
AJProença, Sistemas de Computação, UMinho, 2007/08 1

Sistemas de Computação

Lic. Ciências da Computação

1º ano

2007/08

A.J.Proença

Tema
Introdução aos Sistemas de Computação

AJProença, Sistemas de Computação, UMinho, 2007/08 2

Introdução aos
Sistemas de Computação (1)

Estrutura do tema ISC

1. Representação de informação num computador
2. Organização e estrutura interna dum computador
3. Execução de programas num computador
4. O processador e a memória num computador
5. Da comunicação de dados às redes

AJProença, Sistemas de Computação, UMinho, 2007/08 3

Noção de computador (1)

Um computador é um sistema que:

– recebe informação,
processa / arquiva informação,

transmite informação, e ...
– é programável

i.e., a funcionalidade do sistema pode ser modificada,
sem alterar fisicamente o sistema

Quando a funcionalidade é fixada no fabrico do sistema onde o
computador se integra, diz-se que o computador existente nesse
sistema está “embebido”: ex. telemóvel, máq. fotográfica digital, automóvel, ...

Como se representa a informação num computador ?
Como se processa a informação num computador ?

AJProença, Sistemas de Computação, UMinho, 2007/08 4

Noção de computador (2)

Computador tipo

Processador
(1 ou +)

Memória
primáriaSinais

Analógicos
Sinais
Analógicos

Periférico /

Dispositivo

Entrada

Periférico /

Dispositivo

Saída

Sinais
Digitais

Sinais
Digitais

Sinais

Digitais

Sinais

Digitais

Arquivo
Informação

AJProença, Sistemas de Computação, UMinho, 2007/08 5

Noção de computador (3)

• Como se representa a informação num
computador ?

– representação da informação num computador ->

• Como se processa a informação num
computador ?

– organização e funcionamento de um computador ->

AJProença, Sistemas de Computação, UMinho, 2007/08 6

Representação da informação
num computador (1)

Como se representa a informação?
– com binary digits! (ver sistemas de numeração...)

Tipos de informação a representar:
– textos (caracteres alfanuméricos)

» Baudot, Braille, ASCII, Unicode, ...
– números (para cálculo)

» inteiros: S+M, Compl. p/ 1, Compl. p/ 2, Excesso
» reais (fp): norma IEEE 754

– conteúdos multimédia
» imagens fixas: BMP, JPEG, GIF, PNG, . . .
» audio-visuais: AVI, MPEG/MP3, ...

– código para execução no computador
» noção de instruction set

AJProença, Sistemas de Computação, UMinho, 2007/08 7

Ex.: sistemas de numeração

15326 (base 6)
1*63 + 5*62 + 3*61 + 2*60 = 41610

1532.6410 (base 10)
1*103 + 5*102 + 3*101 + 2*100 + 6*10-1 + 4*10-2 = 1532.6410

153213 (base 13)
1*133 + 5*132 + 3*131 + 2*130 = 308310

110110.0112 (base 2)
1*25 + 1*24 + 0*23 + 1*22 + 1*21 + 0*20 + 0*2-1 + 1*2-2 + 1*2-3 = 54.37510

AJProença, Sistemas de Computação, UMinho, 2007/08 8

Ex.: representação de texto
com ASCII (7 bits)

21646c726f77206f6c6c6548
!dlrowolleH

Tabela ASCII 7 bits
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI
1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US
2 SP ! “ # $ % & ' () * + , - . /
3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
4 @ A B C D E F G H I J K L M N O
5 P Q R S T U V W X Y Z [\] ^ _
6 ` a b c d e f g h i j k l m n o
7 p q r s t u v w x y z { | } ~ DEL

AJProença, Sistemas de Computação, UMinho, 2007/08 9

Ex.: representação de uma imagem
em bitmap

AJProença, Sistemas de Computação, UMinho, 2007/08 10

Ex.: representação de código
para execução num PC

int x = x+y; • Código numa linguagem de
programação
– somar 2 inteiros

0x401046: 03 45 08 • Código “objecto” (em hexadecimal)
– instrução com 3-bytes
– na memória em 0x401046

addl 8(%ebp),%eax
Idêntico à
expressão
x = x + y

• Código numa linguagem mais
próxima do processador
– somar 2 inteiros (de 4-bytes)
– operandos:

• x: no registo eax
• y: na memória em [(ebp)+8]

AJProença, Sistemas de Computação, UMinho, 2007/08 11

Representação da informação
num computador (2)

Tipos de informação a representar:
– textos (caracteres alfanuméricos)

» Baudot, Braille, ASCII, Unicode (charts), ...

– números (para cálculo)
» inteiros: S+M, Compl. p/ 1, Compl. p/ 2, Excesso
» reais (fp): norma IEEE 754

– conteúdos multimédia
» imagens fixas: BMP, JPEG, GIF, PNG, . . .
» audio-visuais: AVI, MPEG/MP3 , ...

– código para execução no computador
» noção de instruction set

AJProença, Sistemas de Computação, UMinho, 2007/08 12

Caracterização dos ficheiros
com documentos electrónicos (1)

Elementos num documento electrónico:
– texto codificado (ASCII, Unicode, ...)

– especificação de formatação (margens, estilos, ...)

– tabelas e gráficos (directas, importadas, ligadas, ...)

– audiovisuais
• desenhos e imagens
• sons
• vídeos
• ...

AJProença, Sistemas de Computação, UMinho, 2007/08 13

Caracterização dos ficheiros
com documentos electrónicos (2)

Tipos de ficheiros de acordo com o conteúdo:
– apenas texto

• tipo de ficheiro: *.txt
• formato do ficheiro: puro texto codificado em ASCII, Unicode, ...
• aplicação para o manusear/editar: editor de texto (NotePad, ...)

– texto, mas com especificações para formatação
• tipos de ficheiro:

– Rich Text Format (*.rtf), proprietário (Microsoft)
– Hyper-Text Markup Language (*.html), standard

• formato do ficheiro: puro texto codificado em ASCII
• aplicações para o manusear/editar: processador de texto

(Word, ...), editor de páginas Web (FrontPage, ...)

– texto e imagens, apenas imagens ...

AJProença, Sistemas de Computação, UMinho, 2007/08 14

Caracterização dos ficheiros
com documentos electrónicos (3)

Tipos de ficheiros de acordo com o conteúdo (cont.):
–texto e imagens com codificação binária proprietária

• exemplos de tipos de ficheiro:
– documentos Microsoft Word/Excel (*.doc / *.xls)
– documentos/slides Microsoft PowerPoint (*.ppt / *.pps)
– documentos Acrobat (*.pdf)

–apenas imagens com codificação específica
• exemplos de tipos de ficheiro / aplicações:

– desenhos esquemáticos: qualquer aplicação de Office
– gráficos a partir de tabelas: em folhas de cálculo (Excel, ...)
– desenhos em formato vectorial (FreeHand, AutoCad, ...)
– desenhos orientados ao pixel (CorelDraw, Photoshop, ...)

Exemplos de documentos...

AJProença, Sistemas de Computação, UMinho, 2007/08 15

Caracterização dos ficheiros
com documentos electrónicos (Ex. 1)

Página da
disciplina
em HTML:

•interpretada
pelo browser

•visualizada
por um editor
de texto

AJProença, Sistemas de Computação, UMinho, 2007/08 16

Caracterização dos ficheiros
com documentos electrónicos (Ex. 2)

Ficheiro com
Notas de Estudo
em PDF:

•visualizada com
Acrobat Reader
•visualizada
por um editor
de texto

Baudot ==>

Baudot code
<communications> (For etymology, see baud) A character set predating EBCDIC and used originally and primarily on
paper tape. Use of Baudot reportedly survives in TDDs and some HAM radio applications.

In Baudot, characters are expressed using five bits. Baudot uses two code sub-sets, the "letter set" (LTRS), and the "figure
set" (FIGS). The FIGS character (11011) signals that the following code is to be interpreted as being in the FIGS set, until
this is reset by the LTRS (11111) character.

 binary hex LTRS FIGS

 00011 03 A -
 11001 19 B ?
 01110 0E C :
 01001 09 D $
 00001 01 E 3
 01101 0D F !
 11010 1A G &
 10100 14 H #
 00110 06 I 8
 01011 0B J BELL
 01111 0F K (
 10010 12 L)
 11100 1C M .
 01100 0C N ,
 11000 18 O 9
 10110 16 P 0
 10111 17 Q 1
 01010 0A R 4
 00101 05 S '
 10000 10 T 5
 00111 07 U 7
 11110 1E V ;
 10011 13 W 2
 11101 1D X /
 10101 15 Y 6
 10001 11 Z "
 01000 08 CR CR
 00010 02 LF LF
 00100 04 SP SP
 11111 1F LTRS LTRS
 11011 1B FIGS FIGS
 00000 00 [..unused..]

Where CR is carriage return, LF is linefeed, BELL is the bell, SP is space, and STOP is the stop character.

Note: these bit values are often shown in inverse order, depending (presumably) which side of the paper tape you were
looking at.

Local implementations of Baudot may differ in the use of #, STOP, BELL, and '.

(1997-01-30)

Try this search on OneLook / Google

Nearby terms: baud barf « Baudot « Baudotbetical order « Baudot code » baud rate » bawk » bay

Search Home Contents Feedback Random

Page 1 of 2Baudot code from FOLDOC

24-09-2003http://foldoc.doc.ic.ac.uk/foldoc/foldoc.cgi?Baudot

 ...Braille: Deciphering the Code...

Every character in the braille code is based on an arrangement of one to six raised dots. Each dot
has a numbered position in the braille cell. These characters make up the letters of the alphabet,
punctuation marks, numbers, and everything else you can do in print.

The Braille Cell

The letter "A" is written with only 1 dot.

The letter "D" has dots 1, 4, and 5.

The letter "Y" has dots 1, 3, 4, 5, and 6.

A "Period" is written with dots 2, 5, and 6. (Do you see how it is the same shape as the letter "D,"
only lower down in the cell?)

When all six dots are used, the character is called a "full cell"

The picture below shows you how the dots are arranged in the braille cell for each letter of the
alphabet. See if you can find the letters in your name and tell the dot numbers for each one.

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

Braille does not have a separate alphabet of capital letters as there is in print. Capital letters are
indicated by placing a dot 6 in front of the letter to be capitalized. Two capital signs mean the
whole word is capitalized.

Page 1 of 3...Braille: Deciphering the Code...

12-02-2004http://www.afb.org/braillebug/braille_deciphering.asp

 One Letter Capitalized Entire Word Capitalized

Braille Numbers

Braille numbers are made using the first ten letters of the alphabet, "a" through "j", and a special
number sign, dots 3, 4, 5, and 6.

0

1

2

3

4

5

6

7

8

9

Larger numbers only need one number sign. The comma in braille is dot 2.

Expanding the Code

Now that you understand how dots are arranged in the braille cell to make the letters of the
alphabet and numbers, you're ready to learn more about the code. Braille uses special characters
called contractions to make words shorter. We use contractions like "don't" as a short way of
writing two words, such as "do" and "not." In braille there are many additional contractions, 189 in
all! Using these contractions saves space, which is very important because braille books are much
larger and longer than print books.

Some contractions stand for a whole word

 and = the =

Other contractions stand for a group of letters within a word.

 ing = ed =

In addition to contractions, the braille code includes short-form words which are abbreviated
spellings of common longer words. For example, "tomorrow" is spelled "tm", "friend" is spelled "fr",
and "little" is spelled "ll" in braille.

You might think that because short-form words are so easy to spell that children who write braille
get a break on their spelling tests. Actually, braille readers also learn regular spelling for typing on
a computer.

Let's see what kind of difference contractions make in braille. Look at the same phrase, you like
him, in uncontracted braille (sometimes called "grade 1 braille") and contracted braille (sometimes
called "grade 2 braille"). What do you notice about the length of the two phrases?

Uncontracted Braille:

Contracted Braille:

Other Braille Codes

The braille code used for writing regular text in books, magazines, school reports, and letters is
known as "literary braille." There are other codes, though, that let people who are blind write just
about anything, from math problems to music notes to computer notation!

Page 2 of 3...Braille: Deciphering the Code...

12-02-2004http://www.afb.org/braillebug/braille_deciphering.asp

ALL NEW - Connector Reference and Games.

ASCII Chart
Dogs come when they are called.
Cats take a message and get back to you.
 -- Mary Bly

ASCII - The American Standard Code for Information Interchange is a standard seven-bit code that
was proposed by ANSI in 1963, and finalized in 1968. Other sources also credit much of the work on
ASCII to work done in 1965 by Robert W. Bemer (www.bobbemer.com). ASCII was established to
achieve compatibility between various types of data processing equipment. Later-day standards that
document ASCII include ISO-14962-1997 and ANSI-X3.4-1986(R1997).

ASCII, pronounced "ask-key", is the common code for microcomputer equipment. The standard
ASCII character set consists of 128 decimal numbers ranging from zero through 127 assigned to
letters, numbers, punctuation marks, and the most common special characters. The Extended ASCII
Character Set also consists of 128 decimal numbers and ranges from 128 through 255 representing
additional special, mathematical, graphic, and foreign characters.

Every now and again, I've wished that I had an ASCII chart handy, so I made one and stuck it on this
page so that I could find it in a hurry. One thing led to another, and folks started asking me questions
about ASCII and other character representations, so I've tried to update this page a bit to answer
some of the most common questions. Also, I've added additional info,such as IBM PC Keyboard
Scan Codes, and a list of other references.

My ASCII Chart

 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI
1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US
2 SP ! " # $ % & ' () * + , - . /
3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
4 @ A B C D E F G H I J K L M N O
5 P Q R S T U V W X Y Z [\] ^ _
6 ` a b c d e f g h i j k l m n o
7 p q r s t u v w x y z { | } ~ DEL

Here's a link to a decimal-to-ASCII chart.

You may also want to read the Q & A, below.

ASCII Q & A

Every now and then, I get questions about ASCII. Here are a few:

Q: What does ASCII stand for?
A: ASCII stands for American Standard Code for Information Interchange.

Search

Page 1 of 6ASCII Chart and Other Resources

24-09-2003http://www.jimprice.com/jim-asc.htm

Q: What do CR, LF, SO, and so forth mean?
A: A more detailed description of the first 32 characters can be found here.

Q: Someone wants me to send my resume (or some other file) to them in ASCII, so what do I do?
A: In general, if somebody asks for your resume or another document "in ASCII", what they really
want is a copy of your resume (or whatever the document is) in electronic form, but without any
formatting. Save your resume (or other document) from the word processor you're using (such as
Microsoft Word ®) as plain text, and then paste it into an e-mail (or copy it to a floppy disk) and send
it to whoever wanted it.

Q: OK, fine, but how do I save a Microsoft Word ® document as plain text?
A: Here are some simple instructions for saving a document as plain text in Microsoft Word® '97. The
procedure is similar for other word processors.

1. Click on "File".
2. Select "Save As".
3. In the box marked "Save as type:", select "Text Only (*.txt)" or "Text Only with Line Breaks

(*.txt).
4. In the box marked "File name:", enter the file name (a different name than the one that you had

been using).
5. Click on the button marked "Save".

If you get a warning indicating that formatting will be lost, don't be alarmed. The whole point of the
process is to remove the formatting from the document before you send it.

Q: I'm writing a program that directly interfaces with the keyboard of an IBM PC, and I need to accept
keystrokes for F1, F2, and other keys. What are the IBM PC keyboard codes for F1, F2, and ALT-A,
etc?
A: See IBM PC Keyboard Scan Codes, below
A: Also, if you're trying to enter CTRL-ALT-DEL, you might want to try one of my reboot utilities.

Q: What are the ASCII codes for things like the degrees symbol (°), the trademark symbol, solid
blocks and other special symbols?
A: The answer is "it depends". There's really not an ASCII character for most of the special
characters (other than those shown in the table at the top of this page. However, there are different
extended ASCII sets that include a lot more special characters. (See IBM PC Extended ASCII,
below.) Also, for information about including special symbols on a web page, you might look at some
of the other charts and references, below.

Q: How do I generate extended ASCII characters from the keyboard?
A: DOS will allow you to enter extended ASCII characters into many programs. Here's how you do it:

1. Make sure NumLock is enabled on your keyboard.
2. Press and hold the ALT key.
3. While holding down the ALT key, enter the 3-digit decimal code for the extended ASCII

character you want to generate.
4. Release the ALT key.

The trick to this, of course, is knowing the decimal equivalent of the ASCII characters that you want to
generate. Since the extended ASCII Chart is in hex, you probably want a guide for to converting hex
to decimal.

Q: Does this work in Windows?
A: A better way to enter special symbols in Windows applications (such as Word), is to take
advantage of the symbols in the fonts provided by Windows. For example, in Word, use the following
steps:

1. Click on "Insert" (in the menu at the top of the page)
2. From the drop-down menu, select "Symbol". A chart of special symbols will appear
3. From the chart, you can select a symbol to insert into your document by highlighting the symbol,

and clicking on the word "Insert" at the bottom of the chart.

Q: What's the ASCII code for CTRL-ALT-DEL, and how do I put it in a DOS batch file?
A: There's not an easy way to get CTRL-ALT-DEL into a batch file, per se. However, I've created

Page 2 of 6ASCII Chart and Other Resources

24-09-2003http://www.jimprice.com/jim-asc.htm

several PC reboot utilities (for both DOS and Windows) that you can try. You can find them on my
shareware page.

Q: What's the ASCII code for CTRL-A, or CTRL-Z?
A: The value for CTRL-A (^A) is 01. The value for CTRL-Z (^Z), which is often used as an end-of-file
marker in DOS is 26 (decimal). All the other CTRL-B through CTRL-Y characters fall in between.
(CTRL-B is 2, CTRL-C is 3, and so forth.)

Control Codes

The following is a more detailed description of the first 32 ASCII characters, often referred to as
control codes.

NUL (null)
SOH (start of heading)
STX (start of text)
ETX (end of text)
EOT (end of transmission) - Not the same as ETB
ENQ (enquiry)
ACK (acknowledge)
BEL (bell) - Caused teletype machines to ring a bell. Causes a beep
 in many common terminals and terminal emulation programs.
BS (backspace) - Moves the cursor (or print head) move backwards (left)
 one space.
TAB (horizontal tab) - Moves the cursor (or print head) right to the next
 tab stop. The spacing of tab stops is dependent
 on the output device, but is often either 8 or 10.
LF (NL line feed, new line) - Moves the cursor (or print head) to a new
 line. On Unix systems, moves to a new line
 AND all the way to the left.
VT (vertical tab)
FF (form feed) - Advances paper to the top of the next page (if the
 output device is a printer).
CR (carriage return) - Moves the cursor all the way to the left, but does
 not advance to the next line.
SO (shift out) - Switches output device to alternate character set.
SI (shift in) - Switches output device back to default character set.
DLE (data link escape)
DC1 (device control 1)
DC2 (device control 2)
DC3 (device control 3)
DC4 (device control 4)
NAK (negative acknowledge)
SYN (synchronous idle)
ETB (end of transmission block) - Not the same as EOT
CAN (cancel)
EM (end of medium)
SUB (substitute)
ESC (escape)
FS (file separator)
GS (group separator)
RS (record separator)
US (unit separator)

IBM PC Keyboard Scan Codes

For many of the special key combinations such as ALT-A, F1, PgUp, and so forth, the IBM PC uses a
special two-character escape sequence. Depending on the programming language being used and
the level at which the keyboard is being accessed, the escape character is either ESC (27, 0x1B), or
NUL (0). Here are some common sequences:

Char. Decimal Pair Hex Pair Char. Decimal Pair Hex Pair
ALT-A (00,30) (0x00,0x1e) ALT-B (00,48) (0x00,0x30)
ALT-C (00,46) (0x00,0x2e) ALT-D (00,32) (0x00,0x20)
ALT-E (00,18) (0x00,0x12) ALT-F (00,33) (0x00,0x21)
ALT-G (00,34) (0x00,0x22) ALT-H (00,35) (0x00,0x23)

Page 3 of 6ASCII Chart and Other Resources

24-09-2003http://www.jimprice.com/jim-asc.htm

ALT-I (00,23) (0x00,0x17) ALT-J (00,36) (0x00,0x24)
ALT-K (00,37) (0x00,0x25) ALT-L (00,38) (0x00,0x26)
ALT-M (00,50) (0x00,0x32) ALT-N (00,49) (0x00,0x31)
ALT-O (00,24) (0x00,0x18) ALT-P (00,25) (0x00,0x19)
ALT-Q (00,16) (0x00,0x10) ALT-R (00,19) (0x00,0x13)
ALT-S (00,31) (0x00,0x1a) ALT-T (00,20) (0x00,0x14)
ALT-U (00,22) (0x00,0x16) ALT-V (00,47) (0x00,0x2f)
ALT-W (00,17) (0x00,0x11) ALT-X (00,45) (0x00,0x2d)
ALT-Y (00,21) (0x00,0x15) ALT-Z (00,44) (0x00,0x2c)
PgUp (00,73) (0x00,0x49) PgDn (00,81) (0x00,0x51)
Home (00,71) (0x00,0x47) End (00,79) (0x00,0x4f)
UpArrw (00,72) (0x00,0x48) DnArrw (00,80) (0x00,0x50)
LftArrw (00,75) (0x00,0x4b) RtArrw (00,77) (0x00,0x4d)
F1 (00,59) (0x00,0x3b) F2 (00,60) (0x00,0x3c)
F3 (00,61) (0x00,0x3d) F4 (00,62) (0x00,0x3e)
F5 (00,63) (0x00,0x3f) F6 (00,64) (0x00,0x40)
F7 (00,65) (0x00,0x41) F8 (00,66) (0x00,0x42)
F9 (00,67) (0x00,0x43) F10 (00,68) (0x00,0x44)
F11 (00,133) (0x00,0x85) F12 (00,134) (0x00,0x86)
ALT-F1 (00,104) (0x00,0x68) ALT-F2 (00,105) (0x00,0x69)
ALT-F3 (00,106) (0x00,0x6a) ALT-F4 (00,107) (0x00,0x6b)
ALT-F5 (00,108) (0x00,0x6c) ALT-F6 (00,109) (0x00,0x6d)
ALT-F7 (00,110) (0x00,0x6e) ALT-F8 (00,111) (0x00,0x6f)
ALT-F9 (00,112) (0x00,0x70) ALT-F10 (00,113) (0x00,0x71)
ALT-F11 (00,139) (0x00,0x8b) ALT-F12 (00,140) (0x00,0x8c)

Hint - If you look at how the keys are laid out on the keyboard, you'll probably see the pattern.

IBM PC Extended ASCII Display Characters

Strictly speaking, the ASCII character set only includes values up to 127 decimal (7F hex). However,
when the IBM PC was developed, the video card contained one byte for each character in the 80x25
character display. Gee...what to do with that extra bit per character? Why not invent 128 new
characters, for line-drawing and special symbols? The result, of course, was the extended ASCII
character set for the IBM PC. The chart below shows (most of) the characters that can be generated
by the display in the original IBM PC.

Microsoft Windows ® has a different notion about what the high-order (upper 128) characters are, as
shown in the table below.

Page 4 of 6ASCII Chart and Other Resources

24-09-2003http://www.jimprice.com/jim-asc.htm

Here's a link to a decimal-to-Extended ASCII chart.

Converting Hex to Decimal

Here's a chart that shows the conversion between hex and decimal.

 0 1 2 3 4 5 6 7 8 9 A B C D E F.
0 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015
1 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031
2 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047
3 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063
4 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079
5 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095
6 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111
7 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
8 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
9 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
A 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
B 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
C 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
D 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
E 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
F 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

If you're having trouble getting the hang of the above chart, here's a hint.
Hex 41 (written as 0x41 in the programing language C) is equivalent to decimal 65.

Converting Hex to Octal

Here's a chart that shows the conversion between hex and octal.

 0 1 2 3 4 5 6 7 8 9 A B C D E F.
0 000 001 002 003 004 005 006 007 010 011 012 013 014 015 016 017
1 020 021 022 023 024 025 026 027 030 031 032 033 034 035 036 037
2 040 041 042 043 044 045 046 047 050 051 052 053 054 055 056 057
3 060 061 062 063 064 065 066 067 070 071 072 073 074 075 076 077
4 100 101 102 103 104 105 106 107 110 111 112 113 114 115 116 117
5 120 121 122 123 134 125 126 127 130 131 132 133 134 135 136 137
6 140 141 142 143 144 145 146 147 150 151 152 153 154 155 156 157
7 160 161 162 163 164 165 166 167 170 171 172 173 174 175 176 177
8 200 201 202 203 204 205 206 207 210 211 212 213 214 215 216 217
9 220 221 222 223 224 225 226 227 230 231 232 233 234 235 236 237
A 240 241 242 243 244 245 246 247 250 251 252 253 254 255 256 257
B 260 261 262 263 264 265 266 267 270 271 272 273 274 275 276 277
C 300 301 302 303 304 305 306 307 310 311 312 313 314 315 316 317
D 320 321 322 323 324 325 326 327 330 331 332 333 334 335 336 337
E 340 341 342 343 344 345 346 347 350 351 352 353 354 355 356 357
F 360 361 362 363 364 365 366 367 370 371 372 373 374 375 376 377

Page 5 of 6ASCII Chart and Other Resources

24-09-2003http://www.jimprice.com/jim-asc.htm

If you're having trouble getting the hang of the above chart, here's a hint.
Hex 41 (written as 0x41 in the programing language C) is equivalent to octal 101.

Other ASCII Charts

Here are some other folks' ASCII charts, and other interesting ASCII-related references.

 ISO 646
 ASCII Table.Com - The Q and A looks familiar, doesn't it?
 ASCII - ISO 8859-1 with HTML 3.0 Entities Table
 ASCII Character Set Revised, ANSI X3.110-1983
 ASCII Character Set, ANSI X3.4-1968
 ASCII Symbol Table - with HTML codes
 Decimal ASCII for HTML
 EBCDIC Character Set - Not ASCII at all
 BAUDOT - Another Set of Character Codes
 More on BAUDOT
 Brief History of Character Codes - Good reference material!
 Braille Chart - A really neat resource.
 Mac OS Character Representations - For all you Mac programmers.

Other Things You May Want to Know

 What's its format? - Almost every file format around.
 Official US Time - Current time, timezones, history, etc.
 Connector Reference - From NullModem.Com - DB-25, DB-9, Null Modem, more!
 Common Terms - From NullModem.Com - Ever-growing glossary of computer and

electronics terms
 Pro Sound References - Info about pro sound, vintage consoles, cart machines and

more!
 Protocols.Com - A good reference of protocols.
 Area Code Finder
 Area Code Decoder
 555-1212 - Phone numbers and addresses for everyone!
 KnowX.Com - Great people-finder!
 Currency Rates - From Rubicon International
 International Couriers
 Periodic Table of the Elements
 Basic Dictionary of ASL Terms - American Sign Language info
 Modem Command Sets - Good reference on AT command sets.
 Well-known IP Port Numbers
 Barcode Info
 BarcodeIsland.Com - Lots of barcode info
 Barcode Primer
 Barcode Formats
 Code 3 of 9
 More Barcode Formats

 This page and its contents, copyright © 1996-2002, JimPrice.Com. Here's a link to our privacy statement. If you
have any questions about this page, please e-mail me at: jim@jimprice.com.

This site last updated 8/12/2002.

Page 6 of 6ASCII Chart and Other Resources

24-09-2003http://www.jimprice.com/jim-asc.htm

 The Standard Home | Site Map | Search

Contents

What Characters Does the Unicode
Standard Include?

Encoding Forms

Defining Elements of Text

Text Processing

Interpreting Characters and
Rendering Glyphs

Character Sequences

Principles of the Unicode Standard

Assigning Character Codes

Conformance to the Unicode
Standard

Stability

Unicode and ISO/IEC 10646

For Further Information

Related Links

Latest Version of the Unicode
Standard

The Unicode Standard, Version 3.0

Chapter 1: Introduction

Book Order Form

FAQ

Glossary

Unicode Policies

New in Version 3.0

Updates and Errata

Unicode-Enabled Products

Contacting Unicode

The Unicode® Standard: A Technical
Introduction

The Unicode Standard is the
universal character encoding
standard used for representation of
text for computer processing.
Versions of the Unicode Standard are
fully compatible and synchronized
with the corresponding versions of
International Standard ISO/IEC
10646. For example, Unicode 3.0 contains all the same characters and
encoding points as ISO/IEC 10646-1:2000. Unicode 3.1 adds all the
characters and encoding points of ISO/IEC 10646-2:2001. The Unicode
Standard provides additional information about the characters and their
use. Any implementation that is conformant to Unicode is also conformant
to ISO/IEC 10646.

Unicode provides a consistent way of encoding multilingual plain text and
brings order to a chaotic state of affairs that has made it difficult to
exchange text files internationally. Computer users who deal with
multilingual text -- business people, linguists, researchers, scientists, and
others -- will find that the Unicode Standard greatly simplifies their work.
Mathematicians and technicians, who regularly use mathematical symbols
and other technical characters, will also find the Unicode Standard
valuable.

The design of Unicode is based on the simplicity and consistency of
ASCII, but goes far beyond ASCII's limited ability to encode only the Latin
alphabet. The Unicode Standard provides the capacity to encode all of the
characters used for the written languages of the world. To keep character
coding simple and efficient, the Unicode Standard assigns each character
a unique numeric value and name.

The original goal was to use a single 16-bit encoding that provides code
points for more than 65,000 characters. While 65,000 characters are
sufficient for encoding most of the many thousands of characters used in
major languages of the world, the Unicode standard and ISO/IEC 10646
now support three encoding forms that use a common repertoire of
characters but allow for encoding as many as a million more characters.
This is sufficient for all known character encoding requirements, including
full coverage of all historic scripts of the world, as well as common
notational systems.

What Characters Does the Unicode Standard Include?

The Unicode Standard defines codes for characters used in all the major
languages written today. Scripts include the European alphabetic scripts,
Middle Eastern right-to-left scripts, and many scripts of Asia.

The Unicode Standard further includes punctuation marks, diacritics,
mathematical symbols, technical symbols, arrows, dingbats, etc. It
provides codes for diacritics, which are modifying character marks such
as the tilde (~), that are used in conjunction with base characters to
represent accented letters (ñ, for example). In all, the Unicode Standard,
Version 3.2 provides codes for 95,221 characters from the world's
alphabets, ideograph sets, and symbol collections.

The majority of common-use characters fit into the first 64K code points,
an area of the codespace that is called the basic multilingual plane, or
BMP for short. There are about 6,700 unused code points for future

Note:
This is intended as a concise source of
information about the Unicode® Standard. It is
neither a comprehensive definition of, nor a
technical guide to the Unicode Standard.
Authoritative information can be found at
Latest Version of the Unicode Standard. That
link will guide you both to the most recent
major version, published as a book, and to the
subsequent minor versions, published on the
web.

Page 1 of 6Technical Introduction

24-09-2003http://www.unicode.org/standard/principles.html

expansion in the BMP, plus over 870,000 unused supplementary code
points on the other planes. More characters are under consideration for
addition to future versions of the standard.

The Unicode Standard also reserves code points for private use. Vendors
or end users can assign these internally for their own characters and
symbols, or use them with specialized fonts. There are 6,400 private use
code points on the BMP and another 131,068 supplementary private use
code points, should 6,400 be insufficient for particular applications.

Encoding Forms

Character encoding standards define not only the identity of each
character and its numeric value, or code point, but also how this value is
represented in bits.

The Unicode Standard defines three encoding forms that allow the same
data to be transmitted in a byte, word or double word oriented format (i.e.
in 8, 16 or 32-bits per code unit). All three encoding forms encode the
same common character repertoire and can be efficiently transformed into
one another without loss of data. The Unicode Consortium fully endorses
the use of any of these encoding forms as a conformant way of
implementing the Unicode Standard.

UTF-8 is popular for HTML and similar protocols. UTF-8 is a way of
transforming all Unicode characters into a variable length encoding of
bytes. It has the advantages that the Unicode characters corresponding to
the familiar ASCII set have the same byte values as ASCII, and that
Unicode characters transformed into UTF-8 can be used with much
existing software without extensive software rewrites.

UTF-16 is popular in many environments that need to balance efficient
access to characters with economical use of storage. It is reasonably
compact and all the heavily used characters fit into a single 16-bit code
unit, while all other characters are accessible via pairs of 16-bit code
units.

UTF-32 is popular where memory space is no concern, but fixed width,
single code unit access to characters is desired. Each Unicode character
is encoded in a single 32-bit code unit when using UTF-32.

All three encoding forms need at most 4 bytes (or 32-bits) of data for each
character.

Defining Elements of Text

Written languages are represented by textual elements that are used to
create words and sentences. These elements may be letters such as "w"
or "M"; characters such as those used in Japanese Hiragana to represent
syllables; or ideographs such as those used in Chinese to represent full
words or concepts.

The definition of text elements often changes depending on the process
handling the text. For example, in historic Spanish language sorting, "ll";
counts as a single text element. However, when Spanish words are typed,
"ll" is two separate text elements: "l" and "l".

To avoid deciding what is and is not a text element in different processes,
the Unicode Standard defines code elements (commonly called
"characters"). A code element is fundamental and useful for computer text
processing. For the most part, code elements correspond to the most
commonly used text elements. In the case of the Spanish "ll", the Unicode
Standard defines each "l" as a separate code element. The task of

Page 2 of 6Technical Introduction

24-09-2003http://www.unicode.org/standard/principles.html

 Code Charts Home | Site Map | Search

Related Links

About These Charts

Unicode Character Names Index

Unihan Database

Where is my Character?

The Unicode Standard, Version 4.0

Additional Charts-Related
Resources

Normalization Charts

Collation Charts

Case Mapping Charts

Script Name Charts

Char Conversion Charts

Javascript Unicode Charts

Unibook Character Browser

Locating a Chart by
Character Code

To find out the starting code point of
any chart, let the mouse hover over
the icon or the text. A popup with the
starting code point will appear, or the
status bar will show the address of
the link. For example, the link for
Basic Latin is U0000.pdf, indicating
that the chart starts at U+0000.

Viewing PDF Files

Viewing PDF files requires the free
Adobe Acrobat Reader. If you
experience problems viewing one of
the PDF files in your browser, try
saving the file to your disk before
opening it.

Code Charts (PDF Version)

The charts in this list are arranged in code point order. For an alphabetical
index of characters and blocks, use the Unicode Character Names Index.

Basic Latin Geometric Shapes

Latin-1 Supplement Miscellaneous Symbols

Latin Extended-A Dingbats

Latin Extended-B Miscellaneous Mathematical
Symbols-A

IPA Extensions Supplemental Arrows-A

Spacing Modifier Letters Braille Patterns

Combining Diacritical Marks Supplemental Arrows-B

Greek Miscellaneous Mathematical
Symbols-B

Cyrillic Supplemental Mathematical
Operators

Cyrillic Supplement Miscellaneous Symbols and
Arrows

Armenian CJK Radicals Supplement

Hebrew Kangxi Radicals

Arabic Ideographic Description
Characters

Syriac CJK Symbols and Punctuation

Thaana Hiragana

Devanagari Katakana

Bengali Bopomofo

Gurmukhi Hangul Compatibility Jamo

Gujarati Kanbun

Oriya Bopomofo Extended

Tamil Katakana Phonetic Extensions

Telugu Enclosed CJK Letters and Months

Kannada CJK Compatibility

Malayalam CJK Unified Ideographs Extension
A (1.5MB)

Sinhala Yijing Hexagram Symbols

Thai CJK Unified Ideographs (5MB)

Lao Yi Syllables

Tibetan Yi Radicals

Myanmar Hangul Syllables (7MB)

Georgian High Surrogates

Hangul Jamo Low Surrogates

Ethiopic Private Use Area

Page 1 of 2Code Charts (PDF Version)

24-09-2003http://www.unicode.org/charts/

The character code charts were last updated for post-Unicode 4.0 errata

Last updated: - domingo, 31 de Agosto de 2003 20:40:21

Cherokee CJK Compatibility Ideographs

Unified Canadian Aboriginal
Syllabic

Alphabetic Presentation Forms

Ogham Arabic Presentation Forms-A

Runic Variation Selectors

Tagalog Combining Half Marks

Hanunoo CJK Compatibility Forms

Buhid Small Form Variants

Tagbanwa Arabic Presentation Forms-B

Khmer Halfwidth and Fullwidth Forms

Mongolian Specials

Limbu Linear B Syllabary

Tai Le Linear B Ideograms

Khmer Symbols Aegean Numbers

Phonetic Extensions Old Italic

Latin Extended Additional Gothic

Greek Extended Ugaritic

General Punctuation Deseret

Superscripts and Subscripts Shavian

Currency Symbols Osmanya

Combining Marks for
Symbols

Cypriot Syllabary

Letterlike Symbols Byzantine Musical Symbols

Number Forms Musical Symbols

Arrows Tai Xuan Jing Symbols

Mathematical Operators Mathematical Alphanumeric
Symbols

Miscellaneous Technical CJK Unified Ideographs Extension
B (13MB)

Control Pictures CJK Compatibility Ideographs
Supplement

Optical Character
Recognition

Tags

Enclosed Alphanumerics Variation Selectors Supplement

Box Drawing Supplementary Private Use Area-
A

Block Elements Supplementary Private Use Area-
B

Page 2 of 2Code Charts (PDF Version)

24-09-2003http://www.unicode.org/charts/

B it-mapped graphics represent one of the most
popular graphics file formats used on PCs. For

example, the Paint program in Windows creates bit-
mapped images. Each bit map includes one or more
bits that describe the color of each tiny square, known
as a pixel, that form the image.

In a 24-bit color graphic, such as the one below,
each pixel is represented by 3 bytes: one red, one
green, and one blue. These are known as the graphic’s
RGB values. Because this is a 24-bit graphic, each of
its pixels has the possibility of using 256 shades of
red, green, and blue. This means a pixel could be any one of
more than 16 million colors.

To save these files, the RGB values must be converted into
palette values, which are determined by the program you are
using to save the file. Each pixel in the file is listed by its palette

number rather than by each color value number. The palette
numbers are used to limit the amount of bits needed to describe
each pixel. Although bit-mapped files can still be quite large,
saving the values for each pixel takes only a couple of seconds.
Here is how it works:

You can create a 24-bit image in a
graphics program such as Paint.

Forming A Pixel
A pixel is the smallest part of an image that a computer’s monitor can
control. Each pixel consists of three colors: red, green, and blue. Each of
the three colors is assigned a value that shows its intensity; the values
are from 0 to 255. You can think of each value as a percentage. For
example, 127 has a 50% intensity. These are known as the RGB values.

How Saving A
Bit Map Works

A graphics program saves the
image line by line, from the
bottom to the top.

Each of the pixel’s three-
color values, RGB (red-
green-blue), are read
from left to right.

A graphics program translates the RGB
values into palette values. The palette
values are a software-specific decision;
each program’s values are different.

Red
255

Green
0

Red
127

Green
127

Blue
0 Pixel

is red
Pixel

is gray

Blue
127

Each palette value, a
hexadecimal value in
this case, is stored in
the same order as
displayed in the image.

The pixel values
are stored in the
bit-mapped file in
the same width
and depth as the
original image.

Compiled by Kyle Schurman
Graphics & Design by Lori Garris

Part1 - Part2 - Single Page

Top Document: JPEG image compression FAQ, part 1/2
Previous Document: News Headers

Next Document: [2] Why use JPEG?

[1] What is JPEG?

JPEG (pronounced "jay-peg") is a standardized image compression mechanism.
JPEG stands for Joint Photographic Experts Group, the original name of the
committee that wrote the standard.

JPEG is designed for compressing either full-color or gray-scale images
of natural, real-world scenes. It works well on photographs, naturalistic
artwork, and similar material; not so well on lettering, simple cartoons,
or line drawings. JPEG handles only still images, but there is a related
standard called MPEG for motion pictures.

JPEG is "lossy," meaning that the decompressed image isn't quite the same as
the one you started with. (There are lossless image compression algorithms,
but JPEG achieves much greater compression than is possible with lossless
methods.) JPEG is designed to exploit known limitations of the human eye,
notably the fact that small color changes are perceived less accurately than
small changes in brightness. Thus, JPEG is intended for compressing images
that will be looked at by humans. If you plan to machine-analyze your
images, the small errors introduced by JPEG may be a problem for you, even
if they are invisible to the eye.

A useful property of JPEG is that the degree of lossiness can be varied by
adjusting compression parameters. This means that the image maker can trade
off file size against output image quality. You can make *extremely* small
files if you don't mind poor quality; this is useful for applications such
as indexing image archives. Conversely, if you aren't happy with the output
quality at the default compression setting, you can jack up the quality
until you are satisfied, and accept lesser compression.

Another important aspect of JPEG is that decoders can trade off decoding
speed against image quality, by using fast but inaccurate approximations to
the required calculations. Some viewers obtain remarkable speedups in this
way. (Encoders can also trade accuracy for speed, but there's usually less
reason to make such a sacrifice when writing a file.)

[2] Why use JPEG?

There are two good reasons: to make your image files smaller, and to store
24-bit-per-pixel color data instead of 8-bit-per-pixel data.

Making image files smaller is a win for transmitting files across networks
and for archiving libraries of images. Being able to compress a 2 Mbyte

Page 1 of 4JPEG What Why How

24-09-2003file://D:\My%20Documents\Aulas\2003-04\MCC-AC\Slides%20ISC\JPEG%20What%...

full-color file down to, say, 100 Kbytes makes a big difference in disk
space and transmission time! And JPEG can easily provide 20:1 compression
of full-color data. If you are comparing GIF and JPEG, the size ratio is
usually more like 4:1 (see "[4] How well does JPEG compress images?").

Now, it takes longer to decode and view a JPEG image than to view an image
of a simpler format such as GIF. Thus using JPEG is essentially a
time/space tradeoff: you give up some time in order to store or transmit an
image more cheaply. But it's worth noting that when network transmission is
involved, the time savings from transferring a shorter file can be greater
than the time needed to decompress the file.

The second fundamental advantage of JPEG is that it stores full color
information: 24 bits/pixel (16 million colors). GIF, the other image format
widely used on the net, can only store 8 bits/pixel (256 or fewer colors).
GIF is reasonably well matched to inexpensive computer displays --- most
run-of-the-mill PCs can't display more than 256 distinct colors at once.
But full-color hardware is getting cheaper all the time, and JPEG photos
look *much* better than GIFs on such hardware. Within a couple of years,
GIF will probably seem as obsolete as black-and-white MacPaint format does
today. Furthermore, JPEG is far more useful than GIF for exchanging images
among people with widely varying display hardware, because it avoids
prejudging how many colors to use (see "[8] What is color quantization?").
Hence JPEG is considerably more appropriate than GIF for use as a Usenet
and World Wide Web standard photo format.

A lot of people are scared off by the term "lossy compression". But when
it comes to representing real-world scenes, *no* digital image format can
retain all the information that impinges on your eyeball. By comparison
with the real-world scene, JPEG loses far less information than GIF.
The real disadvantage of lossy compression is that if you repeatedly
compress and decompress an image, you lose a little more quality each time
(see "[10] Does loss accumulate with repeated compression/decompression?").
This is a serious objection for some applications but matters not at all
for many others.

[3] When should I use JPEG, and when should I stick with GIF?

JPEG is *not* going to displace GIF entirely; for some types of images,
GIF is superior in image quality, file size, or both. One of the first
things to learn about JPEG is which kinds of images to apply it to.

Generally speaking, JPEG is superior to GIF for storing full-color or
gray-scale images of "realistic" scenes; that means scanned photographs,
continuous-tone artwork, and similar material. Any smooth variation in
color, such as occurs in highlighted or shaded areas, will be represented
more faithfully and in less space by JPEG than by GIF.

GIF does significantly better on images with only a few distinct colors,
such as line drawings and simple cartoons. Not only is GIF lossless for
such images, but it often compresses them more than JPEG can. For example,
large areas of pixels that are all *exactly* the same color are compressed
very efficiently indeed by GIF. JPEG can't squeeze such data as much as GIF
does without introducing visible defects. (One implication of this is that
large single-color borders are quite cheap in GIF files, while they are best
avoided in JPEG files.)

Page 2 of 4JPEG What Why How

24-09-2003file://D:\My%20Documents\Aulas\2003-04\MCC-AC\Slides%20ISC\JPEG%20What%...

Computer-drawn images, such as ray-traced scenes, usually fall between
photographs and cartoons in terms of complexity. The more complex and
subtly rendered the image, the more likely that JPEG will do well on it.
The same goes for semi-realistic artwork (fantasy drawings and such).
But icons that use only a few colors are handled better by GIF.

JPEG has a hard time with very sharp edges: a row of pure-black pixels
adjacent to a row of pure-white pixels, for example. Sharp edges tend to
come out blurred unless you use a very high quality setting. Edges this
sharp are rare in scanned photographs, but are fairly common in GIF files:
consider borders, overlaid text, etc. The blurriness is particularly
objectionable with text that's only a few pixels high. If you have a GIF
with a lot of small-size overlaid text, don't JPEG it. (If you want to
attach descriptive text to a JPEG image, put it in as a comment rather than
trying to overlay it on the image. Most recent JPEG software can deal with
textual comments in a JPEG file, although older viewers may just ignore the
comments.)

Plain black-and-white (two level) images should never be converted to JPEG;
they violate all of the conditions given above. You need at least about
16 gray levels before JPEG is useful for gray-scale images. It should also
be noted that GIF is lossless for gray-scale images of up to 256 levels,
while JPEG is not.

If you have a large library of GIF images, you may want to save space by
converting the GIFs to JPEG. This is trickier than it may seem --- even
when the GIFs contain photographic images, they are actually very poor
source material for JPEG, because the images have been color-reduced.
Non-photographic images should generally be left in GIF form. Good-quality
photographic GIFs can often be converted with no visible quality loss, but
only if you know what you are doing and you take the time to work on each
image individually. Otherwise you're likely to lose a lot of image quality
or waste a lot of disk space ... quite possibly both. Read sections 8 and 9
if you want to convert GIFs to JPEG.

[4] How well does JPEG compress images?

Very well indeed, when working with its intended type of image (photographs
and suchlike). For full-color images, the uncompressed data is normally 24
bits/pixel. The best known lossless compression methods can compress such
data about 2:1 on average. JPEG can typically achieve 10:1 to 20:1
compression without visible loss, bringing the effective storage requirement
down to 1 to 2 bits/pixel. 30:1 to 50:1 compression is possible with small
to moderate defects, while for very-low-quality purposes such as previews or
archive indexes, 100:1 compression is quite feasible. An image compressed
100:1 with JPEG takes up the same space as a full-color one-tenth-scale
thumbnail image, yet it retains much more detail than such a thumbnail.

For comparison, a GIF version of the same image would start out by
sacrificing most of the color information to reduce the image to 256 colors
(8 bits/pixel). This provides 3:1 compression. GIF has additional "LZW"
compression built in, but LZW doesn't work very well on typical photographic
data; at most you may get 5:1 compression overall, and it's not at all
uncommon for LZW to be a net loss (i.e., less than 3:1 overall compression).
LZW *does* work well on simpler images such as line drawings, which is why

Page 3 of 4JPEG What Why How

24-09-2003file://D:\My%20Documents\Aulas\2003-04\MCC-AC\Slides%20ISC\JPEG%20What%...

GIF handles that sort of image so well. When a JPEG file is made from
full-color photographic data, using a quality setting just high enough to
prevent visible loss, the JPEG will typically be a factor of four or five
smaller than a GIF file made from the same data.

Gray-scale images do not compress by such large factors. Because the human
eye is much more sensitive to brightness variations than to hue variations,
JPEG can compress hue data more heavily than brightness (gray-scale) data.
A gray-scale JPEG file is generally only about 10%-25% smaller than a
full-color JPEG file of similar visual quality. But the uncompressed
gray-scale data is only 8 bits/pixel, or one-third the size of the color
data, so the calculated compression ratio is much lower. The threshold of
visible loss is often around 5:1 compression for gray-scale images.

The exact threshold at which errors become visible depends on your viewing
conditions. The smaller an individual pixel, the harder it is to see an
error; so errors are more visible on a computer screen (at 70 or so
dots/inch) than on a high-quality color printout (300 or more dots/inch).
Thus a higher-resolution image can tolerate more compression ... which is
fortunate considering it's much bigger to start with. The compression
ratios quoted above are typical for screen viewing. Also note that the
threshold of visible error varies considerably across images.

Top Document: JPEG image compression FAQ, part 1/2

Next Document: [5] What are good "quality" settings for JPEG?

Part1 - Part2 - Single Page

Send corrections/additions to the FAQ Maintainer:
jpeg-info@uunet.uu.net

Last Update September 24 2003 @ 00:30 AM

Page 4 of 4JPEG What Why How

24-09-2003file://D:\My%20Documents\Aulas\2003-04\MCC-AC\Slides%20ISC\JPEG%20What%...

CompuServe GIF Image Format
Contributed by Steve Neuendorffer

One of the widely used formats for representing images on the Internet is CompuServe's GIF, or graphics
interchange format. An image file, like any other computer file, is a collection of bits. If you attempt to read the file
in a text editor (such as emacs, which can open binary files) you will see something like this:

GIF89at+ÿJ´¨Ñ£H*]Ê´©Ó§P£JJµªÕ«X³jÝÊµ«¯`ÃK¶¬Ù³

followed by several hundred or thousand more lines of absolutely incomprehensible nonsense, and an occasional
beep. How does this represent an image?

The text editor is expecting a binary sequence representing characters in the ASCII format, The American Standard
Code for Information Interchange. In ASCII, each 8 bits are grouped together in a byte, and each byte corresponds
to a single character. This allows for 2^8=256 possible characters. Since there are only 26 letters in the English
alphabet, plus 26 upper case letters, plus 10 digits, plus a dozen or so punctuation marks, there are quite a few extra
characters leftover. Your text editor interprets these additional characters as shown above. If you are using a text
editor that supports 16-bit unicode characters, you might see instead Chinese or Hebrew characters, for example. A
few of the characters are interepreted as control characters, like the Carriage Return (ASCII 13), Line Feed (ASCII
10), and Bell (ASCII 7), which would ring a physical bell on old Teletype machines. Modern computers usually
beep whenever a Bell character comes along, hence the beeps that the text editor produces.

Pictures in a computer are divided into pixels (picture elements), organized horizontally and vertically in lines,
much like lines of characters on a page. The GIF must represent a rather large number of pixels efficiently, or the
file size (and Internet transport time) gets too large.

In a GIF image, the first pixel in the file goes in the upper left hand corner, and the second one goes just to its right.
The image is scanned from left to right, top to bottom, until all the pixels have been specified. (This is not the only
way of ordering pixels in a computer. TIFF images happen to start at the bottom and work their way up.)

Each pixel has a color. In GIF images, a color is specified using Red, Green, and Blue components. With 8 bits for
each component, there are over 2^24, or about 16 million possible colors. A naive representation of the image would
simply store three bytes for each pixel. But then a 640x480 pixel image (which is a modest size) would be around a
megabyte of data. At a modem speed of 56 kilobits per second, it would take 131 seconds, more than two minutes,
to download the image. GIF compresses the data, reducing the number of bits to represent the image.

The first kind of compression that GIF uses is called a colormap. Instead of allowing the image to contain all 16
million colors, GIF restricts the image to a maximum of, say, 256 out of the 16 million (the number of colors in the
colormap can be varied). It can be any 256 out of the 16 million, so there is no loss of richness of possible colors.
But no more than 256 distinct colors can be used simultaneously in any one image. The colors are stored in a
colormap table, and the color for each pixel is specified as an index into the table. So instead of using 24 bits for
each pixel, a file only contains an 8 bit index. (A 24-bit display of a modern computer can display all 16 million
colors simultaneously, so multiple GIF images with different colormap tables can be simultaneously displayed with
good color fidelity.)

With colormap table of 256 entries, the above scheme reduces the amount of data by a factor of three. But GIF does
better than this. The second kind of compression that GIF includes is called run-length coding. This makes use of
the fact that neighboring pixels are often the same color in a typical image. When several pixels have the same
color, instead of storing them individually, they are stored as a run length followed by the color. For example, a
sequence of three Blue pixels could be stored as "Blue Blue Blue" or "3, Blue". The specifics of how this is done is
a little complex; GIF uses a sophisticated variation of run-length coding known as Lempel-Ziv-Welch coding. The
algorithm is also used in several file-compression utilities as well. See the details in an article on GIF compression.)

How is a GIF file converted into an image? To make things easier, here are the first few bytes of the file above
written in binary (each line is a byte, or 8 bits):

1) 01000111 -> 'G'
2) 01001001 -> 'I'
3) 01000110 -> 'F'
4) 00111001 -> '8'

Page 1 of 2CompuServe GIF Image Format

24-09-2003http://ptolemy.eecs.berkeley.edu/eecs20/sidebars/images/gif.html

5) 00111010 -> '9'
6) 01100001 -> 'a'
7) 01110100
8) 00000011 -> 884 pixels wide
9) 00101011
10) 00000100 -> 1067 pixels high
11) 11110111 -> Global colormap present, 256 colors, 24 bits per color.
12) 11111111 -> background is color index 255.
13) 00000000 -> zero
14) 00000000
15) 00000000
16) 00000000 -> color 0 in the colormap = (0, 0, 0) = black
17) 10000000
18) 00000000
19) 00000000 -> color 1 in the colormap = (128, 0, 0) = red
20) 00000000
21) 10000000
22) 00000000 -> color 2 in the colormap = (0, 128, 0) = green

The first six bytes contain six ASCII characters. For the file above the first six characters are the ASCII characters
"GIF89a", indicating that this file is compatible with the GIF standard written in 1989. You may also see "GIF87a"
which was an earlier version of the standard. There is no information there about any pixels, just information to the
decoder about what kind of file it is looking at.

From here on, the bytes do not correspond to ASCII characters. Next comes a sequence of bytes that give the size of
the screen, two bytes for the width and two bytes for the height. The image above happens to be 884 pixels by 1067
pixels.

Byte 11 tells how the colors are stored in the file. In the file above, and in most GIF files, this byte indicates that the
file contains its own colormap (as opposed to using the default colormap), that the colormap contains 255 entries,
and that each color in the color map is specified using 24 bits. If the colormap is not present, then the GIF standard
assumes that a pre-defined default colormap is used.

Byte 12 gives the index of the background color in the colormap, in this case it is color 255. Byte 13 is always zero.

The first 13 bytes are the "screen descriptor". In the file above, this is followed by 768 bytes of colormap
information. In GIF files, the red component comes first, followed by green and then blue. 0 indicates the minimum
intensity of that component, while 255 indicates the maximum intensity.

Following the global colormap is an "image descriptor." A GIF file can contain more than one image. Each image
can be individually positioned on the screen and can even have its own colormap. The file we are using just has one
image with the following descriptor:

1) 00101100 -> ","
2) 00000000
3) 00000000 -> 0 pixels offset to the right.
4) 00000000
5) 00000000 -> 0 pixels offset to the bottom.
6) 01110100
7) 00000011 -> 884 pixels wide
8) 00101011
9) 00000100 -> 1067 pixels high
10) 00000000 -> No local colormap, non-interlaced.

The first character in the image descriptor is always the ASCII code for a comma. The next 8 bytes give the position
and size of the image, which in this case starts in the upper left of the screen, and is the same size as the screen. Byte
ten specifies that there is no local colormap, and the lines of the image are scanned in normal order. (GIF also allows
images to be scanned in an interleaved fashion, which permits a browser to display a blurry approximation of the
image before it has received all the data. For more information about this, see the GIF87a specification.)

Finally we get to the image data for the pixels, run-length coded. After all the image data, there is a single ASCII
semicolon, binary code 00111011.

Page 2 of 2CompuServe GIF Image Format

24-09-2003http://ptolemy.eecs.berkeley.edu/eecs20/sidebars/images/gif.html

stl.caltech.edu - Introduction to PNG

IMPERFECT SYSTEMS INFURIATE HACKERS, WHOSE PRIMAL INSTINCT IS TO DEBUG THEM

PNG introduction:

PNG is a way to store image files. As such, it's a tool. However, it's an extremely
useful, versatile, and efficient tool; once I became acquainted with it, I immediately
realized that it was beautiful and I haven't looked back since I've started using it.
This page is meant to be a simple, conceptual introduction to the PNG file format,
intended somewhat for those who will see it on the Internet, but this page is mostly
directed towards those who will use the PNG format casually. For example,
someone who maintains a small set of web pages (or even a large set!) and needs to
save images used on the site. The only people this is not directed to are the deeply
insane programmers who want to work with PNG on a detailed level right down to the
bits (ahem); those people will probably want to look at The PNG Home Page and read
the specifications there. In fact, I recommend that even casual users take a look at
the PNG Home Page once they're done with this page; the specification and related
pages go into deep detail that I need not copy; the only thing that the PNG Home
Page lacks is a good introduction for casual users. Hence this page.

Preliminaries:

PNG stands for Portable Network Graphics (unofficially it's PNG's Not Gif). It is always
pronounced "ping". PNG is a true lossless format, unlike JPEG. I won't get into the
lossless/lossy difference here, as this page is meant to show PNG's useful features
and is not a guide as to when PNG is better than JPEG. (Okay, quickly: use JPEG
when absolute accuracy is not necessary and natural scenes are photographed; use
PNG everywhere else. Everywhere.) PNG is a replacement for GIF, and more, in that
it's technically superior to GIF in all areas except for one (animation, but Multiple-
Image Network Graphics will kill GIF eventually). Every area in which PNG beats GIF
is another reason to use and want PNG instead of GIF.

New vs. old:

PNG is not a new thing! It was completely frozen as a standard all the way back in
1995. Yes, that's back in the 90's. (GIF was completed in the late 80's.) Incidentally,
Windows 95 came out in, um, 1995; does anyone consider IT to be a newfangled
thing that no one ought to learn? And the SHA-1 cryptographic hash algorithm was

De Novo: | Index & Plan | Links | Culture | Parrises Squares | GeForce FX |
Reviews: | Rating System |

Primary: | bwtzip | The Quotation Collection | Downloads | Anime/SF | Deus Ex |
Diversions: | Coloring | Paper Airplane | Origami Polyhedra | Foundation |
Site Info: | Archived News | Personal Page |
Essays: | Space | Internet | Programming | C Intro | Games | Bits & Bytes |
Tech: | C++ | Computer | Random Work | PNG |
Random: | Wallpaper | Diet | Mersenne Primes | Book Reviews | pngacc | LASTLY |

Page 1 of 13stl.caltech.edu - Introduction to PNG

24-09-2003http://stl.caltech.edu/png.shtml

created in 1995 as well; it's the gold standard of hash algorithms as of 2000,
completely superior to the older MD5 and MD4 algorithms. Five years is plenty of
time. The reason that people seem to think that PNG is newfangled and not broadly
supported is that they don't realize how many benefits it offers (which this page
attempts to combat) and that Internet browsers, even in 2000, have haphazard
support for this well-established standard. (They DO support it enough to be broadly
useful, though, which is another myth! 8-bit PNGs, optionally with on-off
transparency, are supported in one fashion or another in almost all modern browsers,
which is enough for most Web uses, even though it doesn't begin to unlock all of
PNG's advantages. Sometimes variable transparency is broken, sometimes not.) If
you're worried about browser support, look at it another way: you interact with
images on the Internet all the time. Should web pages not use images because of
text-based browsers like Lynx that can't view the images? NO! Web pages certainly
SHOULD use images when necessary, because there's no reason to be stuck in the
past. (Adding ALT tags to the images is a common courtesy to blind people, people
with Lynx, or people with images disabled who want faster HTML viewing.) Same
thing with PNG. Go ahead and use PNG, and include an ALT tag for the people who
are still using non-PNG-compliant browsers. The more sites that use PNG, the more
pressure on browser makers to include full nonbroken support. And even if you don't
intend to create PNG images, once you've seen the benefits of PNG on this page, start
to demand PNG from sites that still use GIF images. Become a PNG advocate and
make the world a better place.

Why PNG matters to you:

There's a long list of PNG features on the PNG home page. However, only a few of
them really matter to casual users. Here are the important ones that matter, in
decreasing order of importance:

PNG's compression, properly done, is significantly better (20% better, usually)
than GIF's compression. Result: faster-loading images! (This is a big reason for
pure users to demand PNG from web sites. The benefits to site maintainers
should be obvious as well.)

PNG images can be interlaced, which makes them appear faster and better-
looking across modem connections. Additionally, PNG interlacing is infinitely
better than GIF interlacing. See below for a real graphical demonstration of this
statement.

PNG supports a large but carefully-chosen range of bit depths, from
monochrome all the way to 64-bit color (yes, 64-bit). Thus it is useful not only
on the Internet but anywhere else a lossless format is needed.

Because of broken browsers, this isn't significant now, but will be when more
browsers follow Mac-IE5's example: PNG supports variable transparency, so
small buttons and the like can be displayed on any background, dark or light,
and look good.

Page 2 of 13stl.caltech.edu - Introduction to PNG

24-09-2003http://stl.caltech.edu/png.shtml

And PNG supports robust error detection, gamma correction, text chunks, and a
ton of other nifty stuff, none of which users ought to worry about because it's
done behind their backs.

The better compression and turbo-nifty interlacing should be signficant enough to
entice users to switch from preferring GIF to preferring PNG, and is often enough. But
here's a bonus: there's an ideological reason to prefer PNG. PNG is not encumbered
by any patents at all: J. Random Hacker can make whatever programs he wants to
that deal with PNG without answering to anyone. GIF is encumbered by a foggy
patent status, in addition to being vastly technically inferior. This ideological
reason may be important to you if you've heard of "free software" before, otherwise,
it probably doesn't matter to you.

What should matter is that you wouldn't stand a monitor that could only display 256
colors, and you don't need to stand a graphics format (GIF) that can only display 256
colors and one bit of transparency. It's time to move on to better things. It's time
to move on to PNG.

Interlacing:

There are four ways to transmit an image over the Internet; over a fast connection
there won't be any apparent difference, but over a modem connection the difference
is stunningly obvious. Choosing the right way can make your connection seem much
faster than it really is.

The first, and stupid, method is to wait until every bit of image data has been sucked
through the modem before displaying the whole image. This is so blindingly dumb
that not even Internet Explorer does it.

A better method is to display image data as it is received, resulting in a top-down
filling in of the image. One variant (the one that everyone has seen) of JPEG does
this. This is noninterlaced display, and both GIF and PNG are capable of it as well.
Non-interlaced images are smaller than interlaced images.

However, while interlacing expands file size, it makes images MUCH more easily
viewable, a benefit that well outweighs the slight filesize cost. There are two methods
of interlacing that are popular: GIF interlacing and PNG interlacing (the latter is also
called "Adam7"). GIF interlacing is remarkably stupid; PNG interlacing remarkably
cool. GIFs, when interlaced, use a one-dimensional scheme: every eighth horizontal
line is transmitted in the first "pass", filling up the dimensions of the image in 1/8th
of the time that the entire image will take to download. The next pass transmits every
fourth line, making the image less distorted. The next pass transmits every second
line, making the image even less distorted, and the fourth and final pass transmits
the remaining lines.

However, GIF interlacing is STUPID in that it's one-dimensional: after the first pass,
the image is stretched by a factor of eight to one. (You'll see this shortly below.)
PNG uses a two-dimensional scheme. Don't let the details concern you; what

Page 3 of 13stl.caltech.edu - Introduction to PNG

24-09-2003http://stl.caltech.edu/png.shtml

matters is that instead of four passes through the image, PNG makes seven passes.
In 1/64 of the time that the whole image will take to display, already one pass is
completed, showing the image in a very rough manner. Successive passes fill in more
information, never distorting the pixels by more than a factor of two to one. And
interestingly, the browser/viewer can interpolate the incoming PNG as it is recieved,
producing stunningly beautiful results. (To interpolate means to predict pixels in
between given pixels. If only a small fraction of pixels have been downloaded, we
may want to fill in the rest of the image.) The "fading-in, focusing-in" effect produced
by an interpolated, interlaced PNG is nifty to watch in its own right.

An interlacing demonstration:

Let's say, for the sake of argument, that you are downloading a large image. Let's
walk through how this would look if you were looking at an interlaced and bicubic
interpolated PNG, an interlaced and bilinear interpolated PNG, an interlaced and
noninterpolated PNG, or an interlaced GIF. (Bicubic interpolation looks better than
bilinear interpolation: the algorithm used is better.) Let me say something first that is
sort of complicated, before we get to the pretty pictures:

Technical note:
The original source picture was taken with a very nice digital camera and started life as a 24-bit 3.3
megapixel image. I reduced and cropped it from its original 3.3-megapixel size to make it 256x256
pixels so that this page wouldn't actually take forever to load, and so that it would (mostly) fit on your
screen. Then I produced this demonstration. No GIFs were actually involved here, but I know how to
exactly simulate GIF interlacing. The following pictures are all 24-bit, and I am using PNG files to show
them to you. What you are seeing is what you would actually see if you were downloading a 24-bit
PNG: it would be interpolated with 24-bit smoothness. (Even if you were downloading an 8-bit PNG, it
still could be interpolated with 24-bit smoothness.) It is a small cheat to do this in photo editors, but
an appropriately programmed browser could do the same thing, even in the middle of a pass (mostly).
Now, as for the "GIF", I am cheating by making it a 24-bit image. In reality, GIFs suck and can only be
8-bit. In this case, the 8-bit version of the image is very nearly indistinguishable from the original. (For
larger images, you cannot get away with using 8-bit, as some colors must be noticably corrupted.) In
any case, bit-for-bit, a PNG image can either store more pixels or more bit depth than a similarly sized
GIF, because of the difference in compression. Bear with me, I am only trying to show you the
difference between various interlacing and interpolation schemes. I am using a 24-bit image
for the "GIF" so that any differences you see are due to interlacing and interpolation; if I used an 8-bit
image to simulate the GIF, I'd still have to make a similar and long explanation. Don't worry if that
made no sense, because I'm fairly confident you won't care in the first place. In fact, if you didn't fully
understand what I said, ignore it, because it's only information about how I created this
demonstration and does not affect the point I'm making; namely, that PNG interlacing is vastly
superior to GIF interlacing. This explanation is here so that the curious can convince themselves that
everything I am doing is proper and (not much) fakery is involved. If you are curious, to make the
following images I used resizing in MS Photo Editor to throw out pixels (I used a nearest neighbor
method, so I am actually throwing out pixels, and not doing a bilinear interpolation down). Then I used
MS Photo Editor and resizing larger (no smoothing: nearest neighbor) to simulate the GIF and
noninterpolated PNG. I used MS Photo Editor and resizing with smoothing (bilinear interpolation) to
simulate the bilinear interpolated PNG. I used Adobe Photoshop 5.5 and bicubic resizing to create the
final image. If you are wondering, a browser could also perform interpolation on a downloading GIF,
but it wouldn't help the fact that GIF's interlacing scheme sucks.

Here's what's important to remember:

In the following pictures, we are pretending that we are seeing an 8-bit PNG
and an 8-bit GIF downloaded, both at the same rate. We are looking at three

Page 4 of 13stl.caltech.edu - Introduction to PNG

24-09-2003http://stl.caltech.edu/png.shtml

There are many web pages devoted to describing the relative merits of using JPEG, GIF and PNG images. This page
is a short summary of some of the things I have learned about these formats while designing the web pages for my
department and while writing software to view medical images. This is not meant as a definitive guide, more a basic
introduction with a few useful links.

There are three common formats used by web pages: GIF, JPEG and PNG. Each of these formats uses compression
techniques to reduce the amount of time required to download images. In general, each has its own strengths and
weaknesses:

Below I have presented three images that conform to the strengths of each format.

1. The image in the leftmost column uses a few colors and the same color is present in large chunks of the
graphic. This first image (and most line art) is well suited for the GIF format. Note that the JPEG version (D) of
this image requires more disk space and the edges of the colors looks very blurry.

2. The middle image presents thousands of colours that gradually change across the image. This image (and most
photographs) looks great when saved as a JPEG image. The GIF rendering of this image (B) requires more disk
space and looks grainy (as more than 256 colours are in the image).

3. The final picture combines elements of the two other images: the background uses thousands of colours with
gradual changes (which will hurt GIF compression), while the text have sharp, high contrast edges (that will
hurt JPEG compression). This image demonstrates PNG's talent as a great all-round image format. Note that
uncompressed, these images require around 62 k (when saved with 24-bits per pixel).

PNG images always look great and they usually achieve very respectable compression ratios. PNG protects you from
the reduction in image quality found with JPEG (and images with more than 256 colours saved to the GIF format).

Web Graphics

Format Strength Weakness

GIF
Lossless (if <
257 colours)

Maximum of 256 colours, poor compression in situations where there are gradual
changes in colours. Patented technology, requires a license. This patent will expire on
20 June 2003.

JPEG
Millions of
colours

Lossy: sharp edges will appear blurred. Does not support transparency.

PNG
Millions of
colors, lossless

Not supported by older browsers.

GIF

A. 1.1k GIF

B. 12.3k GIF

C. 10.9k GIF

JPEG

D. 4.3k JPEG

E. 2.5k JPEG

F. 6.8k JPEG

PNG

G. 1.2k PNG

H. 4.3k PNG

I. 5.9k PNG

Page 1 of 3Web Graphics Notes: GIF, JPEG or PNG

24-09-2003http://www.psychology.nottingham.ac.uk/staff/cr1/graphics.html

Unfortunately, PNG is not supported by older web browsers. I am very wary of web sites that mention "best viewed
with Netscape version 4 or later" or "best viewed with Internet Explorer version 4+". It seems to me that the idea of
web pages is distributing information to others irregardless of their hardware and software. For the moment, I use
PNG for storing images on my hard disk, but stick to GIF and JPEG for my web pages.

An important consideration with JPEG images is to avoid unnecessary abrupt changes in the image. For example,
many people like to add coloured frames to the borders of their images. These abrupt changes can greatly increase the
file size and cause a number of artifacts in a JPEG image (as image F above demonstrates).

When using JPEG images, bear in mind that this is a lossy technique, and everytime you save a JPEG image, you will
lose some of the quality. To demonstrate this, examine the image below. The original JPEG image is shown on the
left. I rotated this image 90-degrees and saved the image four times. Note that the final image (shown on the far right)
has degraded considerably: in particular the high frequency information of the green text and the red line have
become blurry. This is a very common problem - especially with people who convert JPEG images between
landscape and portrait format. Some software (including the excellent and free IrfanView) include functions to
losslessly rotate JPEG images by 90-degree steps. In addition to rotations, JPEGs will also accumulate errors after
repeated cropping, editing and other modifications.

This web page only describes the three graphics formats that are common on the web. I did not discuss many other
common graphics formats (TIFF, BMP, etc). I have also described JPEG as a single process - in fact there are many
ways of encoding JPEG images that can greatly influence the quality and compression ratios of the images. Likewise,
there are various ways of encoding PNG images that can greatly modify the compression ratio. In the examples
above, I used the standard 'baseline' settings for the JPEG and PNG images.

Useful links:

The Yale web style guide covers graphics and web design. They have an outstanding GIF and JPEG
comparison.
Stanford's academic computing group provides a useful GIF vs JPEG page with a number of good links.
Lee Daniels has a nice comparison of GIF and JPEG formats for web page graphics. He also has a number of
useful links.
Metropolitan Community College describes the relative merits of JPEG, GIF and PNG.
A nice comparison of JPEG, GIF and PNG from Los Alamos Labs.
Paul Bourke has created a huge number of web pages that are informative, pretty, and download quickly. Some
of his useful graphics pages include an introduction to bitmaps, a technical description of the GIF format,
suggestions for creating good web pages, and tips for tiling images on web pages.

Technical Links:

Mark Nelson's Data Compression library contains many useful links - including JPEG, lossless JPEG, PNG
and GIF.
Simon Fraser University's CMPT 365 course has an excellent introduction to lossy and lossless JPEG images.
In addition, there is a nice introduction to lossless compression.
The original specifications of the JPEG format are available as a PDF document. Useful for determined
readers, but it is fairly technical.
Chris Watts has written an easy to read introduction to the JPEG format. It has a nice description of the
Huffman encoding algorithm.
Cristi Cuturicu has also written an easy introduction to JPEG encoding.
A simple listing of JPEG headers was compiled by Oliver Fromme.
Chua Lye Heng has written a description of different compression methods - perhaps the nicest description of
Huffman encoding I have seen.
The PNG home lists documentation, libraries and programs that support the PNG format.
Earl F Glynn's Graphics formats page - this includes general information and information specifically about the
Delphi programming language. He has a nice page and free software that demonstrates JPEG image quality and
compression. His color page is a nice introduction to different color spaces.

Page 2 of 3Web Graphics Notes: GIF, JPEG or PNG

24-09-2003http://www.psychology.nottingham.ac.uk/staff/cr1/graphics.html

