
© 2006 UC Regents 1

Introduction to
Benchmarking

Rocks-A-Palooza II
Lab Session

© 2006 UC Regents 2

CPU Benchmark

© 2006 UC Regents 3

Linpack
 Linpack is an MPI application that reports

the sustained floating-point operations
per second on a machine

 It performs an LU-decomposition
 CPU-intensive
 But also exercises the network

© 2006 UC Regents 4

Linpack
 Linpack is used to sort the machines on

the Top500 list
 www.top500.org

© 2006 UC Regents 5

Running Linpack
 Linpack is part of the HPC Roll

 The executable is named ‘xhpl’

 Login to your frontend as a non-root user
 To create a user account, execute:

• # useradd <username>

© 2006 UC Regents 6

Running Linpack
 Get the linpack configuration file:

 Then, create a file named ‘machines’
 This file should contain:

 This tells xhpl that it should launch two process, one on
compute-0-0 and another on compute-0-0

compute-0-0
compute-0-0

$ cp /var/www/html/rocks-documentation/4.1/examples/HPL.dat .

© 2006 UC Regents 7

Running Linpack
 Launch the job

 This tells ‘mpirun’:
 Don’t start a job on the frontend (-nolocal)
 Use two processors (-np 2)
 The names of those two processors are in the file
‘machines’

 Start the program ‘xhpl’ on both processors

$ ssh-agent $SHELL
$ ssh-add
$ /opt/mpich/gnu/bin/mpirun -nolocal -np 2 -machinefile machines /opt/hpl/gnu/bin/xhpl

© 2006 UC Regents 8

Linpack Results
 View the results

 In this example, sustained 2.2 gigaflops
 If we add 280,598 more, we’d be #1 on the Top500

list!

T/V N NB P Q Time Gflops
--
W11R2L8 1000 64 1 2 0.30 2.261e+00
--
||Ax-b||_oo / (eps * ||A||_1 * N) = 0.9803216 PASSED
||Ax-b||_oo / (eps * ||A||_1 * ||x||_1) = 0.0237937 PASSED
||Ax-b||_oo / (eps * ||A||_oo * ||x||_oo) = 0.0057484 PASSED
==

© 2006 UC Regents 9

Linpack Results
 This configuration of linpack runs so fast, can’t really

view the results on the ‘Cluster Status’ page
 So, let’s scale linpack up!

 We’ll increase size of matrix
 Open file ‘HPL.dat
 Change line:

• 1000 Ns
 To:

• 6000 Ns

 Relaunch linpack

© 2006 UC Regents 10

Linpack Results
 You may see this error message:

 This error message is common to MPI programs that have large
memory footprint

 To fix, edit file ‘.bashrc’ and append the line:
 Export P4_GLOBMEMSIZE=200000000

T/V N NB P Q Time Gflops
--
W11R2L8 6000 64 1 2 52.12 2.764e+00
--
||Ax-b||_oo / (eps * ||A||_1 * N) = 0.0115600 PASSED
||Ax-b||_oo / (eps * ||A||_1 * ||x||_1) = 0.0241085 PASSED
||Ax-b||_oo / (eps * ||A||_oo * ||x||_oo) = 0.0047482 PASSED
p1_24309: (55.624154) xx_shmalloc: returning NULL; requested 3072560 bytes
p1_24309: (55.624323) p4_shmalloc returning NULL; request = 3072560 bytes
You can increase the amount of memory by setting the environment variable
P4_GLOBMEMSIZE (in bytes); the current size is 4194304
p1_24309: p4_error: alloc_p4_msg failed: 0
p1_24309: (57.626802) net_send: could not write to fd=5, errno = 32

© 2006 UC Regents 11

Cleanup when an MPI Program
Crashes
 MPICH in Rocks uses shared memory segments to pass

messages between processes on the same node
 When an MPICH program crashes, it doesn’t properly cleanup

these shared memory segments
 After a program crash, run:

 NOTE: Be aware that this removes all shared memory segments
for your user id
 If you have other live MPI programs running, this will remove their

shared memory segments too and cause that program to fail

$ cluster-fork sh /opt/mpich/gnu/sbin/cleanipcs

© 2006 UC Regents 12

Monitoring a Job
 Point web browser to:

 http://localhost
 Click ‘Cluster Status’ tab
 Specific node CPU stats look like:

© 2006 UC Regents 13

Using more CPUs
 To use more CPUs, edit ‘HPL.dat’ and go to the section:

 Linpack uses P x Q processors
 In the above example, 1 x 2 = 2 processors

 To use 4 processors
 Change “1 Ps” to “2 Ps”, or
 Change “2 Qs” to “4 Qs”

 Remember to also add entries to your ‘machines’ file!

1 Ps
2 Qs

© 2006 UC Regents 14

Using more CPUs
 Relaunch for 4 CPUs:

$ /opt/mpich/gnu/bin/mpirun -nolocal -np 4 -machinefile machines /opt/hpl/gnu/bin/xhpl

© 2006 UC Regents 15

Disk Benchmark

© 2006 UC Regents 16

Iozone
 File system benchmark tool

 http://www.iozone.org/

 Distributed with Rocks

© 2006 UC Regents 17

Iozone
 Lots of flags

 For example:
• Can make Excel spreadsheets
• Parallel I/O
• Asynchronous system calls
• And many, many more

 We’ll walk through only a few

© 2006 UC Regents 18

Iozone
 ‘-a’

 Auto Mode
 Runs all tests with increasing buffer size
 Sample output

 Auto Mode
 Command line used: /opt/iozone/bin/iozone -a
 Output is in Kbytes/sec
 Time Resolution = 0.000001 seconds.
 Processor cache size set to 1024 Kbytes.
 Processor cache line size set to 32 bytes.
 File stride size set to 17 * record size.
 random random bkwd record stride
 KB reclen write rewrite read reread read write read rewrite read fwrite frewrite fread freread
 64 4 238761 639793 1051057 1208283 841626 614716 940908 621006 1104577 283187 533423 983515 1122603
 64 8 304728 726843 1455473 1491271 1254099 752203 1277037 703783 1491000 328129 718441 1364053 1424647
 64 16 294886 736136 1425825 1488521 1361539 761455 1360805 571711 1254222 385577 832346 1390223 1424315

© 2006 UC Regents 19

All Tests, One Buffer Size
 Buffer size (‘-s #’)

 Where ‘#’ can be ‘1m’ for 1 MB file size

© 2006 UC Regents 20

Iozone - All Tests, One Buffer
Size

$ /opt/iozone/bin/iozone -s 1m
 Iozone: Performance Test of File I/O
 Version $Revision: 3.233 $
 Compiled for 32 bit mode.
 Build: linux

 Contributors:William Norcott, Don Capps, Isom Crawford, Kirby Collins
 Al Slater, Scott Rhine, Mike Wisner, Ken Goss
 Steve Landherr, Brad Smith, Mark Kelly, Dr. Alain CYR,
 Randy Dunlap, Mark Montague, Dan Million,
 Jean-Marc Zucconi, Jeff Blomberg,
 Erik Habbinga, Kris Strecker.

 Run began: Tue May 9 15:37:15 2006

 File size set to 1024 KB
 Command line used: /opt/iozone/bin/iozone -s 1m
 Output is in Kbytes/sec
 Time Resolution = 0.000001 seconds.
 Processor cache size set to 1024 Kbytes.
 Processor cache line size set to 32 bytes.
 File stride size set to 17 * record size.
 random random bkwd record stride
 KB reclen write rewrite read reread read write read rewrite read fwrite frewrite fread freread
 1024 4 240146 501003 735634 819185 818477 527264 746861 672816 744710 241619 468667 689533 786499

© 2006 UC Regents 21

Iozone - Write/Read Tests,
One Buffer Size
 ‘-i 0 -i 1’

 Run test 0 (write) and test 1 (read)
 Must always run write test

• It lays down a file in which to perform other operations
upon

 Available tests:
 -i # Test to run (0=write/rewrite, 1=read/re-read, 2=random-read/write
 3=Read-backwards, 4=Re-write-record, 5=stride-read, 6=fwrite/re-fwrite
 7=fread/Re-fread, 8=random_mix, 9=pwrite/Re-pwrite, 10=pread/Re-pread
 11=pwritev/Re-pwritev, 12=preadv/Re-preadv)

© 2006 UC Regents 22

Iozone - Write and Read Tests,
One Buffer Size

$ /opt/iozone/bin/iozone -i 0 -i 1 -s 1m
 Iozone: Performance Test of File I/O
 Version $Revision: 3.233 $
 Compiled for 32 bit mode.
 Build: linux

 Contributors:William Norcott, Don Capps, Isom Crawford, Kirby Collins
 Al Slater, Scott Rhine, Mike Wisner, Ken Goss
 Steve Landherr, Brad Smith, Mark Kelly, Dr. Alain CYR,
 Randy Dunlap, Mark Montague, Dan Million,
 Jean-Marc Zucconi, Jeff Blomberg,
 Erik Habbinga, Kris Strecker.

 Run began: Tue May 9 16:20:06 2006

 File size set to 1024 KB
 Command line used: /opt/iozone/bin/iozone -i 0 -i 1 -s 1m
 Output is in Kbytes/sec
 Time Resolution = 0.000001 seconds.
 Processor cache size set to 1024 Kbytes.
 Processor cache line size set to 32 bytes.
 File stride size set to 17 * record size.
 random random bkwd record stride
 KB reclen write rewrite read reread read write read rewrite read fwrite frewrite fread freread
 1024 4 247521 517713 744171 906975

© 2006 UC Regents 23

Iozone - Write and Random
Read Tests, One Buffer Size
 Write test (‘-i 0’)
 Random read test (‘-i 2’)
 Buffer size 1 MB (‘-s 1m’)

© 2006 UC Regents 24

Iozone - Write and Random
Read Tests, One Buffer Size

$ /opt/iozone/bin/iozone -i 0 -i 2 -s 1m
 Iozone: Performance Test of File I/O
 Version $Revision: 3.233 $
 Compiled for 32 bit mode.
 Build: linux

 Contributors:William Norcott, Don Capps, Isom Crawford, Kirby Collins
 Al Slater, Scott Rhine, Mike Wisner, Ken Goss
 Steve Landherr, Brad Smith, Mark Kelly, Dr. Alain CYR,
 Randy Dunlap, Mark Montague, Dan Million,
 Jean-Marc Zucconi, Jeff Blomberg,
 Erik Habbinga, Kris Strecker.

 Run began: Tue May 9 16:21:35 2006

 File size set to 1024 KB
 Command line used: /opt/iozone/bin/iozone -i 0 -i 2 -s 1m
 Output is in Kbytes/sec
 Time Resolution = 0.000001 seconds.
 Processor cache size set to 1024 Kbytes.
 Processor cache line size set to 32 bytes.
 File stride size set to 17 * record size.
 random random bkwd record stride
 KB reclen write rewrite read reread read write read rewrite read fwrite frewrite fread freread
 1024 4 234645 499747 776990 563849

© 2006 UC Regents 25

Use Iozone to Test NFS
 Login to compute node as non-root user
 Write/read to home directory

 NFS mounted back to frontend

© 2006 UC Regents 26

Wow, NFS is Fast!
$ /opt/iozone/bin/iozone -i 0 -i 2 -s 1m
 Iozone: Performance Test of File I/O
 Version $Revision: 3.233 $
 Compiled for 32 bit mode.
 Build: linux

 Contributors:William Norcott, Don Capps, Isom Crawford, Kirby Collins
 Al Slater, Scott Rhine, Mike Wisner, Ken Goss
 Steve Landherr, Brad Smith, Mark Kelly, Dr. Alain CYR,
 Randy Dunlap, Mark Montague, Dan Million,
 Jean-Marc Zucconi, Jeff Blomberg,
 Erik Habbinga, Kris Strecker.

 Run began: Tue May 9 16:23:36 2006

 File size set to 1024 KB
 Command line used: /opt/iozone/bin/iozone -i 0 -i 2 -s 1m
 Output is in Kbytes/sec
 Time Resolution = 0.000001 seconds.
 Processor cache size set to 1024 Kbytes.
 Processor cache line size set to 32 bytes.
 File stride size set to 17 * record size.
 random random bkwd record stride
 KB reclen write rewrite read reread read write read rewrite read

fwrite frewrite fread freread
 1024 4 511258 564486 704804 611009

© 2006 UC Regents 27

Wow, NFS is Fast!
 Benefiting from caching effects
 Need to write/read a file that is larger

than the memory size

 Above machine has 2 GB
 Need to write a file that is at least 2 GB

$ cat /proc/meminfo | grep MemTotal
MemTotal: 2074480 kB

© 2006 UC Regents 28

Realistic NFS Numbers
$ /opt/iozone/bin/iozone -i 0 -i 1 -s 4g
 Iozone: Performance Test of File I/O
 Version $Revision: 3.233 $
 Compiled for 32 bit mode.
 Build: linux

 Contributors:William Norcott, Don Capps, Isom Crawford, Kirby Collins
 Al Slater, Scott Rhine, Mike Wisner, Ken Goss
 Steve Landherr, Brad Smith, Mark Kelly, Dr. Alain CYR,
 Randy Dunlap, Mark Montague, Dan Million,
 Jean-Marc Zucconi, Jeff Blomberg,
 Erik Habbinga, Kris Strecker.

 Run began: Tue May 9 17:06:40 2006

 File size set to 4194304 KB
 Command line used: /opt/iozone/bin/iozone -i 0 -i 1 -s 4g
 Output is in Kbytes/sec
 Time Resolution = 0.000001 seconds.
 Processor cache size set to 1024 Kbytes.
 Processor cache line size set to 32 bytes.
 File stride size set to 17 * record size.
 random random bkwd record stride
 KB reclen write rewrite read reread read write read rewrite read fwrite frewrite fread freread
 4194304 4 50955 37263 20867 24051

© 2006 UC Regents 29

Bonnie
 Another file system benchmark

 Not bundled in Rocks
 See ‘Cluster Management and Maintenance

Lab’ in order to deploy bonnie

© 2006 UC Regents 30

Bonnie
 Execute bonnie

 Flags
 ‘-s 4096’ - write a 4 GB file
 ‘-n 0’ - skip the ‘file creation’ test
 ‘-f’ - fast mode, don’t do character (one byte) tests
 ‘-d ~/output_files’ - put all temporary files in

~/output_files
• If ~/output_files is mounted on NFS, then this tests NFS

/share/apps/benchmarks/bonnie++/sbin/bonnie++ -s 4096 -n 0 -f -d ~/output_files

© 2006 UC Regents 31

Bonnie Output
Writing intelligently...done
Rewriting...done
Reading intelligently...done
start 'em...done...done...done...
Version 1.03 ------Sequential Output------ --Sequential Input- --Random-
 -Per Chr- --Block-- -Rewrite- -Per Chr- --Block-- --Seeks--
Machine Size K/sec %CP K/sec %CP K/sec %CP K/sec %CP K/sec %CP /sec %CP
rocks-45.sdsc.ed 4G 36597 15 17056 5 38552 6 156.6 0
rocks-45.sdsc.edu,4G,,,36597,15,17056,5,,,38552,6,156.6,0,,,,,,,,,,,,,

 Measurements for sequential output/input

 Last line is comma-separated values
 Can be used import values into analysis program

© 2006 UC Regents 32

Network Benchmark

© 2006 UC Regents 33

Using iperf
 On one node, run the ‘server’

 On another, run the ‘client’

ssh compute-0-0
/opt/iperf/bin/iperf -s

/opt/iperf/bin/iperf -c compute-0-0

© 2006 UC Regents 34

Iperf output
/opt/iperf/bin/iperf -c zinc-0-1
--
Client connecting to zinc-0-1, TCP port 5001
TCP window size: 16.0 KByte (default)
--
[3] local 10.255.255.252 port 33570 connected with 10.255.255.253 port 5001
[3] 0.0-10.0 sec 1.10 GBytes 941 Mbits/sec

© 2006 UC Regents 35

View Iperf Network Traffic
 Change ‘Cluster Status report’ to ‘network_report’:

 Then look at ‘server’ and ‘client’

 Client sent data to server at a peak of 25 MB/s
 That doesn’t look right?!?!

 Need to send more data
 Ganglia’s sampling is too coarse for this small run

© 2006 UC Regents 36

Scaling iperf Up
 On one node, run the ‘server’

 On another, run the ‘client’, send for 120
seconds and display results every 5
seconds

ssh compute-0-0
/opt/iperf/bin/iperf -s

/opt/iperf/bin/iperf -c compute-0-0 t 120 -i 5

© 2006 UC Regents 37

‘Better’ Looking Graphs

 Peak of 125 MB/s

