
The Rocks Avalanche Installer

Background

The Rocks Clustering Toolkit (www.rocksclusters.org ) has been in development for 5 years driven by the goal tomake clusters
easy. With more than 600 registered clusters and several clusters on the Top500 list, Rocks has become a staple of a large number of
organizations. As clusters have grown in size, we have examined some of the scaling limits of the current implementation. A basic
philosophy of Rocks is to use “fire and forget” re-installation as a basic management tool. The toolkit treats a complete software
footprint on any machine as a set of software packages and configuration that together form aRocks Appliance. Appliances can share
packages and configuration and our approach takes advantage of the many similarities among login nodes, compute nodes, web servers,
storage servers, grid-enabled nodes, and visualization walls. Instead of monolithic “golden” images for each appliance, Rocks defines a
configuration graph that is “compiled” for each node at installation time. Using installation as the basic management tool only works on
large-scale systems if this primitive operation is fast. Our newAvalanche Installer provides installation scaling into the 1000s of nodes
with no special hardware. Like the rest of Rocks, Avalanche needs no special configuration by an administrator and the same installer
supports clusters from the smallest (2 nodes) to the largest (1000s of nodes).

The Avalanche Installer

Figure 1: Avalanche Ad-Hoc Peer-to-Peer Package Serving Net-
work. In step 1, the frontend sends the kickstart file in XML form to
an installing node. Then, in the second pass, the node parses the XML
and produces a Red Hat Kickstart File. In step 2a, a node downloads a
package directly from the frontend. Step 2b shows how nodes can down-
load packages from each other using the peer-to-peer package cache. Af-
ter a compute node downloads a package, the BitTorrent-Aware Package
Downloader places it into the peer-to-peer package cache (step 3).

A large number of cluster toolkits use “golden images” to define
nodes and then use specialized software to push the image onto
cluster nodes. Golden images do not easily handle heterogeneity
in hardware or in node function. For example, a storage server node
has a completely different image than a compute node. Scaling can
also be problematic for images and others suggest reliable multicast
as the image transport solution. Multicast itself also can be quite a
challenge to configure correctly on large, multi-stage switched net-
works.

Avalanche does not rely on multicast. Because Rocks does
not treat an OS as a monolithic image, we have significantly more
flexibility in how to optimize without losing generality. Hetero-
geneous nodes (both hardware and function) are just as simple as
homegeneous configurations. Avalanche attacks the two most time-
consuming portions of a Rocks install: creation of the Red Hat-
compatible Kickstart File (text-based configuration) and scalable
serving of software packages. We could cheat and pre-generate con-
figuration files, but Avalanche does not take this easy way out. In-
stead, we have split the generation of configuration files into two
portions: the first reads the cluster configuration database (automat-
ically created for you) and then feeds it to the second stage that
formats it into a Red Hat Kickstart File. The latter part is time con-
suming (taking about 80% of the generation time) and is now per-
formed on the installing node, not the frontend or head node. For
scalable serving of packages, simultaneously-installing nodes form
a peer-to-peer file sharing network using a BitTorrent tracker and a
custom client. Nodes only share installation packages during the installation phase.

Figure 1 depicts the splitting of configuration file generation and the ad-hoc peer-to-peer package serving network. The frontend
is the definitive arbiter of package revisions and since the caching of packages is only valid while a node is installing, the cluster
administrator does nothing to manage or keep caches in sync. Another advantage of this approach is that the number of installation
nodes does not need to be knowna priori. If several nodes are installing simultaneously, they will share packages. If only one node is
installing, the tracker will point back to the frontend. Since modern networks are fully switched, the scaling of package serving scales
linearly with the number of nodes. Avalanche does not affect other nodes that are busy computing because the tracker will only point to
installing peers. Finally, because Rocks appliances share configurations and packages, different types of appliances still greatly benefit
from the ad-hoc sharing. For example, a compute node can use the kernel package that has been cached by a web-server appliance.



Performance

Avalanche scales very well. The effectiveness of Avalanche depends on the speed of the network, the total number of packages, and the
time for configuration file generation on the frontend. We show two results below for old and new hardware using a trimmed compute
node installation:

Cluster # Nodes Node Type Network Packages/Node (MB) Install Time (1 node/All)
Meteor 44 Pentium III 100Mbit 325 MB 17 min / 20 min

Rockstar 128 Xeon 2.8 1000Mbit 325 MB 12 min / 15 min

Table 1: Single and full-cluster installation timings. A full cluster installation (100s of nodes) take slightly
longer than a single node. The extra time is attributed the component of Kickstart generation that runs on the
frontend.

The following figure compares standard HTTP-only (prior to Rocks 4.1) and Avalanche (introduced in Rocks 4.1). A quick analysis
shows that all the sum of all packages downloaded is about 14.3GB. A 100Mbit frontend can serve this amount of data in 1200 seconds
(about 20 minutes). The total turn around time for this small cluster was less than 20 minutes with Avalanche and more than 30 minutes
without.

} }

AvalancheHTTP-Only
(No Avalanche)

Figure 2: Without Avalanche (start time: 18:25), the full cluster re-installation takes more than 30 minutes.
With Avalanche (start time: 19:05) takes less than 20 minutes for all nodes to complete. Note the reduction in
network traffic directed to the Meteor Frontend when Avalanche is active. Meteor’s frontend is an 800 MHz
PIII with 100Mbit Ethernet.

While the nodes in the above figure are very slow by modern standards, a key observation is that the full-cluster install takes only
3 minutes longer than a single node install. Also, Rocks Avalanche handles full-system, heterogeneous, and trimmed installations with
the same ease of “zero-administration”.

Acknowledgments

The Rocks Group at The San Diego Supercomputer Center is funded by the National Science Foundation as part of contract #OCI-
438741. The Rockstar Cluster was made possible by a grant from Sun Microsystems. Meteor is the first Rocks Cluster built at SDSC.

We greatly appreciate the key interactions with several user groups who give us constant and constructive feedback.


