
© 2006 UC Regents 1

Introduction to
MPI Programming

Rocks-A-Palooza II
Lab Session

© 2006 UC Regents 2

Modes of Parallel Computing
 SIMD - Single Instruction Multiple Data

processors are “lock-stepped”: each processor executes single
instruction in synchronism on different data

 SPMD - Single Program Multiple Data
processors run asynchronously a personal copy of a program

 MIMD - Multiple Instruction Multiple Data
processors run asynchronously: each processor has its own data
and its own instructions
 MPMD - Multiple Program Multiple Data

© 2006 UC Regents 3

MPI in Parallel Computing
 MPI addresses message-passing mode of parallel computation

 Processes have separate address spaces
 Processes communicate via sending and receiving messages

 MPI is designed mainly for SPMD/MIMD (or distributed memory
parallel supercomputer)
 Each process is run on a separate node
 Communication is over high-performance switch
 Paragon, IBM SP2, Meiko CS-2, Thinking Machines CM-5, NCube-2,

and Cray T3D
 MPI can support shared memory programming model

 Multiple processes can read/write to the same memory location
 SGI Onyx, Challenge, Power Challenge, Power Challenge Array, IBM

SMP, Convex Exemplar, and the Sequent Symmetry
 MPI exploits Network Of Workstations (heterogeneous)

 Sun, DEC, Hewlett-Packard, SGI, IBM, Intel and Pentium (various
Linux OS)

© 2006 UC Regents 4

What is MPI?
 Message Passing application programmer Interface

 Designed to provide access to parallel hardware
• Clusters
• Heterogeneous networks
• Parallel computers

 Provides for development of parallel libraries
 Message passing

• Point-to-point message passing operations
• Collective (global) operations

 Additional services
• Environmental inquiry
• Basic timing info for measuring application performance
• Profiling interface for external performance monitoring

© 2006 UC Regents 5

MPI advantages
 Mature and well understood

 Backed by widely-supported formal standard (1992)
 Porting is “easy”

 Efficiently matches the hardware
 Vendor and public implementations available

 User interface:
 Efficient and simple (vs. PVM)
 Buffer handling
 Allow high-level abstractions

 Performance

© 2006 UC Regents 6

MPI disadvantages
 MPI 2.0 includes many features beyond

message passing

 Execution control environment depends on
implementation

Learning curve

© 2006 UC Regents 7

MPI features
 Thread safety
 Point-to-point communication

 Modes of communication

 Structured buffers
 Derived datatypes

 Collective communication
 Native built-in and user-defined collective operations
 Data movement routines

 Profiling
 Users can intercept MPI calls and call their own tools

readystandard synchronous buffered

© 2006 UC Regents 8

Communication modes
 standard

 send has no guarantee that corresponding receive routine has
started

 synchronous
 send and receive can start before each other but complete

together
 ready

 used for accessing fast protocols
 user guarantees that matching receive was posted
 use with care!

 buffered
 send may start and return before matching receive
 buffer space must be provided

© 2006 UC Regents 9

Communication modes (cont’d)
 All routines are

 Blocking - return when they are locally complete
• Send does not complete until buffer is empty
• Receive does not complete until buffer is full
• Completion depends on

• size of message
• amount of system buffering

 Non-blocking - returns immediately and allows next statement
to execute

• Use to overlap communication and computation when time to
send data between processes is large

• Immediately returns “request handle” that can be used for
querying and waited on,

• Completion detected by MPI_Wait() or MPI_Test()

© 2006 UC Regents 10

Point-to-point vs. collective
 point-to-point, blocking MPI_Send/MPI_Recv

MPI_Send(start, count, datatype, dest, tag, comm)
MPI_Recv(start, count, datatype, source, tag, comm, status)
 simple but inefficient
 most work is done by process 0:

• Get data and send it to other processes (they idle)
• May be compute
• Collect output from the processes

 collective operations to/from all
MPI_Bcast(start, count, datatype, root, comm)
MPI_Reduce(start, result, count, datatype, operation, root, comm)
 called by all processes
 simple, compact, more efficient
 must have the same size for “count”and “datatype”
 “result” has significance only on node 0

© 2006 UC Regents 11

MPI complexity
 MPI extensive functionality is provided by many

(125+) functions
 Do I Need them all ?

 No need to learn them all to use MPI
 Can use just 6 basic functions

MPI_Init
MPI_Comm_size
MPI_Comm_rank
MPI_Send or MPI_Bcast
MPI_Recv MPI_Reduce
MPI_Finalize

 Flexibility: use more functions as required

© 2006 UC Regents 12

To be or not to be MPI user
 Use if:

Your data do not fit data parallel model
Need portable parallel program
Writing parallel library

 Don’t use if:
Don’t need any parallelism
Can use libraries
Can use fortran

© 2006 UC Regents 13

Writing MPI programs
 provide basic MPI definitions and types

#include “mpi.h”
 start MPI

MPI_Init(&argc, &argv);
 provide local non-MPI routines
 exit MPI

MPI_Finalize();

see /opt/mpich/gnu/examples
 /opt/mpich/gnu/share/examples

© 2006 UC Regents 14

Compiling MPI programs
 From a command line:

 mpicc -o prog prog.c
 Use profiling options (specific to mpich)

 -mpilog Generate log files of MPI calls
 -mpitrace Trace execution of MPI calls
 -mpianim Real-time animation of MPI (not available on all

systems)
 --help Find list of available options

 Use makefile!
 get Makefile.in template and create Makefile

mpireconfig Makefile
 compile

make progName

© 2006 UC Regents 15

Running MPI program
 Depends on your implementation of MPI

 For mpich:
• mpirun -np2 foo # run MPI program

 For lam:
• lamboot -v lamhosts # starts LAM
• mpirun -v -np 2 foo # run MPI program
• lamclean -v # rm all user processes
• mpirun … # run another program
• lamclean …
• lamhalt # stop LAM

© 2006 UC Regents 16

Common MPI flavors on Rocks

© 2006 UC Regents 17

MPI flavors path

 MPICH + Ethernet + GNU
/opt/mpich/ethernet/gnu/bin/…

 MPICH + Myrinet + GNU
 /opt/mpich/myrinet/gnu/bin/…
 MPICH + Ethernet + INTEL

/opt/mpich/ethernet/intel/bin/…
 MPICH + Myrinet + INTEL

/opt/mpich/myrinet/intel/bin/…

 LAM + Ethernet + GNU
/opt/lam/ethernet/gnu/bin/…

 LAM + Myrinet + GNU
/opt/lam/myrinet/gnu/bin/…

 LAM + Ethernet + INTEL
/opt/lam/ethernet/intel/bin/…

 LAM + Myrinet + INTEL
/opt/lam/myrinet/intel/bin/…

/opt + MPI flavor + interconnect + compiler + bin/ + executable

C: mpicc C++: mpiCC
F77: mpif77 F90: mpif90

© 2006 UC Regents 18

What provides MPI

© 2006 UC Regents 19

Example 1: LAM hello
Execute all commands as a regular user

1. Start ssh agent for key management
$ ssh-agent $SHELL

2. Add your keys
$ ssh-add
(at prompt give your ssh passphrase)

3. Make sure you have right mpicc:
$ which mpicc
(output must be /opt/lam/gnu/bin/mpicc)

4. Create program source hello.c (see next page)

© 2006 UC Regents 20

 hello.c
#include "mpi.h"
#include <stdio.h>
int main(int argc ,char *argv[])
{

int myrank;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
fprintf(stdout, "Hello World, I am process %d\n", myrank);
MPI_Finalize();
return 0;

}

© 2006 UC Regents 21

Example 1 (cont’d)
5. compile

$ mpicc -o hello hello.c
6. create machines file with IP’s of two nodes. Use your numbers here!

198.202.156.1
198.202.156.2

7. start LAM
$ lamboot -v machines

8. run your program
$ mpirun -np 2 -v hello

9. clean after the run
$ lamclean -v

10. stop LAM
$ lamhalt

© 2006 UC Regents 22

Example1 output
$ ssh-agent $SHELL

LAM 7.1.1/MPI 2 C++/ROMIO - Indiana University$ lamhalt

killing processes, done
closing files, done
sweeping traces, done
cleaning up registered objects, done
sweeping messages, done

$ lamclean -v

27245 hello running on n0 (o)
7791 hello running on n1
Hello W orld, I am process 0
Hello W orld, I am process 1

$ mpirun -np 2 -v hello

LAM 7.1.1/MPI 2 C++/ROMIO - Indiana University
n-1<27213> ssi:boot:base:linear: booting n0 (rocks-155.sdsc.edu)
n-1<27213> ssi:boot:base:linear: booting n1 (10.255.255.254)
n-1<27213> ssi:boot:base:linear: finished

$ lamboot -v machines

$ mpicc -o hello hello.c

/opt/lam/gnu/b in/mpicc$ which mpicc

Enter passphrase for /home/nadya/.ssh/id_rsa:
Identity added: /home/nadya/.ssh/id_rsa (/home/nadya/.ssh/id_rsa)

$ ssh-add

© 2006 UC Regents 23

Example 2: mpich cpi
1. set your ssh keys as in example 1 (if not done already)

$ ssh-agent $SHELL
$ ssh-add

2. copy example files to your working directory
$ cp /opt/mpich/gnu/examples/*.c .
$ cp /opt/mpich/gnu/examples/Makefile.in .

3. create Makefile
$ mpireconfig Makefile

4. make sure you have right mpicc
$ which mpicc
If output lists path /opt/lam… update the path:
$ export PATH=$/opt/mpich/gnu/bin:$PATH

5. compile your program
$ make cpi

6. run
$ mpirun -np 2 -machinefile machines cpi

or $ mpirun -nolocal -np 2 -machinefile machines cpi

© 2006 UC Regents 24

Example 2 details
 If using frontend and compute nodes in machines file use

mpirun -np 2 -machinefile machines cpi
 If using only compute nodes in machine file use

mpirun -nolocal -np 2 -machinefile machines cpi

 -nolocal - don’t start job on frontend
 -np 2 - start job on 2 nodes
 -machinefile machines - nodes are specified in machinesfile
 cpi - start program cpi

© 2006 UC Regents 25

More examples
 See CPU benchmark lab

 how to run linpack

 Additional examples in
 /opt/mpich/gnu/examples
 /opt/mpich/gnu/share/examples

© 2006 UC Regents 26

Cleanup when an MPI Program
Crashes
 MPICH in Rocks uses shared memory segments to pass

messages between processes on the same node
 When an MPICH program crashes, it doesn’t properly cleanup

these shared memory segments
 After a program crash, run:

$ cluster-fork sh /opt/mpich/gnu/sbin/cleanipcs

 NOTE: this removes all shared memory segments for your user id
 If you have other live MPI programs running, this will remove

their shared memory segments too and cause that program to
fail

© 2006 UC Regents 27

Online resources
MPI standard:

www-unix.mcs.anl.gov/mpi
Local Area Multicomputer MPI (LAM MPI):

www.osc.edu/lam.html
MPICH:

www.mcs.anl.gov/mpi/mpich
Aggregate Function MPI (AFMPI):

garage.ecn.purdue.edu/~papers
Lam tutorial

www.lam-mpi.org/tutorials/one-step/lam.php

© 2006 UC Regents 28

Glossary
MPI - message passing interface
PVM - parallel virtual machine
LAM - local area multicomputer
P4 - 3rd generation parallel programming library, includes
 message-passing and shared-memory components
Chameleon - high-performance portability package for

 message passing on parallel supercomputers
Zipcode - portable system for writing of scalable libraries
ADI - abstract device architecture

© 2006 UC Regents 29

Glossary (cont’d)
SIMD - Single Instruction Multiple Data
SPMD - Single Program Multiple Data
MIMD - Multiple Instruction Multiple Data
MPMD - Multiple Program Multiple Data

