

Message Passing Message Passing
InterfaceInterface

Class 6

Experiencing Cluster Computing

Message Passing Message Passing
ParadigmParadigm

The Underlying PrincipleThe Underlying Principle

• A parallel program consists of p processes with different
address spaces.

• Communication takes place via the explicit exchange of
data or messages (realized via system calls like send(...)
or receive(...) and others), only.

• Message consists of
– header: target ID, message information (type, length, ...)

– body: the data to be provided

• Need for a buffer mechanism: what to do if the receiver is
not (yet) ready to receive?

The User’s ViewThe User’s View

Library functions as the
only interface to the
communication system!

Communication
System
(MPI)

Processor

Process

Process

Process

Processor

Process

Process

Process

Processor

Process

Processor

Process

Data exchange

Message BuffersMessage Buffers

• Typically (but not necessarily) connected parts of memory
– homogeneous architectures (all processors of the same

type):
• buffer as a sequence of bytes, without any type information

– heterogeneous architectures (different types of processors):
• type information necessary for format conversion by message

passing library

• Definition and allocation of message buffers:
– send buffer: generally done by application program

– receive buffer: either automatically by message passing
library or manually by application program (eventually with
check whether buffer length is sufficient)

Point-to-Point Communication

A point-to-point communication always involves
exactly two processes. One process acts as the
sender and the other acts as the receiver.

1 3

0
2

4

5
Communicator

source

dest

• Send – required information:
– receiver (who shall get the message?)
– send buffer (where is the data provided?)

– type of message (what kind of information is sent?)
– communication context (context within which the message may

be sent and received)

• Receive – required information:
– sender (wild cards are possible, i.e. receive from any process)

– receive buffer (where is the incoming message to be put?)
– type of message

– communication context

Point-to-Point Communication

Communication ContextCommunication Context

• Consider a scenario:
– three processes, and all of them call a subroutine from

a library
– inter-process communication within the subroutines

– communication context shall ensure this restriction to
the subroutines

– compare correct order (next slide) and error case

Communication ContextCommunication Context

Subroutine

Send (Proc 0)

Recv (Proc 2)

Process 0 Process 1 Process 2

Subroutine

Recv (Proc 1)
Send (Proc 2)

Subroutine

Recv (Proc 0)
Send (Proc 1)

Recv (any)
Send (Proc 0)

Time

Communication ContextCommunication Context

• Consider a scenario:
– three processes, and all of them call a subroutine from

a library
– inter-process communication within the subroutines

– communication context shall ensure this restriction to
the subroutines

– compare correct order (previous slide) and error case
(next slide)

Communication ContextCommunication Context

Subroutine

Send (Proc 0)

Recv (Proc 2)

Process 0 Process 1 Process 2

Subroutine

??
Recv (Proc 1)
Send (Proc 2)

Subroutine

Recv (Proc 0)
Send (Proc 1)

Recv (any)

Send (Proc 0)

Time

Delay

Why Buffers?Why Buffers?

• P1:
• Compute something

• Store result in SBUF

• SendBlocking(P2,SBUF)
• ReceiveBlocking(P2,RBU

F)
• Read data in RBUF

• Process RBUF

• P2:
• Compute something

• Store result in SBUF

• SendBlocking(P1,SBUF)
• ReceiveBlocking(P1,RBU

F)
• Read data in RBUF

• Process RBUF

Case StudyCase Study

• Using `which mpirun` to see whether you are using
MPICH-1.2.5. If no, update the ~/.bashrc with the correct
path.

• By using the `wget` command, download the sample
program from
– http://www.sci.hkbu.edu.hk/tdgc/tutorial/RHPCC/source/c/casestudy03.c

• Compile and run the program with 2 processes

• Change the BUFSIZE with 32000 and then recompile and
run the program

• Note the difference

http://www.sci.hkbu.edu.hk/tdgc/tutorial/RHPCC/source/c/casestudy03.c

Why Buffers?Why Buffers?

• Does this work?
– YES, if the communication system buffers internally

– NO, if the communication system does not use buffers
(deadlock!)

• Hence: avoid this with non-blocking send operations or
with an atomic sendreceive operation

• Typical buffering options:
– nothing specified: buffering possible, but not mandatory

(standard; users must not rely on buffering)

– guaranteed buffering: problems if there is not enough memory
– no buffering: efficient, if buffering is not necessary (due to the

algorithm, for example)

Keeping the OrderKeeping the Order

• Problem: there is no global time in a distributed
system

• Consequence: there may be wrong send-receive
assignments due to a changed order of
occurrence
– typically no problem for only one channel P1 ↔ P2

– may be a problem if more processes communicate
and if sender is specified via a wild card

Keeping the OrderKeeping the Order

Subroutine

Send m1 to Proc 3

Process 0 Process 1 Process 2

Subroutine

Send m1 to Proc 3
Send (Proc 0)

Time

Subroutine

Recv from any
Recv from any

Keeping the OrderKeeping the Order

Subroutine

Send m1 to Proc 3

Process 0 Process 1 Process 2

Subroutine

Send m1 to Proc 3
Send (Proc 0)

Time

Subroutine

Recv from any
Recv from any

Collective CommunicationCollective Communication

• Many applications require not only a point-to-
point communication, but also collective
communication operations.

A collective communication always involves data
sharing in the specified communicator, which we mean
every process in the group associated with the
communicator.

e.g. broadcast, scatter, gather, etc.

Collective CommunicationCollective Communication

11 33 55 77

1616

reduction

scatter gather

broadcast

Message TypesMessage Types

• Data messages:
– Meaning: data are exchanged in order to provide other

processes’ input for further computations
– Example: interface values in a domain-decomposition

parallelization of a PDE solution

• Control messages:
– Meaning: data are exchanged in order to control the

other processes’ continuation
– Examples: a global error estimator indicates whether a

finite element mesh should be refined or not; a flag
determines what to do next

EfficiencyEfficiency

• Avoid short messages: latency reduces the effective
bandwidth
 tcomm = tlatency+ n/B (n: message size, B: bandwidth)

 Beff = n / tcomm

• Computation should dominate communication!
• Typical conflict for numerical simulations:

– overall runtime suggests large numbers of p processes
– communication-computation ratio and message size

suggest small p
• Try to find (machine- and problem-dependent) optimum

number of processes
• Try to avoid communication points at all

MPI – The Message MPI – The Message
Passing InterfacePassing Interface

MPIMPI

• Objectives
– Define an international long-term standard API for

portable parallel applications and get all hardware
vendors involved in implementations of this standard;

– Define a target system for parallelizing compilers.

• The MPI Forum (http://www.mpi-forum.org/) brings
together all contributing parties

• Most widespread implementations:
– MPICH (Argonne Nat’l Lab,

http://www-unix.mcs.anl.gov/mpi),

– LAM (Indiana University, http://www.lam-mpi.org),...

http://www-unix.mcs.anl.gov/mpi
http://www.lam-mpi.org/

Programming with MPIProgramming with MPI

• An MPI implementation consists of
– a subroutine library with all MPI functions
– include files for the calling application program
– some startup script (usually called mpirun, but not standardized)

• Include the lib file mpi.h (or however called) into the source
code

• Libraries available for all major imperative languages (C, C++,
Fortran …)

• Initialize the MPI environment:
MPI_Init(int *argc, **argv)

• Get your own process ID (rank):
MPI_Comm_rank

• Get the number of processes (including oneself):
MPI_Comm_size

Programming with MPIProgramming with MPI

• In error situations: terminate all processes of a process
group

MPI_Abort

• At the end of the program:
MPI_Finalize

• After compilation: link the MPI library and (if necessary)
lower communication libraries (depending on the
concrete implementation)

• Program start:
– mpirun

– Use the program’s name and the number of processes to be
started as parameters

Point-to-Point CommunicationPoint-to-Point Communication

Four types of point-to-point send operations, each of them available in
a blocking and a non-blocking variant

Standard (regular) send: Asynchronous; the system decides whether or
not to buffer messages to be sent

Buffered send: Asynchronous, but buffering of messages to be sent by
the system is enforced

Synchronous send: Synchronous, i.e. the send operation is not
completed before the receiver has started to receive the message

Ready send: Immediate send is enforced: if no corresponding receive
operation is available, the result is undefined

blocking Non-blocking

Standard MPI_Send MPI_Isend

Buffered MPI_Bsend MPI_Ibsend

Synchronous MPI_Ssend MPI_Issend

Ready MPI_Rsend MPI_Irsend

Point-to-Point CommunicationPoint-to-Point Communication

• Meaning of blocking or non-blocking communication (variants with ‘I’):
Blocking: the program will not return from the subroutine call until the

copy to/from the system buffer has finished.
Non-blocking: the program immediately returns from the subroutine call.

It is not assured that the copy to/from the system buffer has completed
so that user has to make sure of the completion of the copy.

Only one receive function:
– Blocking variant: MPI_Recv

• Receive operation is completed when the message has been
completely written into the receive buffer

– Non-blocking variant: MPI_Irecv
• Continuation immediately after the receiving has begun

– Can be combined with each of the four send modes
• Non-blocking communications are primarily used to overlap

computation with communication and exploit possible performance
gains.

Point-to-Point CommunicationPoint-to-Point Communication

• Syntax:
MPI_Send(buf,count,datatype,dest,tag,comm)
MPI_Recv(buf,count,datatype,source,tag,comm,status)

• where
– int *buf pointer to the buffer’s begin
– int count number of data objects
– int source process ID of the sending process
– int dest process ID of the destination process
– int tag ID of the message
– MPI_Datatype datatype type of the data objects
– MPI_Comm commcommunicator (see later)
– MPI_Status *status object containing message information

• In the non-blocking versions, there’s one additional argument
request for checking the completion of the communication.

Motivation for non-blocking
communication

Blocking communication means that they do not
return until the communication has completed.

1 3

0
2

4

5
Communicator

In case each process sends a message to another
process using a standard send ,and then posts a
receive.
→ every process is sending and none is yet receiving,
→ deadlock can occur

Deadlock
Two or more processes
cannot proceed because
they are both waiting for
the other to release some
resources (here is a
response).

MPI Send and Receive (blocking)MPI Send and Receive (blocking)

Process 0

Process 1

MPI_Send()
MPI_Recv()

User Mode Kernel Mode

MPI_Send(sendbuf,1)

Now sendbuf can be reused

Copying data from
sendbuf to sysbuf

Send data from
sysbuf to dest

sysbuf

sendbuf

(blocked)

User Mode Kernel Mode

MPI_recv(recvbuf,0)

Now recvbuf contains valid data

Receive data from
src to sysbuf

Copying data from
sysbuf to recvbuf

sysbuf
recvbuf

(blocked)

Data

MPI Send and Receive (non-blocking)MPI Send and Receive (non-blocking)

Process 0

Process 1

User Mode Kernel Mode

MPI_Isend(sendbuf,1,req)

Now sendbuf can be reused

Copying data from
sendbuf to sysbuf

Send data from
sysbuf to dest

sysbuf

sendbuf

(not blocked)
MPI_Wait(req)

(blocked)

User Mode Kernel Mode

MPI_Irecv(recvbuf,0,req)

Now recvbuf contains valid data

Receive data from
src to sysbuf

Copying data from
sysbuf to recvbuf

sysbuf
recvbuf

(not blocked)

MPI_Wait(req)

(blocked)

Data

MPI_Isend()
MPI_Irecv()

Test Message ArrivedTest Message Arrived

Used to check for non-blocking communication status.
MPI_Buffer_attach(...):

lets MPI provide a buffer for sending

MPI_Probe(...):
blocking test whether a message has arrived

MPI_Iprobe(...):
non-blocking test whether a message has arrived

MPI_Get_count(...):
provides the length of a message received

Used to check for completion of non-blocking communication.
MPI_Test(...):

checks whether a send or receive operation is completed

MPI_Wait(...):
causes the process to wait until a send or receive operation has been

completed

Using Non-blocking CommunicationUsing Non-blocking Communication

• Method 1: MPI_Wait

• Method 2: MPI_Test

MPI_Irecv(buf,…,req);
…do work not using buf
MPI_Wait(req,status);
…do work using buf

MPI_Irecv(buf,…,req);
MPI_Test(req,flag,status);
while (flag != 0) {
 …do work not using buf
 MPI_Test(req,flag,status);
}
…do work using buf

Packing and UnpackingPacking and Unpacking

• Elements of a complex data structure can be packed, sent, and
unpacked again element by element: expensive and error-prone

• Faster alternative: send everything byte-wise, ignoring the structure; not
applicable to heterogeneous clusters for lack of data format control

• Second alternative: extend the existing set of MPI data types and use
standard commands like MPI_SEND or MPI_RECV afterwards

• MPI functions for explicit packing and unpacking:
– MPI_Pack(...):

Packs data into a buffer

– MPI_Unpack(...):
unpacks data from the buffer

– MPI_Type_contiguous(...):
support for type conversion

– MPI_Type_vector(...):
constructs an MPI array with element-to-element distance stride

– MPI_Type_struct(...):
constructs an MPI record (complex data structure to be used as a standard MPI data type
afterwards)

Standard MPI DatatypesStandard MPI Datatypes

MPI datatype

MPI Fortran C

MPI_CHARACTER character(1) MPI_CHAR signed char

MPI_SHORT signed short int

MPI_INTEGER integer MPI_INT signed int

MPI_LONG signed long int

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_REAL real MPI_FLOAT float

MPI_DOUBLE_PRECISION double precision MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_COMPLEX complex

MPI_LOGICAL logical

Simple ExampleSimple Example

if (myrank == 0) {
buf[0]=365;
buf[1]=366;
MPI_Send(buf,2,MPI_INT,1,10,MPI_COMM_WORLD);

}
else {

MPI_Recv(buf,2,MPI_INT,0,10,MPI_COMM_WORLD,
&status);
MPI_Get_count(&status,MPI_INT,mess_length);
mess_tag=status.MPI_TAG;
mess_sender=status.MPI_SOURCE;

}

Process Groups and CommunicatorsProcess Groups and Communicators

• Messages are tagged for identification – message tag is
message ID!

• Again: process groups for restricted message exchange
and restricted collective communication
– In MPI-1 static process groups only

– Process groups are ordered sets of processes
– Each process is locally uniquely identified via its local (group-

related) process ID or rank

– Ordering starts with zero, successive numbering

– Global identification of a process via the pair (process group,
rank)

Process Groups and CommunicatorsProcess Groups and Communicators

• MPI communicators: concept for working with contexts
– Communicator = process group + message context

– Message identification via the pair (context, tag)
– Context may be a subroutine library
– MPI offers intra-communicators for collective communication

within a process group and inter-communicators for (point-to-
point) communication between two process groups

– Default (including all processes): MPI_COMM_WORLD

• MPI provides a lot of functions for working with process
groups and communicators

Collective CommunicationCollective Communication

• Important application scenario:
– distribute the elements of vectors or matrices among several

processors

• Collective communication
• Some functions offered by MPI

– MPI_Barrier(...):
synchronization barrier: process waits for the other group
members; when all of them have reached the barrier, they can
continue

– MPI_Bcast(...):
sends the data to all members of the group given by a
communicator (hence more a multicast than a broadcast)

– MPI_Gather(...):
collects data from the group members

Collective CommunicationCollective Communication

– MPI_Allgather(...):
gather-to-all: data are collected from all processes, and all get the
collection

– MPI_Scatter(...):
classical scatter operation: distribution of data among processes

– MPI_Reduce(...):
executes a reduce operation

– MPI_Allreduce(...):
executes a reduce operation where all processes get its result

– MPI_Op_create(...) and MPI_Op_free(...):
defines a new reduce operation or removes it, respectively

• Note that all of the functions above are with respect to a
communicator (hence not necessarily a global
communication)

BroadcastBroadcast

• Meaning: send the message to all participating
processes

• Example: the first process that finds the solution
in a competition informs everyone to stop

MPI_Bcast

3
2

10

0

dc

1

ba

Data

P
r

o
c

e
s

s
o

r

3
2

10

0

dc

10

10

10

1

ba

Data

P
r

o
c

e
s

s
o

r

MPI_Bcast(&a,1,MPI_INT,0,MPI_COMM_WORLD);

GatherGather

• Meaning: collect information from all participating
processes

• Example: each process computes some part of
the solution, which shall now be assembled by
one process

3
2

0

b[3]b[2]

1

b[1]b[0]

P
r

o
c

e
s

s
o

r

m

20

26

24

22

Data

MPI_Gather

3
2

0

b[3]b[2]

26242220

1

b[1]b[0]

P
r

o
c

e
s

s
o

r

m

20

26

24

22

Data

MPI_Gather(&m,1,MPI_INT,&b,1,MPI_INT,2,MPI_COMM_WORLD);

m: send buffer, b: recv buffer

All GatherAll Gather

• Meaning: like gather, but all participating
processes assemble the collected information

• Example: as before, but now all processes need
the complete solution for their continuation

3
2

0

b[3]b[2]

1

b[1]b[0]

P
r

o
c

e
s

s
o

r

m

20

26

24

22

Data

MPI_Allgather

3
2

20

0

b[3]b[2]

262422

26242220

26242220

26242220

1

b[1]b[0]

P
r

o
c

e
s

s
o

r

m

20

26

24

22

Data

MPI_Allgather(&m,1,MPI_INT,&b,1,MPI_INT,MPI_COMM_WORLD);

ScatterScatter

• Meaning: distribute your data among the
processes

• Example: two vectors are distributed in order to
prepare a parallel computation of their scalar
product

MPI_Scatter

Data

3
2

0

a[3]a[2]

13121110

1

a[1]a[0]

P
r

o
c

e
s

s
o

r

m

3
2

0

a[3]a[2]

13121110

1

a[1]a[0]

P
r

o
c

e
s

s
o

r

m

10

13

12

11

Data

MPI_Scatter(&a,1,MPI_INT,&m,1,MPI_INT,2,MPI_COMM_WORLD);

All to AllAll to All

• Meaning: data of all processes are distributed
among all processes

MPI_Alltoall(&a,1,MPI_INT,&b,1,MPI_INT,MPI_COMM_WORLD);

MPI_Alltoall

P
r

o
c

e
s

s
o

r

Data

3
2

1

0

a[3]a[2]

432

16151413

1211109

8765

1

a[1]a[0]

P
r

o
c

e
s

s
o

r

Data

3
2

1

0

b[3]b[2]

1395

61284

151173

141062

1

b[1]b[0]

ReduceReduce

• Meaning: information of all processes is used to
provide a condensed result by/for one process

• Example: calculation of the global minimum of
the variables kept by all processes, calculation
of a global sum, etc.

3
2

0

dc

2

9

5

3

1

ba

P
r

o
c

e
s

s
o

r

Data

MPI_Reduce

3
2

0

dc

2

9

195

3

1

ba

P
r

o
c

e
s

s
o

r

Data

MPI_Reduce(&b,&d,1,MPI_INT,MPI_SUM,2,MPI_COMM_WORLD);

op:MPI_SUM

All ReduceAll Reduce

• Meaning: like reduce, but condensed result is
available for all processes

• Example: suppose the result is needed for
the control of each process’ continuation

3
2

0

dc

2

9

5

3

1

ba

P
r

o
c

e
s

s
o

r

Data

MPI_Allreduce

3
2

0

dc

192

199

195

193

1

ba

P
r

o
c

e
s

s
o

r

Data

MPI_Allreduce(&b,&d,1,MPI_INT,MPI_SUM,MPI_COMM_WORLD);

op:MPI_SUM

Predefined Reduction OperationsPredefined Reduction Operations

MPI Name Function

MPI_MAX Maximum

MPI_MIN Minimum

MPI_SUM Sum

MPI_PROD Product

MPI_LAND Logical AND

MPI_BAND Bitwise AND

MPI_LOR Logical OR

MPI_BOR Bitwise OR

MPI_LXOR Logical exclusive OR

MPI_BXOR Bitwise exclusive OR

MPI_MAXLOC Maximum and location

MPI_MINLOC Minimum and location

From MPI-1 to MPI-2From MPI-1 to MPI-2

• Obvious drawbacks of MPI-1:
– Restriction to SPMD program structure
– No support of multithreading
– No dynamic process creation nor management (like in PVM)
– No standardization of functions for parallel I/O
– Too many (hardly needed) functions

• Hence, MPI-2 provided improvements and extensions to
MPI-1:
– Now possible for dynamic creation and management of

processes
– Introduction of special communication functions for DSM systems
– Extension of the collective communication features
– Parallel I/O
– C++ and FORTRAN 90 are supported, too

EndEnd

	Diapositivo 1
	Diapositivo 2
	Diapositivo 3
	Diapositivo 4
	Diapositivo 5
	Diapositivo 6
	Diapositivo 7
	Diapositivo 8
	Diapositivo 9
	Diapositivo 10
	Diapositivo 11
	Diapositivo 12
	Diapositivo 13
	Diapositivo 14
	Diapositivo 15
	Diapositivo 16
	Diapositivo 17
	Diapositivo 18
	Diapositivo 19
	Diapositivo 20
	Diapositivo 21
	Diapositivo 22
	Diapositivo 23
	Diapositivo 24
	Diapositivo 25
	Diapositivo 26
	Diapositivo 27
	Diapositivo 28
	Diapositivo 29
	Diapositivo 30
	Diapositivo 31
	Diapositivo 32
	Diapositivo 33
	Diapositivo 34
	Diapositivo 35
	Diapositivo 36
	Diapositivo 37
	Diapositivo 38
	Diapositivo 39
	Diapositivo 40
	Diapositivo 41
	Diapositivo 42
	Diapositivo 43
	Diapositivo 44
	Diapositivo 45
	Diapositivo 46
	Diapositivo 47
	Diapositivo 48
	Diapositivo 49
	Diapositivo 50

