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The Underlying PrincipleThe Underlying Principle

• A parallel program consists of p processes with different 
address spaces.

• Communication takes place via the explicit exchange of 
data or messages (realized via system calls like send(...) 
or receive(...) and others), only.

• Message consists of
– header: target ID, message information (type, length, ...)

– body: the data to be provided

• Need for a buffer mechanism: what to do if the receiver is 
not (yet) ready to receive?



  

The User’s ViewThe User’s View

Library functions as the 
only interface to the 
communication system!
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Message BuffersMessage Buffers

• Typically (but not necessarily) connected parts of memory
– homogeneous architectures (all processors of the same 

type):
• buffer as a sequence of bytes, without any type information

– heterogeneous architectures (different types of processors):
• type information necessary for format conversion by message 

passing library

• Definition and allocation of message buffers:
– send buffer: generally done by application program

– receive buffer: either automatically by message passing 
library or manually by application program (eventually with 
check whether buffer length is sufficient)



  

Point-to-Point Communication

A point-to-point communication always involves 
exactly two processes. One process acts as the 
sender and the other acts as the receiver.
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• Send – required information:
– receiver (who shall get the message?)
– send buffer (where is the data provided?)

– type of message (what kind of information is sent?)
– communication context (context within which the message may 

be sent and received)

• Receive – required information:
– sender (wild cards are possible, i.e. receive from any process)

– receive buffer (where is the incoming message to be put?)
– type of message

– communication context

Point-to-Point Communication



  

Communication ContextCommunication Context

• Consider a scenario:
– three processes, and all of them call a subroutine from 

a library
– inter-process communication within the subroutines

– communication context shall ensure this restriction to 
the subroutines

– compare correct order (next slide) and error case



  

Communication ContextCommunication Context
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Communication ContextCommunication Context

• Consider a scenario:
– three processes, and all of them call a subroutine from 

a library
– inter-process communication within the subroutines

– communication context shall ensure this restriction to 
the subroutines

– compare correct order (previous slide) and error case 
(next slide)



  

Communication ContextCommunication Context
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Why Buffers?Why Buffers?

• P1:
• Compute something 

• Store result in SBUF 

• SendBlocking(P2,SBUF) 
• ReceiveBlocking(P2,RBU

F)
• Read data in RBUF 

• Process RBUF

• P2:
• Compute something

• Store result in SBUF

• SendBlocking(P1,SBUF)
• ReceiveBlocking(P1,RBU

F)
• Read data in RBUF

• Process RBUF



  

Case StudyCase Study

• Using `which mpirun` to see whether you are using 
MPICH-1.2.5. If no, update the ~/.bashrc with the correct 
path.

• By using the `wget` command, download the  sample 
program from
– http://www.sci.hkbu.edu.hk/tdgc/tutorial/RHPCC/source/c/casestudy03.c

• Compile and run the program with 2 processes

• Change the BUFSIZE with 32000 and then recompile and 
run the program

• Note the difference

http://www.sci.hkbu.edu.hk/tdgc/tutorial/RHPCC/source/c/casestudy03.c


  

Why Buffers?Why Buffers?

• Does this work?
– YES, if the communication system buffers internally

– NO, if the communication system does not use buffers 
(deadlock!)

• Hence: avoid this with non-blocking send operations or 
with an atomic sendreceive operation

• Typical buffering options:
– nothing specified: buffering possible, but not mandatory 

(standard; users must not rely on buffering)

– guaranteed buffering: problems if there is not enough memory
– no buffering: efficient, if buffering is not necessary (due to the 

algorithm, for example)



  

Keeping the OrderKeeping the Order

• Problem: there is no global time in a distributed 
system

• Consequence: there may be wrong send-receive 
assignments due to a changed order of 
occurrence
– typically no problem for only one channel P1 ↔ P2

– may be a problem if more processes communicate 
and if sender is specified via a wild card



  

Keeping the OrderKeeping the Order
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Keeping the OrderKeeping the Order
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Send m1 to Proc 3
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Collective CommunicationCollective Communication

• Many applications require not only a point-to-
point communication, but also collective 
communication operations.

A collective communication always involves data 
sharing in the specified communicator, which we mean 
every process in the group associated with the 
communicator.

e.g. broadcast, scatter, gather, etc.



  

Collective CommunicationCollective Communication
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Message TypesMessage Types

• Data messages:
– Meaning: data are exchanged in order to provide other 

processes’ input for further computations
– Example: interface values in a domain-decomposition 

parallelization of a PDE solution

• Control messages:
– Meaning: data are exchanged in order to control the 

other processes’ continuation
– Examples: a global error estimator indicates whether a 

finite element mesh should be refined or not; a flag 
determines what to do next



  

EfficiencyEfficiency

• Avoid short messages: latency reduces the effective 
bandwidth
 tcomm = tlatency+ n/B (n: message size, B: bandwidth)

 Beff = n / tcomm

• Computation should dominate communication!
• Typical conflict for numerical simulations:

– overall runtime suggests large numbers of p processes
– communication-computation ratio and message size 

suggest small p
• Try to find (machine- and problem-dependent) optimum 

number of processes
• Try to avoid communication points at all



  

MPI – The Message MPI – The Message 
Passing InterfacePassing Interface



  

MPIMPI

• Objectives
– Define an international long-term standard API for 

portable parallel applications and get all hardware 
vendors involved in implementations of this standard; 

– Define a target system for parallelizing compilers.

• The MPI Forum (http://www.mpi-forum.org/) brings 
together all contributing parties

• Most widespread implementations: 
– MPICH (Argonne Nat’l Lab, 

http://www-unix.mcs.anl.gov/mpi),

– LAM (Indiana University, http://www.lam-mpi.org),...

http://www-unix.mcs.anl.gov/mpi
http://www.lam-mpi.org/


  

Programming with MPIProgramming with MPI

• An MPI implementation consists of
– a subroutine library with all MPI functions
– include files for the calling application program
– some startup script (usually called mpirun, but not standardized)

• Include the lib file mpi.h (or however called) into the source 
code

• Libraries available for all major imperative languages (C, C++, 
Fortran …)

• Initialize the MPI environment:
MPI_Init(int *argc, **argv)

• Get your own process ID (rank):
MPI_Comm_rank

• Get the number of processes (including oneself):
MPI_Comm_size



  

Programming with MPIProgramming with MPI

• In error situations: terminate all processes of a process 
group

MPI_Abort

• At the end of the program:
MPI_Finalize

• After compilation: link the MPI library and (if necessary) 
lower communication libraries (depending on the 
concrete implementation)

• Program start:
– mpirun

– Use the program’s name and the number of processes to be 
started as parameters



  

Point-to-Point CommunicationPoint-to-Point Communication

Four types of point-to-point send operations, each of them available in 
a blocking and a non-blocking variant 

Standard (regular) send:  Asynchronous; the system decides whether or 
not to buffer messages to be sent

Buffered send:   Asynchronous, but buffering of messages to be sent by 
the system is enforced

Synchronous send:  Synchronous, i.e. the send operation is not 
completed before the receiver has started to receive the message

Ready send:  Immediate send is enforced: if no corresponding receive 
operation is available, the result is undefined

blocking Non-blocking

Standard MPI_Send MPI_Isend

Buffered MPI_Bsend MPI_Ibsend

Synchronous MPI_Ssend MPI_Issend

Ready MPI_Rsend MPI_Irsend



  

Point-to-Point CommunicationPoint-to-Point Communication

• Meaning of blocking or non-blocking communication (variants with ‘I’):
Blocking: the program will not return from the subroutine call until the 

copy to/from the system buffer has finished.
Non-blocking: the program immediately returns from the subroutine call. 

It is not assured that the copy to/from the system buffer has completed 
so that user has to make sure of the completion of the copy.

Only one receive function:
– Blocking variant: MPI_Recv

• Receive operation is completed when the message has been 
completely written into the receive buffer

– Non-blocking variant: MPI_Irecv
• Continuation immediately after the receiving has begun

– Can be combined with each of the four send modes 
• Non-blocking communications are primarily used to overlap 

computation with communication and exploit possible performance 
gains.



  

Point-to-Point CommunicationPoint-to-Point Communication

• Syntax:
MPI_Send(buf,count,datatype,dest,tag,comm)
MPI_Recv(buf,count,datatype,source,tag,comm,status)

• where
– int *buf pointer to the buffer’s begin
– int count number of data objects
– int source process ID of the sending process
– int dest process ID of the destination process
– int tag ID of the message
– MPI_Datatype datatype type of the data objects
– MPI_Comm commcommunicator (see later)
– MPI_Status *status object containing message information

• In the non-blocking versions, there’s one additional argument 
request for checking the completion of the communication.



  

Motivation for non-blocking 
communication

Blocking communication means that they do not 
return until the communication has completed.
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receive. 
→  every process is sending and none is yet receiving, 
→  deadlock can occur

Deadlock
Two or more processes 
cannot proceed because 
they are both waiting for 
the other to release some 
resources (here is a 
response). 



  

MPI Send and Receive (blocking)MPI Send and Receive (blocking)
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MPI_Recv()

User Mode Kernel Mode

MPI_Send(sendbuf,1)

Now sendbuf can be reused

Copying data from
sendbuf to sysbuf

Send data from
sysbuf to dest 

sysbuf

sendbuf

(blocked)

User Mode Kernel Mode

MPI_recv(recvbuf,0)

Now recvbuf contains valid data

Receive data from 
src to sysbuf

Copying data from
sysbuf to recvbuf

sysbuf
recvbuf

(blocked)
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MPI Send and Receive (non-blocking)MPI Send and Receive (non-blocking)
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Process 1
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MPI_Isend(sendbuf,1,req)
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Data

MPI_Isend()
MPI_Irecv()



  

Test Message ArrivedTest Message Arrived

Used to check for non-blocking communication status.
MPI_Buffer_attach(...):

lets MPI provide a buffer for sending

MPI_Probe(...):
blocking test whether a message has arrived

MPI_Iprobe(...):
non-blocking test whether a message has arrived

MPI_Get_count(...):
provides the length of a message received

Used to check for completion of non-blocking communication.
MPI_Test(...):

checks whether a send or receive operation is completed

MPI_Wait(...):
causes the process to wait until a send or receive operation has been 

completed



  

Using Non-blocking CommunicationUsing Non-blocking Communication

• Method 1:  MPI_Wait

• Method 2:  MPI_Test

MPI_Irecv(buf,…,req);
…do work not using buf
MPI_Wait(req,status);
…do work using buf

MPI_Irecv(buf,…,req);
MPI_Test(req,flag,status);
while (flag != 0) { 
      …do work not using buf
      MPI_Test(req,flag,status);
}
…do work using buf



  

Packing and UnpackingPacking and Unpacking

• Elements of a complex data structure can be packed, sent, and 
unpacked again element by element: expensive and error-prone

• Faster alternative: send everything byte-wise, ignoring the structure; not 
applicable to heterogeneous clusters for lack of data format control

• Second alternative: extend the existing set of MPI data types and use 
standard commands like MPI_SEND or MPI_RECV afterwards

• MPI functions for explicit packing and unpacking:
– MPI_Pack(...):

Packs data into a buffer

– MPI_Unpack(...):
unpacks data from the buffer

– MPI_Type_contiguous(...):
support for type conversion

– MPI_Type_vector(...):
constructs an MPI array with element-to-element distance stride

– MPI_Type_struct(...):
constructs an MPI record (complex data structure to be used as a standard MPI data type 
afterwards)



  

Standard MPI DatatypesStandard MPI Datatypes

MPI datatype

MPI Fortran C

MPI_CHARACTER character(1) MPI_CHAR signed char 

MPI_SHORT signed short int 

MPI_INTEGER integer MPI_INT signed int 

MPI_LONG signed long int 

MPI_UNSIGNED_CHAR unsigned char 

MPI_UNSIGNED_SHORT unsigned short int 

MPI_UNSIGNED unsigned int 

MPI_UNSIGNED_LONG unsigned long int 

MPI_REAL real MPI_FLOAT float 

MPI_DOUBLE_PRECISION double precision MPI_DOUBLE double 

MPI_LONG_DOUBLE long double 

MPI_COMPLEX complex 

MPI_LOGICAL logical 



  

Simple ExampleSimple Example

if (myrank == 0) {
buf[0]=365;
buf[1]=366;
MPI_Send(buf,2,MPI_INT,1,10,MPI_COMM_WORLD);

}
else {

MPI_Recv(buf,2,MPI_INT,0,10,MPI_COMM_WORLD,
&status);
MPI_Get_count(&status,MPI_INT,mess_length);
mess_tag=status.MPI_TAG;
mess_sender=status.MPI_SOURCE;

}



  

Process Groups and CommunicatorsProcess Groups and Communicators

• Messages are tagged for identification – message tag is 
message ID!

• Again: process groups for restricted message exchange 
and restricted collective communication
– In MPI-1 static process groups only

– Process groups are ordered sets of processes
– Each process is locally uniquely identified via its local (group-

related) process ID or rank

– Ordering starts with zero, successive numbering

– Global identification of a process via the pair (process group, 
rank)



  

Process Groups and CommunicatorsProcess Groups and Communicators

• MPI communicators: concept for working with contexts
– Communicator = process group + message context

– Message identification via the pair (context, tag)
– Context may be a subroutine library
– MPI offers intra-communicators for collective communication 

within a process group and inter-communicators for (point-to-
point) communication between two process groups

– Default (including all processes): MPI_COMM_WORLD

• MPI provides a lot of functions for working with process 
groups and communicators



  

Collective CommunicationCollective Communication

• Important application scenario:
– distribute the elements of vectors or matrices among several 

processors

• Collective communication
• Some functions offered by MPI

– MPI_Barrier(...):
synchronization barrier: process waits for the other group 
members; when all of them have reached the barrier, they can 
continue

– MPI_Bcast(...):
sends the data to all members of the group given by a 
communicator (hence more a multicast than a broadcast)

– MPI_Gather(...):
collects data from the group members



  

Collective CommunicationCollective Communication

– MPI_Allgather(...):
gather-to-all: data are collected from all processes, and all get the 
collection

– MPI_Scatter(...):
classical scatter operation: distribution of data among processes

– MPI_Reduce(...):
executes a reduce operation

– MPI_Allreduce(...):
executes a reduce operation where all processes get its result

– MPI_Op_create(...) and MPI_Op_free(...):
defines a new reduce operation or removes it, respectively

• Note that all of the functions above are with respect to a 
communicator (hence not necessarily a global 
communication)



  

BroadcastBroadcast

• Meaning: send the message to all participating 
processes

• Example: the first process that finds the solution 
in a competition informs everyone to stop

MPI_Bcast
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GatherGather

• Meaning: collect information from all participating 
processes

• Example: each process computes some part of 
the solution, which shall now be assembled by 
one process
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MPI_Gather(&m,1,MPI_INT,&b,1,MPI_INT,2,MPI_COMM_WORLD);

m: send buffer, b: recv buffer



  

All GatherAll Gather

• Meaning: like gather, but all participating 
processes assemble the collected information

• Example: as before, but now all processes need 
the complete solution for their continuation
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MPI_Allgather(&m,1,MPI_INT,&b,1,MPI_INT,MPI_COMM_WORLD);



  

ScatterScatter

• Meaning: distribute your data among the 
processes

• Example: two vectors are distributed in order to 
prepare a parallel computation of their scalar 
product

MPI_Scatter
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MPI_Scatter(&a,1,MPI_INT,&m,1,MPI_INT,2,MPI_COMM_WORLD);



  

All to AllAll to All

• Meaning: data of all processes are distributed 
among all processes

MPI_Alltoall(&a,1,MPI_INT,&b,1,MPI_INT,MPI_COMM_WORLD); 

MPI_Alltoall
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ReduceReduce

• Meaning: information of all processes is used to 
provide a condensed result by/for one process

• Example: calculation of the global minimum of 
the variables kept by all processes, calculation 
of a global sum, etc.
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MPI_Reduce(&b,&d,1,MPI_INT,MPI_SUM,2,MPI_COMM_WORLD);

op:MPI_SUM



  

All ReduceAll Reduce

• Meaning: like reduce, but condensed result is 
available for all processes

• Example: suppose the result is needed for 
the control of each process’ continuation
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MPI_Allreduce(&b,&d,1,MPI_INT,MPI_SUM,MPI_COMM_WORLD);

op:MPI_SUM



  

Predefined Reduction OperationsPredefined Reduction Operations

MPI Name Function

MPI_MAX Maximum

MPI_MIN Minimum

MPI_SUM Sum

MPI_PROD Product

MPI_LAND Logical AND

MPI_BAND Bitwise AND

MPI_LOR Logical OR

MPI_BOR Bitwise OR

MPI_LXOR Logical exclusive OR

MPI_BXOR Bitwise exclusive OR

MPI_MAXLOC Maximum and location

MPI_MINLOC Minimum and location



  

From MPI-1 to MPI-2From MPI-1 to MPI-2

• Obvious drawbacks of MPI-1:
– Restriction to SPMD program structure
– No support of multithreading
– No dynamic process creation nor management (like in PVM)
– No standardization of functions for parallel I/O
– Too many (hardly needed) functions

• Hence, MPI-2 provided improvements and extensions to 
MPI-1:
– Now possible for dynamic creation and management of 

processes
– Introduction of special communication functions for DSM systems
– Extension of the collective communication features
– Parallel I/O
– C++ and FORTRAN 90 are supported, too



  

EndEnd
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