
AJProença, Sistemas de Computação, UMinho, 2006/07 1

Introdução aos
Sistemas de Computação (2)

Estrutura do tema ISC

1. Representação de informação num computador
2. Organização e estrutura interna dum computador
3. Execução de programas num computador
4. O processador e a memória num computador
5. Da comunicação de dados às redes

AJProença, Sistemas de Computação, UMinho, 2006/07 2

Computador

Organização e
estrutura interna dum computador

Interligação
de

Componentes

Memória
Principal

Input /
Output

Unidade
Central de

Processamento
(CPU)

Computador

Periféricos

Linhas de
Comunicação

AJProença, Sistemas de Computação, UMinho, 2006/07 3

Estrutura interna
dum processador (1)

Função dum CPU:
– motor que lê da memória um comando, interpreta-o, executa-

o, e repete o processo continuamente
– de/para onde lê: da posição de memória definida no registo

apontador de instruções (IP, Instruction Pointer, ou PC, Program
Counter), para o registo de instrução (IR, Instruction Register)

– tipos básicos de comandos:
• carregar dados em registos ou armazená-los, de/para memória

ou I/O
• efectuar operações com dados, indo buscar os operandos, se

necessário, e guardando o resultado no fim
• re-definir o (local do) próximo comando a executar

AJProença, Sistemas de Computação, UMinho, 2006/07 4

CPU

Estrutura interna
dum processador (2)

Unidades
Funcionais
(inc. ALU)

Unidade
de

Controlo

Interligação
Interna do

CPU

Banco
de

Registos

Computador

CPU

I/O

Memória

Interligação

AJProença, Sistemas de Computação, UMinho, 2006/07 5

Organização duma
memória principal ou primária

Função da memória primária:
– armazenar temporariamente um programa e os

dados por ele manipulados, durante a execução
de um programa

Organização lógica:
– vector (array linear) de células, cada com 8 bits
– cada célula é directamente endereçável
– dim máx definida pelos n bits do endereço: 2n

AJProença, Sistemas de Computação, UMinho, 2006/07 6

Periféricos/dispositivos,
módulos de I/O

Tipos de comunicações c/ periféricos/dispositivos de I/O:
– com Humanos (monitor, teclado/rato, impressora,...)
– com máquinas (mem secundária, sistemas embebidos, ...)
– com outros equipamentos (modem, redes LAN / WAN, ...)

Papel dos módulos de I/O:
– efectuar o interface físico e lógico entre o interior do

computador e o exterior
– controlar o funcionamento de um ou mais periféricos
– fazer o intercâmbio de dados entre os periféricos e a

memória principal e/ou registos do CPU

AJProença, Sistemas de Computação, UMinho, 2006/07 7

Interligação de componentes
num computador (1)

Ligações do CPU:
– Leitura de instruções (da memória)
– Leitura/escrita de dados (da memória ou de I/O)
– Envio de sinais de controlo para outros componentes
– Recepção de pedidos de interrupção (e reacção)

AJProença, Sistemas de Computação, UMinho, 2006/07 8

Interligação de componentes
num computador (2)

Ligações da memória primária:

– Recebe endereços (especificação de localizações)
– Recebe sinais de controlo (read, write, timing, ...)
– Recebe/envia dados

AJProença, Sistemas de Computação, UMinho, 2006/07 9

Interligação de componentes
num computador (3)

Ligações dos módulos de I/O:

– Interface com CPU idêntico ao da memória
– Dados internos incluem info de controlo e de estado (do periférico)
– Dados externos incluem tb info de controlo e de estado
– Sinais de interrupt para pedir a atenção do CPU

AJProença, Sistemas de Computação, UMinho, 2006/07 10

Interligação de componentes
num computador (4)

Estruturas de interligação:
– Conjunto de ligações que interligam CPU-Mem-Mód I/O
– Estrutura mais comum: barramento partilhado (bus)
– Agrupamento funcional das linhas de comunicação:

• barramento de dados (data bus)
• barramento de endereços (address bus)
• barramento de controlo (control bus): RD/WR, Mem/IO, IntR/Ack, Reset, ...

AJProença, Sistemas de Computação, UMinho, 2006/07 11

Interligação de componentes
num computador (5)

Arquitectura típica de um PC:

memória
primária

I/O
bridgebus interface

ALU

banco de registos
CPU chip

system bus memory bus

controlador
disco

placa
gráfica

controlador
USB

rato teclado monitor
disco

I/O bus Placas de
expansão para
outros
componentes
(placas de rede
local, …)

AJProença, Sistemas de Computação, UMinho, 2006/07 12

Análise detalhada
da organização dum PC

Howstuffworks "How PCs Work"

How PCs Work
by Jeff Tyson

When you mention the word "technology," most people think about computers. Virtually every facet of our lives has some
computerized component. The appliances in our homes have microprocessors built into them, as do our televisions. Even our
cars have a computer. But the computer that everyone thinks of first is typically the personal computer, or PC.

A PC is a general purpose tool built around a microprocessor. It has lots of different parts -- memory, a hard disk, a modem, etc.
-- that work together. "General purpose" means that you can do many different things with a PC. You can use it to type
documents, send e-mail, browse the Web and play games.

In this edition of HowStuffWorks, we will talk about PCs in the general sense and all the different parts that go into them. You
will learn about the various components and how they work together in a basic operating session. You'll also find out what the
future may hold for these machines.

On the Inside
Let's take a look at the main components of a typical desktop computer.

Defining a PC
Here is one way to think about it: A
PC is a general-purpose
information processing device. It can
take information from a person
(through the keyboard and mouse),
from a device (like a floppy disk or
CD) or from the network (through a
modem or a network card) and
process it. Once processed, the
information is shown to the user (on
the monitor), stored on a device (like
a hard disk) or sent somewhere else
on the network (back through the
modem or network card).

We have lots of special-purpose
processors in our lives. An MP3
Player is a specialized computer for
processing MP3 files. It can't do
anything else. A GPS is a
specialized computer for handling
GPS signals. It can't do anything
else. A Gameboy is a specialized
computer for handling games, but it
can't do anything else. A PC can do
it all because it is general-purpose.

● Central processing unit (CPU) - The microprocessor "brain" of the computer system is
called the central processing unit. Everything that a computer does is overseen by the
CPU.

● Memory - This is very fast storage used to hold data. It has to be fast because it
connects directly to the microprocessor. There are several specific types of memory in
a computer:

■ Random-access memory (RAM) - Used to temporarily store information that the
computer is currently working with

■ Read-only memory (ROM) - A permanent type of memory storage used by the
computer for important data that does not change

■ Basic input/output system (BIOS) - A type of ROM that is used by the computer
to establish basic communication when the computer is first turned on

■ Caching - The storing of frequently used data in extremely fast RAM that
connects directly to the CPU

■ Virtual memory - Space on a hard disk used to temporarily store data and swap it
in and out of RAM as needed

Click on the various PC part labels to learn more about how they work.

http://electronics.howstuffworks.com/pc.htm (1 of 6) [05-02-2004]

http://electronics.howstuffworks.com/
http://electronics.howstuffworks.com/pc.htm
http://electronics.howstuffworks.com/contact.php?s=hsw&ct=feedback
http://electronics.howstuffworks.com/microprocessor.htm
http://electronics.howstuffworks.com/tv.htm
http://electronics.howstuffworks.com/car-computer.htm
http://electronics.howstuffworks.com/index.htm
http://electronics.howstuffworks.com/keyboard.htm
http://electronics.howstuffworks.com/mouse.htm
http://electronics.howstuffworks.com/floppy-disk-drive.htm
http://electronics.howstuffworks.com/cd.htm
http://electronics.howstuffworks.com/home-network.htm
http://electronics.howstuffworks.com/monitor.htm
http://electronics.howstuffworks.com/hard-disk.htm
http://electronics.howstuffworks.com/mp3.htm
http://electronics.howstuffworks.com/mp3.htm
http://electronics.howstuffworks.com/gps.htm
http://electronics.howstuffworks.com/gameboy.htm
http://electronics.howstuffworks.com/microprocessor.htm
http://electronics.howstuffworks.com/computer-memory.htm
http://electronics.howstuffworks.com/ram.htm
http://electronics.howstuffworks.com/rom.htm
http://electronics.howstuffworks.com/bios.htm
http://electronics.howstuffworks.com/cache.htm
http://electronics.howstuffworks.com/virtual-memory.htm

Howstuffworks "How PCs Work"

● Motherboard - This is the main circuit board that all of the other internal components connect to. The CPU and memory
are usually on the motherboard. Other systems may be found directly on the motherboard or connected to it through a
secondary connection. For example, a sound card can be built into the motherboard or connected through PCI.

● Power supply - An electrical transformer regulates the electricity used by the computer.

● Hard disk - This is large-capacity permanent storage used to hold information such as programs and documents.

● Operating system - This is the basic software that allows the user to interface with the computer.

● Integrated Drive Electronics (IDE) Controller - This is the primary interface for the hard drive, CD-ROM and floppy disk
drive.

● Peripheral Component Interconnect (PCI) Bus - The most common way to connect additional components to the
computer, PCI uses a series of slots on the motherboard that PCI cards plug into.

● SCSI - Pronounced "scuzzy," the small computer system interface is a method of adding additional devices, such as
hard drives or scanners, to the computer.

● AGP - Accelerated Graphics Port is a very high-speed connection used by the graphics card to interface with the
computer.

● Sound card - This is used by the computer to record and play audio by converting analog sound into digital information
and back again.

● Graphics card - This translates image data from the computer into a format that can be displayed by the monitor.

Connections
No matter how powerful the components inside your computer are, you need a way to interact with them. This interaction is
called input/output (I/O). The most common types of I/O in PCs are:

● Monitor - The monitor is the primary device for displaying information from the computer.

● Keyboard - The keyboard is the primary device for entering information into the computer.

● Mouse - The mouse is the primary device for navigating and interacting with the computer

● Removable storage - Removable storage devices allow you to add new information to your computer very easily, as well
as save information that you want to carry to a different location.

■ Floppy disk - The most common form of removable storage, floppy disks are extremely inexpensive and easy to
save information to.

■ CD-ROM - CD-ROM (compact disc, read-only memory) is a popular form of distribution of commercial software.
Many systems now offer CD-R (recordable) and CD-RW (rewritable), which can also record.

■ Flash memory - Based on a type of ROM called electrically erasable programmable read-only memory
(EEPROM), Flash memory provides fast, permanent storage. CompactFlash, SmartMedia and PCMCIA cards are
all types of Flash memory.

■ DVD-ROM - DVD-ROM (digital versatile disc, read-only memory) is similar to CD-ROM but is capable of holding
much more information.

● Ports
■ Parallel - This port is commonly used to connect a printer.
■ Serial - This port is typically used to connect an external modem.
■ Universal Serial Bus (USB) - Quickly becoming the most popular external connection, USB ports offer power and

versatility and are incredibly easy to use.
■ FireWire (IEEE 1394) - FireWire is a very popular method of connecting digital-video devices, such as camcorders

or digital cameras, to your computer.

● Internet/network connection
■ Modem - This is the standard method of connecting to the Internet.
■ Local area network (LAN) card - This is used by many computers, particularly those in an Ethernet office network,

to connected to each other.
■ Cable modem - Some people now use the cable-television system in their home to connect to the Internet.
■ Digital Subscriber Line (DSL) modem - This is a high-speed connection that works over a standard telephone line.

http://electronics.howstuffworks.com/pc.htm (2 of 6) [05-02-2004]

http://electronics.howstuffworks.com/motherboard.htm
http://electronics.howstuffworks.com/power-supply.htm
http://electronics.howstuffworks.com/hard-disk.htm
http://electronics.howstuffworks.com/operating-system.htm
http://electronics.howstuffworks.com/ide.htm
http://electronics.howstuffworks.com/pci.htm
http://electronics.howstuffworks.com/scsi.htm
http://electronics.howstuffworks.com/scanner.htm
http://electronics.howstuffworks.com/agp.htm
http://electronics.howstuffworks.com/sound-card.htm
http://electronics.howstuffworks.com/graphics-card.htm
http://electronics.howstuffworks.com/monitor.htm
http://electronics.howstuffworks.com/keyboard.htm
http://electronics.howstuffworks.com/mouse.htm
http://electronics.howstuffworks.com/removable-storage.htm
http://electronics.howstuffworks.com/floppy-disk-drive.htm
http://electronics.howstuffworks.com/cd.htm
http://electronics.howstuffworks.com/removable-storage.htm
http://electronics.howstuffworks.com/flash-memory.htm
http://electronics.howstuffworks.com/dvd.htm
http://electronics.howstuffworks.com/parallel-port.htm
http://electronics.howstuffworks.com/inkjet-printer.htm
http://electronics.howstuffworks.com/serial-port.htm
http://electronics.howstuffworks.com/modem.htm
http://electronics.howstuffworks.com/usb.htm
http://electronics.howstuffworks.com/firewire.htm
http://electronics.howstuffworks.com/camcorder.htm
http://electronics.howstuffworks.com/digital-camera.htm
http://electronics.howstuffworks.com/modem.htm
http://electronics.howstuffworks.com/internet-infrastructure.htm
http://electronics.howstuffworks.com/home-network.htm
http://electronics.howstuffworks.com/ethernet.htm
http://electronics.howstuffworks.com/cable-modem.htm
http://electronics.howstuffworks.com/cable-tv.htm
http://electronics.howstuffworks.com/dsl.htm
http://electronics.howstuffworks.com/telephone.htm

Howstuffworks "How PCs Work"

■ Very high bit-rate DSL (VDSL) modem - A newer variation of DSL, VDSL requires that your phone line have fiber-
optic cables.

From Power-up to Shut-down
Now that you are familiar with the parts of a PC, let's see what happens in a typical computer session, from the moment you
turn the computer on until you shut it down:

1. You press the "On" button on the computer and the monitor.

2. You see the BIOS software doing its thing, called the power-on self-test (POST). On many machines, the BIOS displays
text describing such data as the amount of memory installed in your computer and the type of hard disk you have. During
this boot sequence, the BIOS does a remarkable amount of work to get your computer ready to run.

● The BIOS determines whether the video card is operational. Most video cards have a miniature BIOS of their own
that initializes the memory and graphics processor on the card. If they do not, there is usually video-driver
information on another ROM on the motherboard that the BIOS can load.

● The BIOS checks to see if this is a cold boot or a reboot. It does this by checking the value at memory address
0000:0472. A value of 1234h indicates a reboot, in which case the BIOS skips the rest of POST. Any other value is
considered a cold boot.

● If it is a cold boot, the BIOS verifies RAM by performing a read/write test of each memory address. It checks for a
keyboard and a mouse. It looks for a PCI bus and, if it finds one, checks all the PCI cards. If the BIOS finds any
errors during the POST, it notifies you with a series of beeps or a text message displayed on the screen. An error
at this point is almost always a hardware problem.

● The BIOS displays some details about your system. This typically includes information about the following:
■ Processor
■ Floppy and hard drive
■ Memory
■ BIOS revision and date
■ Display

● Any special drivers, such as the ones for SCSI adapters, are loaded from the adapter and the BIOS displays the
information.

● The BIOS looks at the sequence of storage devices identified as boot devices in the CMOS Setup. "Boot" is short
for "bootstrap," as in the old phrase "Lift yourself up by your bootstraps." Boot refers to the process of launching the
operating system. The BIOS tries to initiate the boot sequence from the first device using the bootstrap loader.

This animation walks you through a typical PC session.

3. The bootstrap loader loads the operating system into memory and allows it to begin operation. It does this by setting
up the divisions of memory that hold the operating system, user information and applications. The bootstrap loader then
establishes the data structures that are used to communicate within and between the sub-systems and applications of the
computer. Finally, it turns control of the computer over to the operating system.

4. Once loaded, the operating system's tasks fall into six broad categories:

http://electronics.howstuffworks.com/pc.htm (3 of 6) [05-02-2004]

http://electronics.howstuffworks.com/vdsl.htm
http://electronics.howstuffworks.com/fiber-optic.htm
http://electronics.howstuffworks.com/fiber-optic.htm
http://electronics.howstuffworks.com/bios1.htm

Howstuffworks "How PCs Work"

● Processor management - Breaking the tasks down into manageable chunks and prioritizing them before sending to
the CPU

● Memory management - Coordinating the flow of data in and out of RAM and determining when virtual memory is
necessary

● Device management - Providing an interface between each device connected to the computer, the CPU and
applications

● Storage management - Directing where data will be stored permanently on hard drives and other forms of storage
● Application Interface - Providing a standard communications and data exchange between software programs and

the computer
● User Interface - Providing a way for you to communicate and interact with the computer

5. You open up a word processing program and type a letter, save it and then print it out. Several components work together
to make this happen:

● The keyboard and mouse send your input to the operating system.
● The operating system determines that the word-processing program is the active program and accepts your input

as data for that program.
● The word-processing program determines the format that the data is in and, via the operating system, stores it

temporarily in RAM.
● Each instruction from the word-processing program is sent by the operating system to the CPU. These instructions

are intertwined with instructions from other programs that the operating system is overseeing before being sent to
the CPU.

● All this time, the operating system is steadily providing display information to the graphics card, directing what will
be displayed on the monitor.

● When you choose to save the letter, the word-processing program sends a request to the operating system, which
then provides a standard window for selecting where you wish to save the information and what you want to call it.
Once you have chosen the name and file path, the operating system directs the data from RAM to the appropriate
storage device.

● You click on "Print." The word-processing program sends a request to the operating system, which translates the
data into a format the printer understands and directs the data from RAM to the appropriate port for the printer you
requested.

6. You open up a Web browser and check out HowStuffWorks. Once again, the operating system coordinates all of the
action. This time, though, the computer receives input from another source, the Internet, as well as from you. The
operating system seamlessly integrates all incoming and outgoing information.

7. You close the Web browser and choose the "Shut Down" option.

8. The operating system closes all programs that are currently active. If a program has unsaved information, you are given
an opportunity to save it before closing the program.

9. The operating system writes its current settings to a special configuration file so that it will boot up next time with the
same settings.

10. If the computer provides software control of power, then the operating system will completely turn off the computer when
it finishes its own shut-down cycle. Otherwise, you will have to manually turn the power off.

The Future of Computing
Silicon microprocessors have been the heart of the computing world for more than 40 years. In that time, microprocessor
manufacturers have crammed more and more electronic devices onto microprocessors. In accordance with Moore's Law, the
number of electronic devices put on a microprocessor has doubled every 18 months. Moore's Law is named after Intel founder
Gordon Moore, who predicted in 1965 that microprocessors would double in complexity every two years. Many have predicted
that Moore's Law will soon reach its end because of the physical limitations of silicon microprocessors.

The current process used to pack more and more transistors onto a chip is called deep-ultraviolet lithography (DUVL), which
is a photography-like technique that focuses light through lenses to carve circuit patterns on silicon wafers. DUVL will begin to
reach its limit around 2005. At that time, chipmakers will have to look to other technologies to cram more transistors onto silicon
to create more powerful chips. Many are already looking at extreme-ultraviolet lithography (EUVL) as a way to extend the life of
silicon at least until the end of the decade. EUVL uses mirrors instead of lenses to focus the light, which allows light with shorter
wavelengths to accurately focus on the silicon wafer. To learn more about EUVL, see How EUV Chipmaking Works.

Beyond EUVL, researchers have been looking at alternatives to the traditional microprocessor design. Two of the more
interesting emerging technologies are DNA computers and quantum computers.

DNA computers have the potential to take computing to new levels, picking up where Moore's Law leaves off. There are several
advantages to using DNA instead of silicon:

http://electronics.howstuffworks.com/pc.htm (4 of 6) [05-02-2004]

http://electronics.howstuffworks.com/index.htm
http://electronics.howstuffworks.com/euvl.htm
http://electronics.howstuffworks.com/euvl.htm
http://electronics.howstuffworks.com/dna-computer.htm

Howstuffworks "How PCs Work"

As the computer moves off the desktop and becomes our constant
companion, augmented-reality displays will overlay computer-

generated graphics to the real world.

● As long as there are cellular organisms, there will be a
supply of DNA.

● The large supply of DNA makes it a cheap resource.
● Unlike traditional microprocessors, which are made

using toxic materials, DNA biochips can be made
cleanly.

● DNA computers are many times smaller than today's
computers.

DNA's key advantage is that it will make computers smaller,
while at the same time increasing storage capacity, than any
computer that has come before. One pound of DNA has the
capacity to store more information than all the electronic
computers ever built. The computing power of a teardrop-
sized DNA computer, using the DNA logic gates, will be more
powerful than the world's most powerful supercomputer. More
than 10-trillion DNA molecules can fit into an area no larger
than 1 cubic centimeter (.06 inch3). With this small amount of
DNA, a computer would be able to hold 10 terabytes (TB) of
data and perform 10-trillion calculations at a time. By adding
more DNA, more calculations could be performed.

Unlike conventional computers, DNA computers could perform calculations simultaneously. Conventional computers operate
linearly, taking on tasks one at a time. It is parallel computing that will allow DNA to solve complex mathematical problems in
hours -- problems that might take electrical computers hundreds of years to complete. You can learn more about DNA
computing in How DNA Computers Will Work.

Photo courtesy IBM
By the end of the decade, we could be wearing our computers instead of

sitting in front of them.

Today's computers work by manipulating bits that exist in
one of two states: 0 or 1. Quantum computers aren't limited
to two states; they encode information as quantum bits, or
qubits. A qubit can be a 1 or a 0, or it can exist in a
superposition that is simultaneously 1 and 0 or
somewhere in between. Qubits represent atoms that are
working together to serve as computer memory and a
microprocessor. Because a quantum computer can contain
these multiple states simultaneously, it has the potential to
be millions of times more powerful than today's most
powerful supercomputers. A 30-qubit quantum computer
would equal the processing power of a conventional
computer capable of running at 10 teraops, or trillions of
operations per second. Today's fastest supercomputers
have achieved speeds of about 2 teraops. You can learn
more about the potential of quantum computers in How
Quantum Computers Will Work.

Already we are seeing powerful computers in non-desktop
roles. Laptop computers and personal digital assistants
(PDAs) have taken computing out of the office. Wearable
computers built into our clothing and jewelry will be with us
everywhere we go. Our files will follow us while our
computer provides constant feedback about our
environment. Voice- and handwriting-recognition software
will allow us to interface with our computers without using a
mouse or keyboard. Magnetic RAM and other innovations
will soon provide our PC with the same instant-on
accessibility that our TV and radio have.

One thing is an absolute certainty: The PC will evolve. It will get faster. It will have more capacity. And it will continue to be an
integral part of our lives.

For more information, check out the links on the next page.

Lots More Information!

http://electronics.howstuffworks.com/pc.htm (5 of 6) [05-02-2004]

http://electronics.howstuffworks.com/digital-electronics.htm
http://electronics.howstuffworks.com/dna-computer.htm
http://electronics.howstuffworks.com/bytes.htm
http://electronics.howstuffworks.com/quantum-computer.htm
http://electronics.howstuffworks.com/quantum-computer.htm
http://electronics.howstuffworks.com/quantum-computer.htm
http://electronics.howstuffworks.com/laptop.htm
http://electronics.howstuffworks.com/pda.htm
http://electronics.howstuffworks.com/computer-clothing.htm
http://electronics.howstuffworks.com/digital-jewelry.htm
http://electronics.howstuffworks.com/ubiquitous-network.htm
http://electronics.howstuffworks.com/augmented-reality.htm
http://electronics.howstuffworks.com/mram.htm
http://electronics.howstuffworks.com/tv.htm
http://electronics.howstuffworks.com/radio.htm

Howstuffworks "How PCs Work"

Related HowStuffWorks Articles

● How Microprocessors Work
● How Computer Memory Works
● How Hard Disks Work
● How Floppy Disk Drives Work
● How PC Power Supplies Work
● How Operating Systems Work
● How Motherboards Work
● How BIOS Works
● How IDE Controllers Work
● How PCI Works
● How SCSI Works
● How AGP Works
● How Sound Cards Work
● How Graphics Cards Work
● How Keyboards Work
● How Computer Mice Work
● How Parallel Ports Work
● How Serial Ports Work
● How USB Works
● How FireWire Works
● How Computer Monitors Work
● How Home Networking Works

More Great Links

● PCTechGuide
● SlashDot
● The PC Guide
● Computer Hardware Links
● Motherboards.org: How To Guides
● Hardware Links And Troubleshooting Resources
● Tom's Hardware Guide
● Huge List of FAQs

http://electronics.howstuffworks.com/pc.htm (6 of 6) [05-02-2004]

http://electronics.howstuffworks.com/microprocessor.htm
http://electronics.howstuffworks.com/computer-memory.htm
http://electronics.howstuffworks.com/hard-disk.htm
http://electronics.howstuffworks.com/floppy-disk-drive.htm
http://electronics.howstuffworks.com/power-supply.htm
http://electronics.howstuffworks.com/operating-system.htm
http://electronics.howstuffworks.com/motherboard.htm
http://electronics.howstuffworks.com/bios.htm
http://electronics.howstuffworks.com/ide.htm
http://electronics.howstuffworks.com/pci.htm
http://electronics.howstuffworks.com/scsi.htm
http://electronics.howstuffworks.com/agp.htm
http://electronics.howstuffworks.com/sound-card.htm
http://electronics.howstuffworks.com/graphics-card.htm
http://electronics.howstuffworks.com/keyboard.htm
http://electronics.howstuffworks.com/mouse.htm
http://electronics.howstuffworks.com/parallel-port.htm
http://electronics.howstuffworks.com/serial-port.htm
http://electronics.howstuffworks.com/usb.htm
http://electronics.howstuffworks.com/firewire.htm
http://electronics.howstuffworks.com/monitor.htm
http://electronics.howstuffworks.com/home-network.htm
http://electronics.howstuffworks.com/framed.htm?parent=pc.htm&url=http://www.pctechguide.com/
http://electronics.howstuffworks.com/framed.htm?parent=pc.htm&url=http://www.slashdot.org
http://electronics.howstuffworks.com/framed.htm?parent=pc.htm&url=http://www.pcguide.com/index.htm
http://electronics.howstuffworks.com/framed.htm?parent=pc.htm&url=http://users.erols.com/chare/hardware.htm
http://electronics.howstuffworks.com/framed.htm?parent=pc.htm&url=http://www.motherboards.org/
http://electronics.howstuffworks.com/framed.htm?parent=pc.htm&url=http://darkwing.uoregon.edu/~wharmon/hardware.html
http://electronics.howstuffworks.com/framed.htm?parent=pc.htm&url=http://www.tomshardware.com/
http://electronics.howstuffworks.com/framed.htm?parent=pc.htm&url=http://www.faqs.org/faqs/by-category.html

Howstuffworks "How Microprocessors Work"

How Microprocessors Work
by Marshall Brain

Photo courtesy International Business Machines Corporation.
Unauthorized use not permitted.

CMOS 7S "Copper chip" on a stack of pennies

The computer you are using to read this page uses a microprocessor to do
its work. The microprocessor is the heart of any normal computer, whether it
is a desktop machine, a server or a laptop. The microprocessor you are using
might be a Pentium, a K6, a PowerPC, a Sparc or any of the many other
brands and types of microprocessors, but they all do approximately the same
thing in approximately the same way.

If you have ever wondered what the microprocessor in your computer is
doing, or if you have ever wondered about the differences between types of
microprocessors, then read on. In this article, you will learn how fairly simple
digital logic techniques allow a computer to do its job, whether its playing a
game or spell checking a document!

Microprocessor History
A microprocessor -- also known as a CPU or central processing unit -- is a
complete computation engine that is fabricated on a single chip. The first microprocessor was the Intel 4004, introduced in 1971.
The 4004 was not very powerful -- all it could do was add and subtract, and it could only do that 4 bits at a time. But it was
amazing that everything was on one chip. Prior to the 4004, engineers built computers either from collections of chips or from
discrete components (transistors wired one at a time). The 4004 powered one of the first portable electronic calculators.

Intel 4004 chipIntel 8080

The first microprocessor to make it into a home computer was the Intel
8080, a complete 8-bit computer on one chip, introduced in 1974. The first
microprocessor to make a real splash in the market was the Intel 8088,
introduced in 1979 and incorporated into the IBM PC (which first appeared
around 1982). If you are familiar with the PC market and its history, you
know that the PC market moved from the 8088 to the 80286 to the 80386 to
the 80486 to the Pentium to the Pentium II to the Pentium III to the Pentium
4. All of these microprocessors are made by Intel and all of them are
improvements on the basic design of the 8088. The Pentium 4 can execute
any piece of code that ran on the original 8088, but it does it about 5,000 times faster!

The following table helps you to understand the differences between the different processors that Intel has introduced over the
years.

Name Date Transistors Microns Clock speed Data width MIPS

8080 1974 6,000 6 2 MHz 8 bits 0.64

8088 1979 29,000 3 5 MHz 16 bits
8-bit bus 0.33

80286 1982 134,000 1.5 6 MHz 16 bits 1

80386 1985 275,000 1.5 16 MHz 32 bits 5

80486 1989 1,200,000 1 25 MHz 32 bits 20

Pentium 1993 3,100,000 0.8 60 MHz 32 bits
64-bit bus 100

Pentium II 1997 7,500,000 0.35 233 MHz 32 bits
64-bit bus ~300

Pentium III 1999 9,500,000 0.25 450 MHz 32 bits
64-bit bus ~510

Pentium 4 2000 42,000,000 0.18 1.5 GHz 32 bits
64-bit bus ~1,700

Compiled from The Intel Microprocessor Quick Reference Guide and TSCP Benchmark Scores

http://electronics.howstuffworks.com/microprocessor.htm (1 of 7) [05-02-2004]

http://electronics.howstuffworks.com/
http://electronics.howstuffworks.com/microprocessor.htm
http://electronics.howstuffworks.com/about-author.htm#brain
http://www.ibm.com/us/
http://electronics.howstuffworks.com/pc.htm
http://electronics.howstuffworks.com/web-server.htm
http://electronics.howstuffworks.com/laptop.htm
http://electronics.howstuffworks.com/bytes.htm
http://electronics.howstuffworks.com/diode4.htm
http://electronics.howstuffworks.com/framed.htm?parent=microprocessor.htm&url=http://www.intel.com/pressroom/kits/quickref.htm
http://electronics.howstuffworks.com/framed.htm?parent=microprocessor.htm&url=http://home.attbi.com/~tckerrigan/bench.html

Howstuffworks "How Microprocessors Work"

Information about this table:

What's a Chip?
A chip is also called an integrated
circuit. Generally it is a small, thin
piece of silicon onto which the
transistors making up the
microprocessor have been etched.
A chip might be as large as an inch
on a side and can contain tens of
millions of transistors. Simpler
processors might consist of a few
thousand transistors etched onto a
chip just a few millimeters square.

● The date is the year that the processor was first introduced. Many processors are re-
introduced at higher clock speeds for many years after the original release date.

● Transistors is the number of transistors on the chip. You can see that the number of
transistors on a single chip has risen steadily over the years.

● Microns is the width, in microns, of the smallest wire on the chip. For comparison, a
human hair is 100 microns thick. As the feature size on the chip goes down, the number
of transistors rises.

● Clock speed is the maximum rate that the chip can be clocked at. Clock speed will
make more sense in the next section.

● Data Width is the width of the ALU. An 8-bit ALU can add/subtract/multiply/etc. two 8-bit
numbers, while a 32-bit ALU can manipulate 32-bit numbers. An 8-bit ALU would have to
execute four instructions to add two 32-bit numbers, while a 32-bit ALU can do it in one
instruction. In many cases, the external data bus is the same width as the ALU, but not always. The 8088 had a 16-bit
ALU and an 8-bit bus, while the modern Pentiums fetch data 64 bits at a time for their 32-bit ALUs.

● MIPS stands for "millions of instructions per second" and is a rough measure of the performance of a CPU. Modern CPUs
can do so many different things that MIPS ratings lose a lot of their meaning, but you can get a general sense of the
relative power of the CPUs from this column.

From this table you can see that, in general, there is a relationship between clock speed and MIPS. The maximum clock speed
is a function of the manufacturing process and delays within the chip. There is also a relationship between the number of
transistors and MIPS. For example, the 8088 clocked at 5 MHz but only executed at 0.33 MIPS (about one instruction per 15
clock cycles). Modern processors can often execute at a rate of two instructions per clock cycle. That improvement is directly
related to the number of transistors on the chip and will make more sense in the next section.

Inside a Microprocessor

Photo courtesy Intel Corporation
Intel Pentium 4 processor

To understand how a microprocessor works, it is helpful to look inside and learn about the
logic used to create one. In the process you can also learn about assembly language -- the
native language of a microprocessor -- and many of the things that engineers can do to boost
the speed of a processor.

A microprocessor executes a collection of machine instructions that tell the processor what to
do. Based on the instructions, a microprocessor does three basic things:

● Using its ALU (Arithmetic/Logic Unit), a microprocessor can perform mathematical
operations like addition, subtraction, multiplication and division. Modern
microprocessors contain complete floating point processors that can perform
extremely sophisticated operations on large floating point numbers.

● A microprocessor can move data from one memory location to another.
● A microprocessor can make decisions and jump to a new set of instructions based on those decisions.

There may be very sophisticated things that a microprocessor does, but those are its three basic activities. The following
diagram shows an extremely simple microprocessor capable of doing those three things:

http://electronics.howstuffworks.com/microprocessor.htm (2 of 7) [05-02-2004]

http://electronics.howstuffworks.com/diode1.htm
http://electronics.howstuffworks.com/diode4.htm
http://electronics.howstuffworks.com/framed.htm?parent=microprocessor.htm&url=http://www.intel.com
http://electronics.howstuffworks.com/computer-memory.htm

Howstuffworks "How Microprocessors Work"

This is about as simple as a microprocessor gets. This microprocessor has:

● An address bus (that may be 8, 16 or 32 bits wide) that sends an address to memory
● A data bus (that may be 8, 16 or 32 bits wide) that can send data to memory or receive data from memory
● An RD (read) and WR (write) line to tell the memory whether it wants to set or get the addressed location
● A clock line that lets a clock pulse sequence the processor
● A reset line that resets the program counter to zero (or whatever) and restarts execution

Let's assume that both the address and data buses are 8 bits wide in this example.

Here are the components of this simple microprocessor:

● Registers A, B and C are simply latches made out of flip-flops. (See the section on "edge-triggered latches" in How
Boolean Logic Works for details.)

● The address latch is just like registers A, B and C.
● The program counter is a latch with the extra ability to increment by 1 when told to do so, and also to reset to zero when

told to do so.
● The ALU could be as simple as an 8-bit adder (see the section on adders in How Boolean Logic Works for details), or it

might be able to add, subtract, multiply and divide 8-bit values. Let's assume the latter here.
● The test register is a special latch that can hold values from comparisons performed in the ALU. An ALU can normally

compare two numbers and determine if they are equal, if one is greater than the other, etc. The test register can also
normally hold a carry bit from the last stage of the adder. It stores these values in flip-flops and then the instruction
decoder can use the values to make decisions.

● There are six boxes marked "3-State" in the diagram. These are tri-state buffers. A tri-state buffer can pass a 1, a 0 or it
can essentially disconnect its output (imagine a switch that totally disconnects the output line from the wire that the output
is heading toward). A tri-state buffer allows multiple outputs to connect to a wire, but only one of them to actually drive a 1
or a 0 onto the line.

● The instruction register and instruction decoder are responsible for controlling all of the other components.

Although they are not shown in this diagram, there would be control lines from the instruction decoder that would:

Helpful Articles
If you are new to digital logic, you
may find the following articles
helpful in understanding this
section:

● How Bytes and Bits Work
● How Boolean Logic Works
● How Electronic Gates Work

● Tell the A register to latch the value currently on the data bus
● Tell the B register to latch the value currently on the data bus
● Tell the C register to latch the value currently on the data bus
● Tell the program counter register to latch the value currently on the data bus
● Tell the address register to latch the value currently on the data bus
● Tell the instruction register to latch the value currently on the data bus
● Tell the program counter to increment
● Tell the program counter to reset to zero
● Activate any of the six tri-state buffers (six separate lines)
● Tell the ALU what operation to perform
● Tell the test register to latch the ALU's test bits
● Activate the RD line
● Activate the WR line

Coming into the instruction decoder are the bits from the test register and the clock line, as well as the bits from the instruction
register.

64-bit Processors
Sixty-four-bit processors have been with us since 1992, and in the 21st century they have started to become mainstream. Both
Intel and AMD have introduced 64-bit chips, and the Mac G5 sports a 64-bit processor. Sixty-four-bit processors have 64-bit
ALUs, 64-bit registers, 64-bit buses and so on.

Photo courtesy AMD

One reason why the world needs 64-bit processors is because of their
enlarged address spaces. Thirty-two-bit chips are often constrained to a
maximum of 2 GB or 4 GB of RAM access. That sounds like a lot, given that
most home computers currently use only 256 MB to 512 MB of RAM. However,
a 4-GB limit can be a severe problem for server machines and machines
running large databases. And even home machines will start bumping up
against the 2 GB or 4 GB limit pretty soon if current trends continue. A 64-bit
chip has none of these constraints because a 64-bit RAM address space is
essentially infinite for the foreseeable future -- 2^64 bytes of RAM is something
on the order of a quadrillion gigabytes of RAM.

With a 64-bit address bus and wide, high-speed data buses on the

http://electronics.howstuffworks.com/microprocessor.htm (3 of 7) [05-02-2004]

http://electronics.howstuffworks.com/boolean.htm
http://electronics.howstuffworks.com/boolean.htm
http://electronics.howstuffworks.com/boolean.htm
http://electronics.howstuffworks.com/bytes.htm
http://electronics.howstuffworks.com/boolean.htm
http://electronics.howstuffworks.com/digital-electronics.htm
http://www.amd.com/us-en/
http://electronics.howstuffworks.com/bytes4.htm
http://electronics.howstuffworks.com/ram.htm
http://electronics.howstuffworks.com/web-server.htm
http://electronics.howstuffworks.com/pc.htm

Howstuffworks "How Microprocessors Work"

motherboard, 64-bit machines also offer faster I/O (input/output) speeds to things like hard disk drives and video cards. These
features can greatly increase system performance.

Servers can definitely benefit from 64 bits, but what about normal users? Beyond the RAM solution, it is not clear that a 64-bit
chip offers "normal users" any real, tangible benefits at the moment. They can process data (very complex data features lots of
real numbers) faster. People doing video editing and people doing photographic editing on very large images benefit from this
kind of computing power. High-end games will also benefit, once they are re-coded to take advantage of 64-bit features. But the
average user who is reading e-mail, browsing the Web and editing Word documents is not really using the processor in that
way. In addition, operating systems like Windows XP have not yet been upgraded to handle 64-bit CPUs. Because of the lack of
tangible benefits, it will be 2010 or so before we see 64-bit machines on every desktop.

Check out ExtremeTech - 64-bit CPUs: What You Need to Know and InternetWeek - Athlon 64 Needs A Killer App to learn
more.

RAM and ROM

ROM chip

The previous section talked about the address and data buses, as well as the RD and WR
lines. These buses and lines connect either to RAM or ROM -- generally both. In our sample
microprocessor, we have an address bus 8 bits wide and a data bus 8 bits wide. That means
that the microprocessor can address (28) 256 bytes of memory, and it can read or write 8 bits
of the memory at a time. Let's assume that this simple microprocessor has 128 bytes of ROM
starting at address 0 and 128 bytes of RAM starting at address 128.

ROM stands for read-only memory. A ROM chip is programmed with a permanent collection of
pre-set bytes. The address bus tells the ROM chip which byte to get and place on the data
bus. When the RD line changes state, the ROM chip presents the selected byte onto the data
bus.

RAM stands for random-access memory. RAM contains bytes of information, and the microprocessor can read or write to those
bytes depending on whether the RD or WR line is signaled. One problem with today's RAM chips is that they forget everything
once the power goes off. That is why the computer needs ROM.

RAM chips

By the way, nearly all computers contain some amount of ROM (it is possible to create a simple
computer that contains no RAM -- many microcontrollers do this by placing a handful of RAM
bytes on the processor chip itself -- but generally impossible to create one that contains no
ROM). On a PC, the ROM is called the BIOS (Basic Input/Output System). When the
microprocessor starts, it begins executing instructions it finds in the BIOS. The BIOS
instructions do things like test the hardware in the machine, and then it goes to the hard disk to
fetch the boot sector (see How Hard Disks Work for details). This boot sector is another small
program, and the BIOS stores it in RAM after reading it off the disk. The microprocessor then
begins executing the boot sector's instructions from RAM. The boot sector program will tell the
microprocessor to fetch something else from the hard disk into RAM, which the microprocessor
then executes, and so on. This is how the microprocessor loads and executes the entire operating system.

Microprocessor Instructions
Even the incredibly simple microprocessor shown in the previous example will have a fairly large set of instructions that it can
perform. The collection of instructions is implemented as bit patterns, each one of which has a different meaning when loaded
into the instruction register. Humans are not particularly good at remembering bit patterns, so a set of short words are defined to
represent the different bit patterns. This collection of words is called the assembly language of the processor. An assembler
can translate the words into their bit patterns very easily, and then the output of the assembler is placed in memory for the
microprocessor to execute.

Here's the set of assembly language instructions that the designer might create for the simple microprocessor in our example:

● LOADA mem - Load register A from memory address
● LOADB mem - Load register B from memory address
● CONB con - Load a constant value into register B
● SAVEB mem - Save register B to memory address
● SAVEC mem - Save register C to memory address
● ADD - Add A and B and store the result in C
● SUB - Subtract A and B and store the result in C
● MUL - Multiply A and B and store the result in C

http://electronics.howstuffworks.com/microprocessor.htm (4 of 7) [05-02-2004]

http://electronics.howstuffworks.com/motherboard.htm
http://electronics.howstuffworks.com/hard-disk.htm
http://electronics.howstuffworks.com/graphics-card.htm
http://electronics.howstuffworks.com/video-editing.htm
http://electronics.howstuffworks.com/email.htm
http://electronics.howstuffworks.com/operating-system.htm
http://www.extremetech.com/article2/0,3973,231,00.asp
http://www.internetwk.com/breakingNews/showArticle.jhtml?articleID=17000494
http://electronics.howstuffworks.com/rom.htm
http://electronics.howstuffworks.com/ram.htm
http://electronics.howstuffworks.com/power-supply.htm
http://electronics.howstuffworks.com/microcontroller.htm
http://electronics.howstuffworks.com/pc.htm
http://electronics.howstuffworks.com/bios.htm
http://electronics.howstuffworks.com/hard-disk.htm
http://electronics.howstuffworks.com/operating-system.htm

Howstuffworks "How Microprocessors Work"

● DIV - Divide A and B and store the result in C
● COM - Compare A and B and store the result in test
● JUMP addr - Jump to an address
● JEQ addr - Jump, if equal, to address
● JNEQ addr - Jump, if not equal, to address
● JG addr - Jump, if greater than, to address
● JGE addr - Jump, if greater than or equal, to address
● JL addr - Jump, if less than, to address
● JLE addr - Jump, if less than or equal, to address
● STOP - Stop execution

If you have read How C Programming Works, then you know that this simple piece of C code will calculate the factorial of 5
(where the factorial of 5 = 5! = 5 * 4 * 3 * 2 * 1 = 120):

a=1;
f=1;
while (a <= 5)
{
 f = f * a;
 a = a + 1;
}

At the end of the program's execution, the variable f contains the factorial of 5.

A C compiler translates this C code into assembly language. Assuming that RAM starts at address 128 in this processor, and
ROM (which contains the assembly language program) starts at address 0, then for our simple microprocessor the assembly
language might look like this:

// Assume a is at address 128
// Assume F is at address 129
0 CONB 1 // a=1;
1 SAVEB 128
2 CONB 1 // f=1;
3 SAVEB 129
4 LOADA 128 // if a > 5 the jump to 17
5 CONB 5
6 COM
7 JG 17
8 LOADA 129 // f=f*a;
9 LOADB 128
10 MUL
11 SAVEC 129
12 LOADA 128 // a=a+1;
13 CONB 1
14 ADD
15 SAVEC 128
16 JUMP 4 // loop back to if
17 STOP

So now the question is, "How do all of these instructions look in ROM?" Each of these assembly language instructions must be
represented by a binary number. For the sake of simplicity, let's assume each assembly language instruction is given a unique
number, like this:

● LOADA - 1
● LOADB - 2
● CONB - 3
● SAVEB - 4
● SAVEC mem - 5
● ADD - 6
● SUB - 7
● MUL - 8
● DIV - 9
● COM - 10
● JUMP addr - 11
● JEQ addr - 12
● JNEQ addr - 13
● JG addr - 14

http://electronics.howstuffworks.com/microprocessor.htm (5 of 7) [05-02-2004]

http://electronics.howstuffworks.com/c.htm

Howstuffworks "How Microprocessors Work"

● JGE addr - 15
● JL addr - 16
● JLE addr - 17
● STOP - 18

The numbers are known as opcodes. In ROM, our little program would look like this:

// Assume a is at address 128
// Assume F is at address 129
Addr opcode/value
0 3 // CONB 1
1 1
2 4 // SAVEB 128
3 128
4 3 // CONB 1
5 1
6 4 // SAVEB 129
7 129
8 1 // LOADA 128
9 128
10 3 // CONB 5
11 5
12 10 // COM
13 14 // JG 17
14 31
15 1 // LOADA 129
16 129
17 2 // LOADB 128
18 128
19 8 // MUL
20 5 // SAVEC 129
21 129
22 1 // LOADA 128
23 128
24 3 // CONB 1
25 1
26 6 // ADD
27 5 // SAVEC 128
28 128
29 11 // JUMP 4
30 8
31 18 // STOP

You can see that seven lines of C code became 17 lines of assembly language, and that became 31 bytes in ROM.

The instruction decoder needs to turn each of the opcodes into a set of signals that drive the different components inside the
microprocessor. Let's take the ADD instruction as an example and look at what it needs to do:

1. During the first clock cycle, we need to actually load the instruction. Therefore the instruction decoder needs to:
● activate the tri-state buffer for the program counter
● activate the RD line
● activate the data-in tri-state buffer
● latch the instruction into the instruction register

2. During the second clock cycle, the ADD instruction is decoded. It needs to do very little:
● set the operation of the ALU to addition
● latch the output of the ALU into the C register

3. During the third clock cycle, the program counter is incremented (in theory this could be overlapped into the second clock
cycle).

Every instruction can be broken down as a set of sequenced operations like these that manipulate the components of the
microprocessor in the proper order. Some instructions, like this ADD instruction, might take two or three clock cycles. Others
might take five or six clock cycles.

Microprocessor Performance
The number of transistors available has a huge effect on the performance of a processor. As seen earlier, a typical instruction
in a processor like an 8088 took 15 clock cycles to execute. Because of the design of the multiplier, it took approximately 80

http://electronics.howstuffworks.com/microprocessor.htm (6 of 7) [05-02-2004]

Howstuffworks "How Microprocessors Work"

cycles just to do one 16-bit multiplication on the 8088. With more transistors, much more powerful multipliers capable of single-
cycle speeds become possible.

More transistors also allow for a technology called pipelining. In a pipelined architecture, instruction execution overlaps. So
even though it might take five clock cycles to execute each instruction, there can be five instructions in various stages of
execution simultaneously. That way it looks like one instruction completes every clock cycle.

Many modern processors have multiple instruction decoders, each with its own pipeline. This allows for multiple instruction
streams, which means that more than one instruction can complete during each clock cycle. This technique can be quite
complex to implement, so it takes lots of transistors.

The trend in processor design has primarily been toward full 32-bit ALUs with fast floating point processors built in and pipelined
execution with multiple instruction streams. The newest thing in processor design is 64-bit ALUs, and people are expected to
have these processors in their home PCs in the next decade. There has also been a tendency toward special instructions (like
the MMX instructions) that make certain operations particularly efficient. There has also been the addition of hardware virtual
memory support and L1 caching on the processor chip. All of these trends push up the transistor count, leading to the multi-
million transistor powerhouses available today. These processors can execute about one billion instructions per second!

For more information on microprocessors and related topics, check out the links on the next page.

Lots More Information

Related HowStuffWorks Articles

● How Semiconductors Work
● How PCs Work
● How C Programming Works
● How Java Works
● How Operating Systems Work
● How Computer Memory Works
● How Quantum Computers Will Work
● How DNA Computers Will Work

More Great Links

● Webopedia: microprocessor
● Intel Museum: Processor Hall of Fame
● CPU Central
● Processor Upgrades
● 6th Generation CPU Comparisons
● 7th Generation CPU Comparisons
● TSCP Benchmark Scores

http://electronics.howstuffworks.com/microprocessor.htm (7 of 7) [05-02-2004]

http://electronics.howstuffworks.com/virtual-memory.htm
http://electronics.howstuffworks.com/virtual-memory.htm
http://electronics.howstuffworks.com/cache.htm
http://electronics.howstuffworks.com/diode.htm
http://electronics.howstuffworks.com/pc.htm
http://electronics.howstuffworks.com/c.htm
http://electronics.howstuffworks.com/program.htm
http://electronics.howstuffworks.com/operating-system.htm
http://electronics.howstuffworks.com/computer-memory.htm
http://electronics.howstuffworks.com/quantum-computer.htm
http://electronics.howstuffworks.com/dna-computer.htm
http://electronics.howstuffworks.com/framed.htm?parent=microprocessor.htm&url=http://www.webopedia.com/TERM/m/microprocessor.html
http://electronics.howstuffworks.com/framed.htm?parent=microprocessor.htm&url=http://www.intel.com/intel/intelis/museum/Exhibits/hist_micro/hof/index.htm
http://electronics.howstuffworks.com/framed.htm?parent=microprocessor.htm&url=http://www.cpu-central.com/
http://electronics.howstuffworks.com/framed.htm?parent=microprocessor.htm&url=http://www.erols.com/chare/cpu_proc.htm#adapters
http://electronics.howstuffworks.com/framed.htm?parent=microprocessor.htm&url=http://www.azillionmonkeys.com/qed/cpuwar.html
http://electronics.howstuffworks.com/framed.htm?parent=microprocessor.htm&url=http://www.azillionmonkeys.com/qed/cpujihad.shtml
http://electronics.howstuffworks.com/framed.htm?parent=microprocessor.htm&url=http://home.comcast.net/~tckerrigan/bench.html

Howstuffworks "How Computer Memory Works"

How Computer Memory Works
by Jeff Tyson

When you think about it, it's amazing how many different types of electronic memory you encounter in daily life. Many of them
have become an integral part of our vocabulary:

Computer Memory!

● How Computer Memory Works
● How BIOS Works
● How Caching Works
● How Flash Memory Works
● How RAM Works
● How Removable Storage Works
● How ROM Works
● How Virtual Memory Works

● RAM
● ROM
● Cache
● Dynamic RAM
● Static RAM
● Flash memory
● Memory Sticks
● Virtual memory
● Video memory
● BIOS

You already know that the computer in front of you has memory. What you may not know is that most of the electronic items you
use every day have some form of memory also. Here are just a few examples of the many items that use memory:

● Cell phones
● PDAs
● Game consoles
● Car radios
● VCRs
● TVs

Each of these devices uses different types of memory in different ways!

In this article, you'll learn why there are so many different types of memory and what all of the terms mean.

Memory Basics
Although memory is technically any form of electronic storage, it is used most often to identify fast, temporary forms of storage.
If your computer's CPU had to constantly access the hard drive to retrieve every piece of data it needs, it would operate very
slowly. When the information is kept in memory, the CPU can access it much more quickly. Most forms of memory are intended
to store data temporarily.

As you can see in the diagram above, the CPU accesses memory according to a distinct hierarchy. Whether it comes from
permanent storage (the hard drive) or input (the keyboard), most data goes in random access memory (RAM) first. The CPU
then stores pieces of data it will need to access, often in a cache, and maintains certain special instructions in the register.
We'll talk about cache and registers later.

All of the components in your computer, such as the CPU, the hard drive and the operating system, work together as a team,
and memory is one of the most essential parts of this team. From the moment you turn your computer on until the time you shut
it down, your CPU is constantly using memory. Let's take a look at a typical scenario:

● You turn the computer on.

● The computer loads data from read-only memory (ROM) and performs a power-on self-test (POST) to make sure all
the major components are functioning properly. As part of this test, the memory controller checks all of the memory
addresses with a quick read/write operation to ensure that there are no errors in the memory chips. Read/write means
that data is written to a bit and then read from that bit.

http://electronics.howstuffworks.com/computer-memory.htm (1 of 4) [05-02-2004]

http://electronics.howstuffworks.com/
http://electronics.howstuffworks.com/computer-memory.htm
http://electronics.howstuffworks.com/contact.php?s=hsw&ct=feedback
http://electronics.howstuffworks.com/bios.htm
http://electronics.howstuffworks.com/cache.htm
http://electronics.howstuffworks.com/flash-memory.htm
http://electronics.howstuffworks.com/ram.htm
http://electronics.howstuffworks.com/removable-storage.htm
http://electronics.howstuffworks.com/rom.htm
http://electronics.howstuffworks.com/virtual-memory.htm
http://electronics.howstuffworks.com/ram.htm
http://electronics.howstuffworks.com/rom.htm
http://electronics.howstuffworks.com/cache
http://electronics.howstuffworks.com/ram4.htm
http://electronics.howstuffworks.com/ram4.htm
http://electronics.howstuffworks.com/flash-memory.htm
http://electronics.howstuffworks.com/flash-memory2.htm
http://electronics.howstuffworks.com/virtual-memory.htm
http://electronics.howstuffworks.com/ram4.htm
http://electronics.howstuffworks.com/bios.htm
http://electronics.howstuffworks.com/pc.htm
http://electronics.howstuffworks.com/cell-phone.htm
http://electronics.howstuffworks.com/pda.htm
http://electronics.howstuffworks.com/video-game.htm
http://electronics.howstuffworks.com/radio.htm
http://electronics.howstuffworks.com/vcr.htm
http://electronics.howstuffworks.com/tv.htm
http://electronics.howstuffworks.com/microprocessor.htm
http://electronics.howstuffworks.com/hard-disk.htm
http://electronics.howstuffworks.com/keyboard.htm
http://electronics.howstuffworks.com/ram.htm
http://electronics.howstuffworks.com/operating-system.htm
http://electronics.howstuffworks.com/rom.htm
http://electronics.howstuffworks.com/bytes2.htm

Howstuffworks "How Computer Memory Works"

● The computer loads the basic input/output system (BIOS) from ROM. The BIOS provides the most basic information
about storage devices, boot sequence, security, Plug and Play (auto device recognition) capability and a few other
items.

● The computer loads the operating system (OS) from the hard drive into the system's RAM. Generally, the critical parts
of the operating system are maintained in RAM as long as the computer is on. This allows the CPU to have immediate
access to the operating system, which enhances the performance and functionality of the overall system.

● When you open an application, it is loaded into RAM. To conserve RAM usage, many applications load only the
essential parts of the program initially and then load other pieces as needed.

● After an application is loaded, any files that are opened for use in that application are loaded into RAM.

● When you save a file and close the application, the file is written to the specified storage device, and then it and the
application are purged from RAM.

In the list above, every time something is loaded or opened, it is placed into RAM. This simply means that it has been put in the
computer's temporary storage area so that the CPU can access that information more easily. The CPU requests the data it
needs from RAM, processes it and writes new data back to RAM in a continuous cycle. In most computers, this shuffling of
data between the CPU and RAM happens millions of times every second. When an application is closed, it and any
accompanying files are usually purged (deleted) from RAM to make room for new data. If the changed files are not saved to a
permanent storage device before being purged, they are lost.

The Need for Speed
One common question about desktop computers that comes up all the time is, "Why does a computer need so many memory
systems?" A typical computer has:

● Level 1 and level 2 caches
● Normal system RAM
● Virtual memory
● A hard disk

Why so many? The answer to this question can teach you a lot about memory!

http://electronics.howstuffworks.com/computer-memory.htm (2 of 4) [05-02-2004]

http://electronics.howstuffworks.com/bios.htm
http://electronics.howstuffworks.com/operating-system.htm
http://electronics.howstuffworks.com/ram.htm
http://electronics.howstuffworks.com/cache.htm
http://electronics.howstuffworks.com/ram.htm
http://electronics.howstuffworks.com/virtual-memory.htm
http://electronics.howstuffworks.com/hard-disk.htm

Howstuffworks "How Computer Memory Works"

Fast, powerful CPUs need quick and easy access to large amounts of data in order to maximize their performance. If the CPU
cannot get to the data it needs, it literally stops and waits for it. Modern CPUs running at speeds of about 1 gigahertz can
consume massive amounts of data -- potentially billions of bytes per second. The problem that computer designers face is that
memory that can keep up with a 1-gigahertz CPU is extremely expensive -- much more expensive than anyone can afford in
large quantities.

Computer designers have solved the cost problem by "tiering" memory -- using expensive memory in small quantities and then
backing it up with larger quantities of less expensive memory.

The cheapest form of read/write memory in wide use today is the hard disk. Hard disks provide large quantities of inexpensive,
permanent storage. You can buy hard disk space for pennies per megabyte, but it can take a good bit of time (approaching a
second) to read a megabyte off a hard disk. Because storage space on a hard disk is so cheap and plentiful, it forms the final
stage of a CPUs memory hierarchy, called virtual memory.

The next level of the hierarchy is RAM. We discuss RAM in detail in How RAM Works, but several points about RAM are
important here.

The bit size of a CPU tells you how many bytes of information it can access from RAM at the same time. For example, a 16-bit
CPU can process 2 bytes at a time (1 byte = 8 bits, so 16 bits = 2 bytes), and a 64-bit CPU can process 8 bytes at a time.

Megahertz (MHz) is a measure of a CPU's processing speed, or clock cycle, in millions per second. So, a 32-bit 800-MHz
Pentium III can potentially process 4 bytes simultaneously, 800 million times per second (possibly more based on pipelining)!
The goal of the memory system is to meet those requirements.

A computer's system RAM alone is not fast enough to match the speed of the CPU. That is why you need a cache (see the next
section). However, the faster RAM is, the better. Most chips today operate with a cycle rate of 50 to 70 nanoseconds. The
read/write speed is typically a function of the type of RAM used, such as DRAM, SDRAM, RAMBUS. We will talk about these
various types of memory later.

System RAM speed is controlled by bus width and bus speed. Bus width refers to the number of bits that can be sent to the
CPU simultaneously, and bus speed refers to the number of times a group of bits can be sent each second. A bus cycle occurs
every time data travels from memory to the CPU. For example, a 100-MHz 32-bit bus is theoretically capable of sending 4 bytes
(32 bits divided by 8 = 4 bytes) of data to the CPU 100 million times per second, while a 66-MHz 16-bit bus can send 2 bytes of
data 66 million times per second. If you do the math, you'll find that simply changing the bus width from 16 bits to 32 bits and the
speed from 66 MHz to 100 MHz in our example allows for three times as much data (400 million bytes versus 132 million bytes)
to pass through to the CPU every second.

In reality, RAM doesn't usually operate at optimum speed.
Latency changes the equation radically. Latency refers to the
number of clock cycles needed to read a bit of information.
For example, RAM rated at 100 MHz is capable of sending a
bit in 0.00000001 seconds, but may take 0.00000005 seconds
to start the read process for the first bit. To compensate for
latency, CPUs uses a special technique called burst mode.

Burst mode depends on the expectation that data requested
by the CPU will be stored in sequential memory cells. The
memory controller anticipates that whatever the CPU is
working on will continue to come from this same series of

memory addresses, so it reads several consecutive bits of data together. This means that only the first bit is subject to the full
effect of latency; reading successive bits takes significantly less time. The rated burst mode of memory is normally expressed
as four numbers separated by dashes. The first number tells you the number of clock cycles needed to begin a read operation;
the second, third and fourth numbers tell you how many cycles are needed to read each consecutive bit in the row, also known
as the wordline. For example: 5-1-1-1 tells you that it takes five cycles to read the first bit and one cycle for each bit after that.

http://electronics.howstuffworks.com/computer-memory.htm (3 of 4) [05-02-2004]

http://electronics.howstuffworks.com/bytes.htm
http://electronics.howstuffworks.com/hard-disk.htm
http://electronics.howstuffworks.com/virtual-memory.htm
http://electronics.howstuffworks.com/ram.htm

Howstuffworks "How Computer Memory Works"

Obviously, the lower these numbers are, the better the performance of the memory.

Burst mode is often used in conjunction with pipelining, another means of minimizing the effects of latency. Pipelining
organizes data retrieval into a sort of assembly-line process. The memory controller simultaneously reads one or more words
from memory, sends the current word or words to the CPU and writes one or more words to memory cells. Used together, burst
mode and pipelining can dramatically reduce the lag caused by latency.

So why wouldn't you buy the fastest, widest memory you can get? The speed and width of the memory's bus should match the
system's bus. You can use memory designed to work at 100 MHz in a 66-MHz system, but it will run at the 66-MHz speed of the
bus so there is no advantage, and 32-bit memory won't fit on a 16-bit bus.

Cache and Registers
Even with a wide and fast bus, it still takes longer for data to get from the memory card to the CPU than it takes for the CPU to
actually process the data. Caches are designed to alleviate this bottleneck by making the data used most often by the CPU
instantly available. This is accomplished by building a small amount of memory, known as primary or level 1 cache, right into
the CPU. Level 1 cache is very small, normally ranging between 2 kilobytes (KB) and 64 KB.

The secondary or level 2 cache typically resides on a
memory card located near the CPU. The level 2 cache
has a direct connection to the CPU. A dedicated
integrated circuit on the motherboard, the L2 controller,
regulates the use of the level 2 cache by the CPU.
Depending on the CPU, the size of the level 2 cache
ranges from 256 KB to 2 megabytes (MB). In most
systems, data needed by the CPU is accessed from the
cache approximately 95 percent of the time, greatly
reducing the overhead needed when the CPU has to wait
for data from the main memory.

Some inexpensive systems dispense with the level 2
cache altogether. Many high performance CPUs now
have the level 2 cache actually built into the CPU chip
itself. Therefore, the size of the level 2 cache and
whether it is onboard (on the CPU) is a major
determining factor in the performance of a CPU. For
more details on caching, see How Caching Works.

A particular type of RAM, static random access memory (SRAM), is used primarily for cache. SRAM uses multiple transistors,
typically four to six, for each memory cell. It has an external gate array known as a bistable multivibrator that switches, or flip-
flops, between two states. This means that it does not have to be continually refreshed like DRAM. Each cell will maintain its
data as long as it has power. Without the need for constant refreshing, SRAM can operate extremely quickly. But the complexity
of each cell make it prohibitively expensive for use as standard RAM.

The SRAM in the cache can be asynchronous or synchronous. Synchronous SRAM is designed to exactly match the speed
of the CPU, while asynchronous is not. That little bit of timing makes a difference in performance. Matching the CPU's clock
speed is a good thing, so always look for synchronized SRAM. (For more information on the various types of RAM, see How
RAM Works.)

The final step in memory is the registers. These are memory cells built right into the CPU that contain specific data needed by
the CPU, particularly the arithmetic and logic unit (ALU). An integral part of the CPU itself, they are controlled directly by the
compiler that sends information for the CPU to process. See How Microprocessors Work for details on registers.

Types of Memory
Memory can be split into two main categories: volatile and nonvolatile. Volatile memory loses any data as soon as the system
is turned off; it requires constant power to remain viable. Most types of RAM fall into this category.

Nonvolatile memory does not lose its data when the system or device is turned off. A number of types of memory fall into this
category. The most familiar is ROM, but Flash memory storage devices such as CompactFlash or SmartMedia cards are also
forms of nonvolatile memory. See the links below for information on these types of memory.

For a handy printable guide to computer memory, you can print the HowStuffWorks Big List of Computer Memory Terms.

http://electronics.howstuffworks.com/computer-memory.htm (4 of 4) [05-02-2004]

http://electronics.howstuffworks.com/motherboard.htm
http://electronics.howstuffworks.com/cache.htm
http://electronics.howstuffworks.com/ram.htm
http://electronics.howstuffworks.com/digital-electronics.htm
http://electronics.howstuffworks.com/boolean3.htm
http://electronics.howstuffworks.com/boolean3.htm
http://electronics.howstuffworks.com/ram.htm
http://electronics.howstuffworks.com/ram.htm
http://electronics.howstuffworks.com/microprocessor.htm
http://electronics.howstuffworks.com/flash-memory.htm
http://electronics.howstuffworks.com/pdf/computer-memory-reference.pdf

	ISC_2.pdf
	ArqComp_4.pdf
	How PCs Work.pdf
	Local Disk
	Howstuffworks "How PCs Work"

	How Microprocessors Work.pdf
	Local Disk
	Howstuffworks "How Microprocessors Work"

	How Computer Memory Works.pdf
	Local Disk
	Howstuffworks "How Computer Memory Works"

	How Operating Systems Work.pdf
	Local Disk
	Howstuffworks "How Operating Systems Work"

