf,cnt,datatype,dest,tag,comm);

MPI_Recv(recvbuf,cnt,datatype,source,tag,comm,status);

MPI Message Letter

Send/receive buffer letter content

Count/size Letter weight

Source (receive) Return address

Destination (send) Destination address

Communicator Country

envelopemessage body

Message bodyMessage body

• The message body has 3 parts:
– Buffer

It is the space in the computer's memory where
the MPI message data are to be sent from or
stored to

– Datatype

The type of the message data to be
transmitted(e.g.floating point). The datatype
should be the same for the send and receive
call.

– count

The number of items of data in the message.
The count specified by the receive call should
be equal to or greater than the count specified
by the send.

Message bodyMessage body

• Think of the buffer as an array; the dimension is
given by count, and the type of the array
elements is given by datatype.

• Using datatypes and counts, rather than bytes
and bytecounts, allows structured data and
noncontiguous data to be handled smoothly.

An MPI message is an array of elements of a particular MPI datatype.
(count=7)

Message EnvelopeMessage Envelope

• Message envelope of an MPI message provides
information on how to match sends to receives. it consists
of 3 parts:
– Source or destination

This argument is set to a rank in a communicator. Destination is
specified by the sending process and source is specified by the
receiving process. Only messages coming from that source can be
accepted by the receive call, but the receive can set source to
MPI_ANY_SOURCE to indicate that any source is acceptable.

– Communicator
The communicator specifies a group of processes to which both
source and destination belong.

– Tag
The tag is an arbitrary number to help distinguish among
messages. The tags specified by the sender and receiver must
match, but the receiver can specify MPI_ANY_TAG to indicate that
any tag is acceptable. For example, one tag value can be used for
messages containing data and another tag value for messages
containing status information.

Sending and Receiving Messages Sending and Receiving Messages

• Sending messages is straightforward. The source (the identity of the
sender) is determined implicitly, but the rest of the message
(envelope and body) is given explicitly by the sending process.

• Receiving messages is not quite so simple. As a process may have
several pending messages.

• To receive a message, a process specifies a message envelope that
MPI compares to the envelopes of pending messages. If there is a
match, a message is received. Otherwise, the receive operation
cannot be completed until a matching message is sent.

• In addition, the process receiving a message must provide storage
into which the body of the message can be copied. The receiving
process must be careful to provide enough storage for the entire
message.

Reference: http://foxtrot.ncsa.uiuc.edu:8900/public/MPI/

Blocking Send and Blocking Send and
ReceiveReceive

Blocking Send and ReceiveBlocking Send and Receive

• The two functions, MPI_Send and MPI_Recv, are the basic
point-to-point communication routines in MPI. Their calling
sequences are presented and discussed in the following
sections. Both functions block the calling process until the
communication operation is completed.

• Blocking creates the possibility of deadlock, a key issue that
is explored by way of simple examples. In addition, the
meaning of completion is discussed.

• The nonblocking analogues of MPI_Send and MPI_Recv
are presented in next section.

Sending a Message: MPI_SENDSending a Message: MPI_SEND

• MPI_Send takes the following arguments:
– Message Body

• Buffer
• Count
• Datatype

– Message Envelope (source – the sending process – is defined
implicitly)

• Destination
• Tag
• Communicator

• The message body contains the data to be sent: count
items of type datatype. The message envelope tells
where to send it. In addition, an error code is returned.

Sending a Message: MPI_SENDSending a Message: MPI_SEND

• C binding is shown below.

int MPI_Send(void *buf, int count, MPI_Datatype
dtype, int dest, int tag, MPI_Comm comm);

– All arguments are input arguments.

– An error code is returned by the function.

Example:
MPI_Send(a,10,MPI_INT,0,10,MPI_COMM_WORLD);
MPI_Send(&b,1,MPI_DOUBLE,2,19,Comm1);

Receiving a Message: MPI_RECVReceiving a Message: MPI_RECV

• MPI_Recv takes a set of arguments similar to MPI_Send,
but several of the arguments are used in a different way.
– Message Body

• Buffer
• Count
• Datatype

– Message Envelope (receiving process – is defined implicitly)
• Source

• Tag

• Communicator

– Status – information on the message that was received

Receiving a Message: MPI_RECVReceiving a Message: MPI_RECV

• The message envelope arguments determine what messages can
be received by the call. The source, tag, and communicator
arguments must match those of a pending message in order for the
message to be received.

• Wildcard values may be used for the source (MPI_ANY_SOURCE,
accept a message from any process) and the tag (MPI_ANY_TAG,
accept a message with any tag value). If wildcards are not used, the
call can accept messages from only the specified sending process,
and with only the specified tag value. Communicator wildcards are
not available.

• The message body arguments specify where the arriving data are to
be stored, what type it is assumed to be, and how much of it the
receiving process is prepared to accept. If the received message
has more data than the receiving process is prepared to accept, it is
an error.

Receiving a Message: MPI_RECVReceiving a Message: MPI_RECV

• In general, the sender and receiver must agree about the
message datatype, and it is the programmer's
responsibility to guarantee that agreement. If the sender
and receiver use incompatible message datatypes, the
results are undefined.

• The status argument returns information about the
message that was received. The source and tag of the
received message are available this way (needed if
wildcards were used); also available is the actual count of
data received.

• In addition, an error code is returned.

Receiving a Message: MPI_RECVReceiving a Message: MPI_RECV

• C binding is shown below.
int MPI_Recv(void *buf, int count, MPI_Datatype dtype, int source,

int tag, MPI_Comm comm, MPI_Status *status);

– buf and status are output arguments; the rest are inputs.
– An error code is returned by the function.

Notes:
• A maximum of COUNT items of type DTYPE are accepted; if the
message contains more, it is an error.
• The sending and receiving processes must agree on the datatype; if
they disagree, results are undefined (MPI does not check).
• When this routine returns, the received message data have been
copied into the buffer; and the tag, source, and actual count of data
received are available via the status argument.

Example:
MPI_Recv(c,10,MPI_INT,1,10,MPI_COMM_WORLD,&stat);
MPI_Recv(&d,1,MPI_DOUBLE,0,19,Comm1,&stat);

Example: Send and ReceiveExample: Send and Receive

• In this program, process 0 sends a message to process 1,
and process 1 receives it. Note the use of myrank in a
conditional to limit execution of code to a particular process.

/* simple send and receive */
#include <stdio.h>
#include <mpi.h>

void main (int argc, char **argv) {
 int myrank;
 MPI_Status status;
 double a[100];

 MPI_Init(&argc, &argv); /* Initialize MPI */
 MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* Get rank */
 if(myrank == 0) /* Send a message */
 MPI_Send(a, 100, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD);
 else if(myrank == 1) /* Receive a message */
 MPI_Recv(a, 100, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD, &status);

 MPI_Finalize(); /* Terminate MPI */
}

What Happens at Runtime What Happens at Runtime

• It is useful to keep in mind the following model for
the runtime behavior of MPI_Send. According to
the model, when a message is sent using
MPI_Send one of two things may happen:
Option 1:

The message may be copied into an MPI
internal buffer and transferred to its destination
later, in the background, or

Option 2:
The message may be left where it is, in the
program's variables, until the destination
process is ready to receive it. At that time, the
message is transferred to its destination.

What Happens at RuntimeWhat Happens at Runtime

• The first option allows the sending process to move on to other
things after the copy is completed.

• The second option minimizes copying and memory use, but may
result in extra delay to the sending process. The delay can be
significant.

• Surprisingly, in 1., a call to MPI_Send may return before any non-
local action has been taken or even begun, i.e., before anything
has happened that might naively be associated with sending a
message. In 2., a synchronization between sender and receiver is
implied.

• To summarize, according to the model sketched above, when a
message is sent using MPI_Send, the message is either
– buffered immediately and delivered later asynchronously, or
– the sending and receiving processes synchronize.

Reference: http://foxtrot.ncsa.uiuc.edu:8900/public/MPI/

Blocking and CompletionBlocking and Completion

Blocking and CompletionBlocking and Completion

• Both MPI_Send and MPI_Recv block the calling process.
Neither returns until the communication operation it invoked
is completed.

• The meaning of completion for a call to MPI_Recv is simple
and intuitive
– A matching message has arrived, and the message’s data ,which

have been copied into the output arguments of the call, are ready to
be used.

• For MPI_Send, the meaning of completion is simple but not
as intuitive.
– A call to MPI_Send is completed when the variables passed to

MPI_Send can now be overwritten and reused.
– Recall from the previous section that one of two things may have

happened: either MPI copied the message into an internal buffer for
later, asynchronous delivery; or else MPI waited for the destination
process to receive the message. Note that if MPI copied the
message into an internal buffer, then the call to MPI_Send may be
officially completed, even though the message has not yet left the
sending process.

Blocking and CompletionBlocking and Completion

• If a message passed to MPI_Send is larger than MPI’s
available internal buffer, then buffering cannot be used. In
this case, the sending process must block until the
destination process begins to receive the message, or
until more buffer is available. In general, messages that
are copied into MPI internal buffer will occupy buffer
space until the destination process begins to receive the
message.

• Note that a call to MPI_Recv matches a pending
message if it matches the pending message’s envelope
(source, tag, communicator). Datatype matching is also
required for correct execution but MPI does not check for
it. Instead, it is the obligation of the programmer to
guarantee datatype matching.

DeadlockDeadlock

• Deadlock occurs when 2 (or more) processes
are blocked and each is waiting for the other to
make progress. Neither process makes progress
because each depends on the other to make
progress first.

• The program shown below is an example
– it fails to run to completion because processes 0 and 1

deadlock.

DeadlockDeadlock

/* simple deadlock */
#include <stdio.h>
#include <mpi.h>

void main (int argc, char **argv) {
int myrank;
MPI_Status status;
double a[100], b[100];

MPI_Init(&argc, &argv); /* Initialize MPI */
MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* Get rank */

if(myrank == 0) {
/* Receive, then send a message */
MPI_Recv(b, 100, MPI_DOUBLE, 1, 19, MPI_COMM_WORLD,

&status);
MPI_Send(a, 100, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD);

} else if(myrank == 1) {
/* Receive, then send a message */
MPI_Recv(b, 100, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD,

&status);
MPI_Send(a, 100, MPI_DOUBLE, 0, 19, MPI_COMM_WORLD);

}
MPI_Finalize(); /* Terminate MPI */

}

DeadlockDeadlock

• In the program, process 0 attempts to exchange
messages with process 1.

• Process 0 cannot proceed until process 1 sends a
message; process 1 cannot proceed until process 0
sends a message.

• The program is erroneous and deadlocks. No messages
are ever sent, and no messages are ever received.

 Process 0 Process 1
MPI_Recv (from P1) MPI_Recv (from P0)
MPI_Send (to P1) MPI_Send (to P0)

deadlock

Avoiding DeadlockAvoiding Deadlock

• In general, avoiding deadlock requires careful
organization of the communication in a program. The
programmer should be able to explain why the program
does not (or does) deadlock.

• The program shown below is similar to the program in the
preceding section, but its communication is better
organized and the program does not deadlock.

• Once again, process 0 attempts to exchange messages
with process 1. The protocol is safe. Except system
failures, this program always runs to completion.

 Process 0 Process 1
MPI_Recv (from P1) MPI_Send (to P0)
MPI_Send (to P1) MPI_Recv (from P0)

Avoiding DeadlockAvoiding Deadlock

• Note that increasing array dimensions and
message sizes have no effect on the safety of the
protocol. The program still runs to completion.

• This is a useful property for application programs
– when the problem size is increased, the program still

runs to completion.

Avoiding DeadlockAvoiding Deadlock

/* safe exchange */
#include <stdio.h>
#include <mpi.h>
void main (int argc, char **argv) {

int myrank;
MPI_Status status;
double a[100], b[100];

MPI_Init(&argc, &argv); /* Initialize MPI */
MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* Get rank */

if(myrank == 0) {
/* Receive a message, then send one */
MPI_Recv(b, 100, MPI_DOUBLE, 1, 19, MPI_COMM_WORLD, &status);
MPI_Send(a, 100, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD);

}
 else if(myrank == 1) {

/* Send a message, then receive one */
MPI_Send(a, 100, MPI_DOUBLE, 0, 19, MPI_COMM_WORLD);
MPI_Recv(b, 100, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD, &status);

}
MPI_Finalize(); /* Terminate MPI */

}

Avoiding Deadlock (Sometimes but Avoiding Deadlock (Sometimes but
Not Always)Not Always)

• The program shown below is similar to preceding examples.
This time, both processes send first, then receive.

• Success depends on the availability of buffering in MPI.
There must be enough MPI internal buffer available to hold
at least one of the messages in its entirety.

 buffer size status
Large enough Completion
Not enough Deadlock

 Process 0 Process 1
MPI_Send (to P1) MPI_Send (to P0)
MPI_Recv (from P1) MPI_Recv (from P0)

Send to P0

Process 0 Process 1

P0 Internal buffer

P1 Internal buffer

Send to P1
copy to buffer

copy to buffer

copy from buffer

copy from buffer

Avoiding Deadlock (Sometimes but Avoiding Deadlock (Sometimes but
Not Always)Not Always)

/* depends on buffering */
#include <stdio.h>
#include <mpi.h>

void main (int argc, char **argv) {

int myrank;
MPI_Status status;
double a[100], b[100];

MPI_Init(&argc, &argv); /* Initialize MPI */
MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* Get rank */
if(myrank == 0) {

/* Send a message, then receive one */
MPI_Send(a, 100, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD);
MPI_Recv(b, 100, MPI_DOUBLE, 1, 19, MPI_COMM_WORLD, &status);

}
else if(myrank == 1) {

/* Send a message, then receive one */
MPI_Send(a, 100, MPI_DOUBLE, 0, 19, MPI_COMM_WORLD);
MPI_Recv(b, 100, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD, &status);

}
MPI_Finalize(); /* Terminate MPI */

}

Avoiding Deadlock (Sometimes but Avoiding Deadlock (Sometimes but
Not Always)Not Always)

• Under most MPI implementations, the program shown will
run to completion. However, if the message sizes are
increased, sooner or later the program will deadlock.

• This behavior is sometimes seen in computational codes
a code will run to completion when given a small problem, but
deadlock when given a large problem.

• This is inconvenient and undesirable. The inconvenience is
increased when the original authors of the code are no
longer available to maintain it.

• In general, depending on MPI internal buffer to avoid
deadlock makes a program less portable and less scalable.
The best practice is to write programs that run to completion
regardless of the availability of MPI internal buffer.

Probable DeadlockProbable Deadlock

• The only significant difference between the
program shown below and the preceding one is
the size of the messages. This program will
deadlock under the default configuration of nearly
all available MPI implementations.

Probable DeadlockProbable Deadlock

/* probable deadlock */
#include <stdio.h>
#include <mpi.h>

void main (int argc, char **argv) {
int myrank;
MPI_Status status;
#define N 100000000
double a[N], b[N];

MPI_Init(&argc, &argv); /* Initialize MPI */
MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* Get rank */
if(myrank == 0) {

/* Send a message, then receive one */
MPI_Send(a, N, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD);
MPI_Recv(b, N, MPI_DOUBLE, 1, 19, MPI_COMM_WORLD, &status);

}
else if(myrank == 1) {

/* Send a message, then receive one */
MPI_Send(a, N, MPI_DOUBLE, 0, 19, MPI_COMM_WORLD);
MPI_Recv(b, N, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD, &status);

}
MPI_Finalize(); /* Terminate MPI */

}

Reference: http://foxtrot.ncsa.uiuc.edu:8900/public/MPI/

Nonblocking Sends and Nonblocking Sends and
ReceivesReceives

Nonblocking Sends and ReceivesNonblocking Sends and Receives

• MPI provides another way to invoke send and receive
operations. It is possible to separate the initiation of a send
or receive operation from its completion by making two
separate calls to MPI. The first call initiates the operation,
and the second call completes it. Between the two calls, the
program is free to do other things.

• The nonblocking interface to send and receive requires
two calls per communication operation: one call to initiate
the operation, and a second call to complete it. Initiating a
send operation is called posting a send. Initiating a receive
operation is called posting a receive.

• The communication operations are the same, but the
interface to the library is different.

Posting, Completion, and Request Posting, Completion, and Request
HandlesHandles

• Once a send or receive operation has been
posted, MPI provides two distinct ways of
completing it.
– A process can test to see if the operation has

completed, without blocking on the completion.

– Alternately, a process can wait for the operation to
complete.

Posting, Completion, and Request Posting, Completion, and Request
HandlesHandles

• After posting a send or receive with a call to a
nonblocking routine, the posting process needs some
way to refer to the posted operation. MPI uses
request handles for this purpose (See Chapter 3 - MPI
Handles). Nonblocking send and receive routines all
return request handles, which are used to identify the
operation posted by the call.

• In summary, sends and receives may be posted (initiated)
by calling nonblocking routines. Posted operations are
identified by request handles. Using request handles,
processes can check the status of posted operations or
wait for their completion.

file:///Users/amp/Desktop/pac0910/MPI-curso/../SCI2940(Apr05)/View definition for request handle

Posting Sends without BlockingPosting Sends without Blocking

• A process calls the routine MPI_Isend to post (initiate) a
send without blocking on completion of the send
operation. The calling sequence is similar to the calling
sequence for the blocking routine MPI_Send but includes
an additional output argument, a request handle.

MPI_Send(buf,cnt,datatype,dest,tag,comm);

MPI_Isend(buf,cnt,datatype,dest,tag,comm,request);

• The request handle identifies the send operation that was
posted. The request handle can be used to check the
status of the posted send or to wait for its completion.

Posting Sends without BlockingPosting Sends without Blocking

• Nonblocking C version of the standard mode send is
given below.
int MPI_Isend(void *buf, int count, MPI_Datatype dtype, int dest,

int tag, MPI_Comm comm, MPI_Request *request);

– An error code is returned by the function.

Notes:
• The source of the message, the sending process, is determined implicitly.
• When this routine returns, a send has been posted (but not yet completed).
• Another call to MPI is required to complete the send operation posted by this

routine.
• None of the arguments passed to MPI_Isend should be read or written until

the send operation is completed.

Example:
MPI_Isend(a,10,MPI_INT,1,10,MPI_COMM_WORLD,&req);
MPI_Isend(&b,1,MPI_DOUBLE,2,19,Comm1,&req);

Posting Receives without Blocking Posting Receives without Blocking

• A process calls the routine MPI_Irecv to post (initiate) a
receive without blocking on its completion. The calling
sequence is similar to the calling sequence for the
blocking routine MPI_Recv, but the status argument is
replaced by a request handle; both are output arguments.

MPI_Recv(buf,cnt,datatype,source,tag,comm,status);

MPI_Irecv(buf,cnt,datatype,source,tag,comm,request);

• The request handle identifies the receive operation that
was posted and can be used to check the status of the
posted receive or to wait for its completion.

Posting Receives without BlockingPosting Receives without Blocking

• Nonblocking C version of the standard mode send is
given below.
int MPI_Irecv(void *buf, int count, MPI_Datatype dtype, int source,

int tag, MPI_Comm comm, MPI_Request *request);
– An error code is returned by the function.

Notes:
• A maximum of count items of type DTYPE is accepted; if the message contains

more, it is an error.
• The sending and receiving processes must agree on the datatype; if they
disagree, it is an error.
• When this routine returns, the receive has been posted (initiated) but not yet
completed.
• Another call to MPI is required to complete the receive operation posted by this

routine.
• None of the arguments passed to MPI_Irecv should be read or written until the

receive operation is completed.

Completion: Waiting and TestingCompletion: Waiting and Testing

• Posted sends and receives must be completed.
• If a send or receive is posted by a nonblocking

routine, then its completion status can be
checked by calling one of a family of completion
routines.

• MPI provides both blocking and nonblocking
completion routines.
– The blocking routines are MPI_Wait and its variants.
– The nonblocking routines are MPI_Test and its

variants. These routines are discussed in the following
two sections.

Completion: Waiting Completion: Waiting

• A process that has posted a send or receive by calling a
nonblocking routine (for instance, MPI_Isend or
MPI_Irecv) can subsequently wait for the posted
operation to complete by calling MPI_Wait. The posted
send or receive is identified by passing a request handle.

• The arguments for the MPI_Wait routine are:
– Request

• a request handle (returned when the send or receive was
posted)

– Status
• for receive, information on the message received; for send, may

contain an error code

• In addition, an error code is returned.

Completion: WaitingCompletion: Waiting

• C version of MPI_Wait is given below.
int MPI_Wait(MPI_Request *request, MPI_Status *status);
– An error code is returned.

Notes:
• The request argument is expected to identify a previously posted
send or receive.
• MPI_Wait returns when the send or receive identified by the request

argument is complete.
• If the posted operation was a receive, then the source, tag, and
actual count of data received are available via the status argument.
• If the posted operation was a send, the status argument may contain

an error code for the send operation (different from the error code for
the call to MPI_Wait).

Completion: Testing Completion: Testing

• A process that has posted a send or receive by calling a
nonblocking routine can subsequently test for the posted
operation’s completion by calling MPI_Test. The posted
send or receive is identified by passing a request handle.

• The arguments for the MPI_Test routine are:
– Request

• a request handle (returned when the send or receive was
posted).

– Flag
• true if the send or receive has completed.

– Status
• undefined if flag equals false. Otherwise, like MPI_Wait.

• In addition, an error code is returned.

Completion: TestingCompletion: Testing

• C versions of MPI_Test is given below.
int MPI_Test(MPI_Request *request, int *flag,

MPI_Status *status);
– An error code is returned.

Notes:
• The request argument is expected to identify a previously posted send

or receive.
• MPI_Test returns immediately.
• If the flag argument is true, then the posted operation is complete.
• If the flag argument is true and the posted operation was a receive,
then the source, tag, and actual count of data received are available
via the status argument.
• If the flag argument is true and the posted operation was a send, then

the status argument may contain an error code for the send operation
(not for MPI_Test).

Nonblocking Sends and Receives: Nonblocking Sends and Receives:
Advantages and DisadvantagesAdvantages and Disadvantages

• Selective use of nonblocking routines makes it much
easier to write deadlock-free code. This is a big
advantage because it is easy to unintentionally write
deadlock into programs.

• On systems where latencies are large, posting receives
early is often an effective, simple strategy for masking
communication overhead.
– Latencies tend to be large on physically distributed collections of

hosts (for example, clusters of workstations) and relatively small
on shared memory multiprocessors. In general, masking
communication overhead requires careful attention to algorithms
and code structure.

• On the downside, using nonblocking send and receive
routines may increase code complexity, which can make
code harder to debug and harder to maintain.

Send/Receive Example Send/Receive Example

• This program is a revision of the earlier example given in
previous section. This version runs to completion.

• Process 0 attempts to exchange messages with process
1. Each process begins by posting a receive for a
message from the other. Then, each process blocks on a
send. Finally, each process waits for its previously posted
receive to complete.

• Each process completes its send because the other
process has posted a matching receive. Each process
completes its receive because the other process sends a
message that matches. Except system failure, the
program runs to completion.

Send/Receive ExampleSend/Receive Example

/* deadlock avoided */
#include <stdio.h>
#include <mpi.h>
void main (int argc, char **argv) {

int myrank;
MPI_Request request;
MPI_Status status;
double a[100], b[100];

MPI_Init(&argc, &argv); /* Initialize MPI */
MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* Get rank */
if(myrank == 0) {

/* Post a receive, send a message, then wait */
MPI_Irecv(b, 100, MPI_DOUBLE, 1, 19, MPI_COMM_WORLD, &request);
MPI_Send(a, 100, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD);
MPI_Wait(&request, &status);

} else if(myrank == 1) {
/* Post a receive, send a message, then wait */
MPI_Irecv(b, 100, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD, &request);

MPI_Send(a, 100, MPI_DOUBLE, 0, 19, MPI_COMM_WORLD);
MPI_Wait(&request, &status);

}
MPI_Finalize(); /* Terminate MPI */

}

Reference: http://foxtrot.ncsa.uiuc.edu:8900/public/MPI/

Send Modes Send Modes

Send ModesSend Modes

• MPI provides the following four send modes:
– Standard Mode Send
– Synchronous Mode Send
– Ready Mode Send
– Buffered Mode Send

• This section describes these send modes and briefly indicates when
they are useful. Standard mode, used in all example code so far in
this chapter, is the most widely used.

• Although there are four send modes, there is only one receive mode.
A receiving process can use the same call to MPI_Recv or
MPI_Irecv, regardless of the send mode used to send the message.

• Both blocking and nonblocking calls are available for each of the
four send modes.

Standard Mode SendStandard Mode Send

• Standard mode send is MPI’s general-purpose send
mode. The other three send modes are useful in special
circumstances, but none have the general utility of
standard mode.

• Recall the discussion of Sections What Happens at
Runtime and Blocking and Completion.
– When MPI executes a standard mode send, one of two things

happens.
– Either the message is copied into an MPI internal buffer and

transferred asynchronously to the destination process, or the
source and destination processes synchronize on the message.

– The MPI implementation is free to choose (on a case-by-case
basis) between buffering and synchronizing, depending on
message size, resource availability, etc.

Standard Mode SendStandard Mode Send

• If the message is copied into an MPI internal
buffer, then the send operation is formally
completed as soon as the copy is done.

• If the two processes synchronize, then the send
operation is formally completed only when the
receiving process has posted a matching receive
and actually begun to receive the message.

Standard Mode SendStandard Mode Send

• The preceding comments apply to both blocking and
nonblocking calls, i.e., to both MPI_SEND and
MPI_ISEND.

• MPI_SEND does not return until the send operation it
invoked has completed.
– Completion can mean the message was copied into an MPI

internal buffer, or it can mean the sending and receiving
processes synchronized on the message.

• In contrast, MPI_ISEND initiates a send operation and
then returns immediately, without waiting for the send
operation to complete.
– Completion has the same meaning as before: either the

message was copied into an MPI internal buffer or the sending
and receiving processes synchronized on the message.

Standard Mode SendStandard Mode Send

• Note: the variables passed to MPI_ISEND cannot
be used (should not even be read) until the send
operation invoked by the call has completed. A
call to MPI_TEST, MPI_WAIT or one of their
variants is needed to determine completion
status.

• One of the advantages of standard mode send is
that the choice between buffering and
synchronizing is left to MPI on a case-by-case
basis. In general, MPI has a clearer view of the
tradeoffs, especially since low-level resources
and resources internal to MPI are involved.

Synchronous, Ready Mode, and Synchronous, Ready Mode, and
Buffered Send Buffered Send

• Synchronous mode send requires MPI to synchronize
the sending and receiving processes.

• When a synchronous mode send operation is completed,
the sending process may assume the destination process
has begun receiving the message. The destination
process need not be done receiving the message, but it
must have begun receiving the message.

• The nonblocking call has the same advantages the
nonblocking standard mode send has: the sending
process can avoid blocking on a potentially lengthy
operation.

Synchronous, Ready Mode, and Synchronous, Ready Mode, and
Buffered SendBuffered Send

• Ready mode send requires that a matching receive has
already been posted at the destination process before
ready mode send is called. If a matching receive has not
been posted at the destination, the result is undefined. It
is your responsibility to make sure the requirement is met.

• In some cases, knowledge of the state of the destination
process is available without doing extra work.
Communication overhead may be reduced because
shorter protocols can be used internally by MPI when it is
known that a receive has already been posted.

• The nonblocking call has advantages similar to the
nonblocking standard mode send: the sending process
can avoid blocking on a potentially lengthy operation.

Synchronous, Ready Mode, and Synchronous, Ready Mode, and
Buffered SendBuffered Send

• Buffered mode send requires MPI to use
buffering. The downside is that you must assume
responsibility for managing the buffer. If at any
point, insufficient buffer is available to complete a
call, the results are undefined. The functions
MPI_BUFFER_ATTACH and
MPI_BUFFER_DETACH allow a program to
make buffer available to MPI.

file:///Users/amp/Desktop/pac0910/MPI-curso/../SCI2940(Apr05)/View definition for MPI_BUFFER_ATTACH
file:///Users/amp/Desktop/pac0910/MPI-curso/../SCI2940(Apr05)/View definition for MPI_BUFFER_DETACH

Naming Conventions and Calling Naming Conventions and Calling
Sequences Sequences

• There are eight send functions in MPI: four send modes,
each available in both blocking and nonblocking forms.

• The blocking send functions take the same arguments (in
the same order) as MPI_SEND. The nonblocking send
functions take the same arguments (in the same order)
as MPI_ISEND.

• Synchronous, buffered, and ready mode sends are
indicated by adding the letters S, B, and R, respectively,
to the function name. Nonblocking calls are indicated by
adding an I to the function name. The table below shows
the eight function names.

Naming Conventions and Calling Naming Conventions and Calling
SequencesSequences

Send Mode Blocking Function Nonblocking Function

Standard MPI_SEND MPI_ISEND

Synchronous MPI_SSEND MPI_ISSEND

Ready MPI_RSEND MPI_IRSEND

Buffered MPI_BSEND MPI_IBSEND

file:///Users/amp/Desktop/pac0910/MPI-curso/../SCI2940(Apr05)/View definition for MPI_SEND
file:///Users/amp/Desktop/pac0910/MPI-curso/../SCI2940(Apr05)/View definition for MPI_ISEND
file:///Users/amp/Desktop/pac0910/MPI-curso/../SCI2940(Apr05)/View definition for MPI_SSEND
file:///Users/amp/Desktop/pac0910/MPI-curso/../SCI2940(Apr05)/View definition for MPI_ISSEND
file:///Users/amp/Desktop/pac0910/MPI-curso/../SCI2940(Apr05)/View definition for MPI_RSEND
file:///Users/amp/Desktop/pac0910/MPI-curso/../SCI2940(Apr05)/View definition for MPI_IRSEND
file:///Users/amp/Desktop/pac0910/MPI-curso/../SCI2940(Apr05)/View definition for MPI_BSEND
file:///Users/amp/Desktop/pac0910/MPI-curso/../SCI2940(Apr05)/View definition for MPI_IBSEND

Definition ReviewDefinition Review

• MPI_SEND
– Used to perform a standard-mode, blocking send of data

referenced by message to the process with rank dest.

• MPI_ISEND
– Used to post a nonblocking send in standard mode, allocating a

request object and returning a handle to it.

• MPI_SSEND
– Used for a synchronous mode for a blocking send. It won't return

until a matching receive has been posted and data reception has
begun.

• MPI_ISSEND
– Used to post a nonblocking send in synchronous mode.

Definition ReviewDefinition Review

• MPI_RSEND
– Used for a ready send, ready mode for blocking send.

The matching receive must be posted before the call
to MPI_RSEND.

• MPI_IRSEND
– Used to post a nonblocking send in ready mode.

• MPI_BSEND
– Used for a buffered, blocking send. The buffer is user-

allocated.

• MPI_IBSEND
– Used to start a nonblocking, buffered-mode send.

Reference: http://foxtrot.ncsa.uiuc.edu:8900/public/MPI/

ENDEND

	Diapositivo 1
	Diapositivo 2
	Diapositivo 3
	Diapositivo 4
	Diapositivo 5
	Diapositivo 6
	Diapositivo 7
	Diapositivo 8
	Diapositivo 9
	Diapositivo 10
	Diapositivo 11
	Diapositivo 12
	Diapositivo 13
	Diapositivo 14
	Diapositivo 15
	Diapositivo 16
	Diapositivo 17
	Diapositivo 18
	Diapositivo 19
	Diapositivo 20
	Diapositivo 21
	Diapositivo 22
	Diapositivo 23
	Diapositivo 24
	Diapositivo 25
	Diapositivo 26
	Diapositivo 27
	Diapositivo 28
	Diapositivo 29
	Diapositivo 30
	Diapositivo 31
	Diapositivo 32
	Diapositivo 33
	Diapositivo 34
	Diapositivo 35
	Diapositivo 36
	Diapositivo 37
	Diapositivo 38
	Diapositivo 39
	Diapositivo 40
	Diapositivo 41
	Diapositivo 42
	Diapositivo 43
	Diapositivo 44
	Diapositivo 45
	Diapositivo 46
	Diapositivo 47
	Diapositivo 48
	Diapositivo 49
	Diapositivo 50
	Diapositivo 51
	Diapositivo 52
	Diapositivo 53
	Diapositivo 54
	Diapositivo 55
	Diapositivo 56
	Diapositivo 57
	Diapositivo 58
	Diapositivo 59
	Diapositivo 60
	Diapositivo 61
	Diapositivo 62
	Diapositivo 63
	Diapositivo 64
	Diapositivo 65
	Diapositivo 66
	Diapositivo 67
	Diapositivo 68

