Arquitecturas Paralelas I Computação Paralela

João Luís Ferreira Sobral www.di.uminho.pt/~jls jls@...

http://gec.di.uminho.pt/lesi/ap1

Resultados da Aprendizagem

 Conceber, implementar e optimizar aplicações que executem de forma eficiente em arquitecturas multi-processador (multi-core e multi-thread) e/ou arquitecturas distribuídas (clusters)

Programa (resumido)

- Arquitectura dos sistemas de computação
 - sistemas de memória partilhada e sistemas de memória distribuída.
 - introdução à GRID (rede mundial de sistema de computação).
- Modelos de programação paralela e linguagens
 - processos comunicantes e objectos activos.
 - distribuição de componentes pelos recursos computacionais
 - mecanismos de especificação de concorrência/paralelismo
- Projecto de aplicações paralelas
 - gestão eficiente da distribuição de componentes; medição, análise e optimização do desempenho
 - relação custo/benefício de concorrência/paralelismo e sua quantificação (métricas);
 - adaptação da granularidade da computação/comunicação;
 - estratégias de distribuição da carga de dados/computação/comunicação.
- Análise de ambientes comerciais/tecnologias
 - Software de gestão de "GRIDs" (PBS)
 - Desenvolvimento de aplicações empresariais em clusters de máquinas (J2EE em ambiente de clustering)

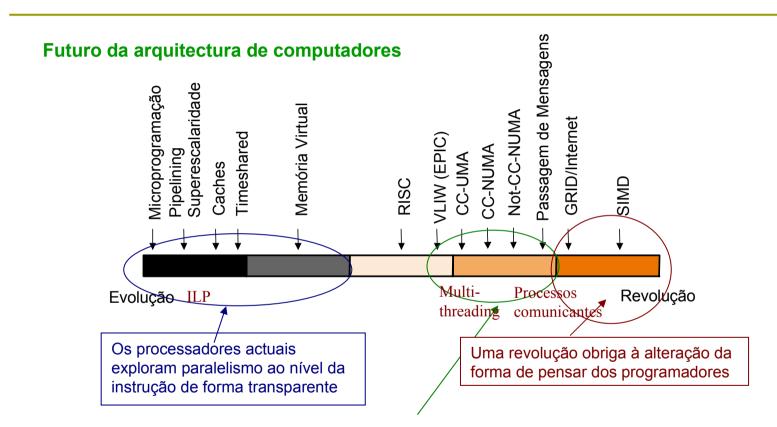
Planeamento

Aula	Matéria Teórica	Tecnologia
1 (19/09)	- Introdução às arquitecturas paralelas/Grid	-
2 (26/09)	- Revisão de conceitos de programação	Programação em Java
3 (3/10)	- <i>Middleware</i> para suporte a distribuição	Java RMI/.Net Remoting (em C#)
4 (10/10)	- Programação OO concorrente	Threads em C#/ Java
5 (17/10)	 Metodologias de desenvolvimento de aplicações concorrentes/distribuídas/paralelas 	Desenvolvimento de algoritmos em C# + Remoting / Java
6 (24/10)	- Medição e optimização de desempenho	Análise de algoritmos em Java
7 (31/10)	 Desenvolvimento de aplicações paralelas baseadas em passagem de mensagens 	Programação em MPI (<i>Message Passing Interface</i>) e C++
8 (7/11)	-OpenMP	Exercícios
9 (14/11)	- Análise de sistemas de <i>Grid</i>	PDS, introdução à utilização de cluster Search
10 (21/11)	- Aplicações empresariais em Clusters	J2EE
11 (28/11)	- Framework JaSkel	Exercícios
12 (5/12)	Projecto PPC-VM (Aspectos para paralelização)	Exercícios
13 (12/12)	Folga (Projecto – parte 1)	
14 (19/12)	Folga (Projecto – parte 2)	-

Avaliação

Um trabalho prático (desenvolvimento aplicação para um ambiente de cluster)

Pré-requesitos

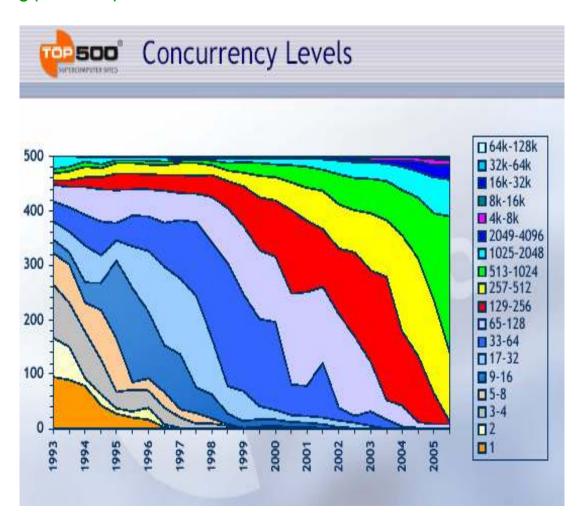

Conhecimentos de Java e de C

Bibliografia (Base)

- Acetatos
- M. Quinn. Parallel programming in C with C nad OpenMP, McGraw Hill, 2003
- □ I. Foster. Designing and Building Parallel Programs, Addison-Wesley, 1995.
- D. Lea. Concurrent Programming in Java: Design Principles and Patterns, Addison-Wesley, 2000.
- □ G. Andrews. Multithreaded, Parallel and Distributed Programming, Addison-Wesley, 2000.

Bibliografia (Adicional)

- □ R. Gerber, A. Binstock. *Programming with Hyper-Threading Technology*, Intel Press, 2004.
- F. Buschmann, D. Schmidt, M. Stal, H. Rohnert, *Pattern-oriented Software Architecture Vol 2: Patterns for Concurrent and Networked Objects*, John Wiley and Sons Ltd, 2000.
- □ T. Christopher, G. Thiruvathukal, *High-performance Java platform computing*, Prentice Hall, 2000.
- □ I. Foster, C. Kesselman (ed). *The Grid2*, Morgan Kaufmann, 2004.



A ênfase de computação paralela é na programação deste tipo de arquitecturas

www.top500.org (Nov//2005)

	Manufacturer	Computer	Rmax [TF/s]	Installation Site	Country	Year	#Proc
1	ІВМ	BlueGene/L eServer Blue Gene	280.6	DOE/NNSA/LLNL	USA	2005	131072
2	IBM	BGW eServer Blue Gene	91.29	IBM Thomas Watson	USA	2005	40960
3	IBM	ASC Purple eServer pSeries p575	63.39	DOE/NNSA/LLNL	USA	2005	10240
4	SGI	Columbia Altix, Infiniband	51.87	NASA Ames	USA	2004	10160
5	Dell	Thunderbird	38.27	Sandia	USA	2005	8000
6	Cray	Red Storm Cray XT3	36.19	Sandia	USA	2005	10880
7	NEC	Earth-Simulator	35.86	Earth Simulator Center	Japan	2002	5120
8	IBM	Mare Nostrum BladeCenter JS20, Myrinet	27.91	Barcelona Supercomputer Center	Spain	2005	4800
9	IBM	eServer Blue Gene	27.45	ASTRON University Groningen	Netherlands	2005	12288
10	Cray	Jaguar Cray XT3	20.53	Oak Ridge National Lab	USA	2005	5200

www.top500.org (Nov//2005)

VLIW (Very Long Instruction Word)

- O escalonamento dinâmico incrementa de forma considerável a complexidade do Hardware.
- VLIW efectua um escalonamento estático, sendo o compilador responsável por indicar as instruções que podem ser realizadas em paralelo.
 - => tem-se revelado um fracasso
- O formato de instrução indica as operações que são realizadas em paralelo por cada unidade funcional.
- Instrução 2 Instrução 1 Instrução 0 Instrução 0 Opcode PR REG REG REG

13

7

40 bits

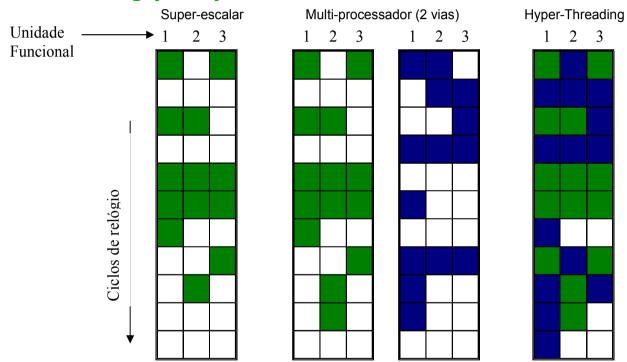
7

7

VLIW (cont.)

Limitações de VLIW

- O código gerado tende a ser de maior dimensão, porque é necessário inserir nop nos campos da instrução não preenchidos.
- Compatibilidade de código entre gerações dos mesmo processador uma vez que tende a expor a arquitectura interna do processador
- É mais penalizado com stalls que o escalonamento dinâmico


■ EPIC – IA-64 / Itanium

- 64 registos de inteiros + 64 registos FP, ambos com 64 bits
- 3 instruções em 128 bits (LIW?)
 - menos bits que VLIW clássico, produzindo código mais compacto
 - possibilidade de ligação entre os vários grupos de instruções
- Verificação de dependências em HW => compatibilidade de código

Hyper-Threading (Intel)

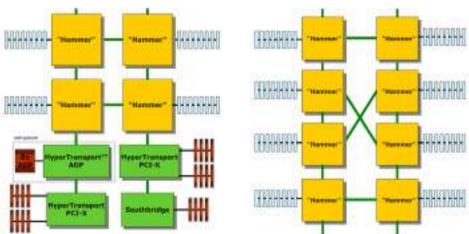
- A adição de mais unidades funcionais nos processadores actuais não conduz a ganhos significativos de desempenho.
- O processador tem a capacidade de simular vários processadores (CC-NUMA) ou pode executar vários fios de execução em simultâneo.
 - baseia-se mais no paralelismo ao nível dos fios de execução ou dos processos e menos paralelismo ao nível da instrução.
- Implica um aumento de <5% de transístores por processador e pode conduzir a ganhos no desempenho até 35% (Xeon actuais, com grau 2).
- Os ganhos de desempenho são proporcionados por uma utilização mais eficiente dos recursos

Hyper-Threading (cont.)

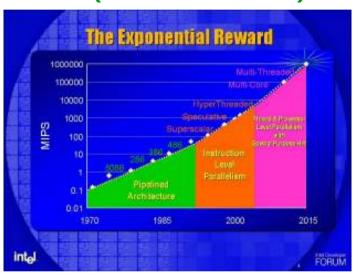
1 processador = 2 processadores ?

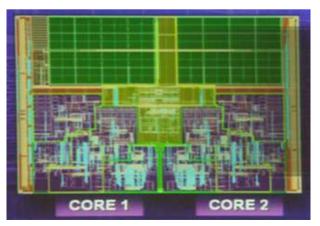
Não porque parte dos recursos do processador não são duplicados (i.é., são divididos pelos vários fios de execução) (*caches*, registos internos, *buffers* internos, etc.)

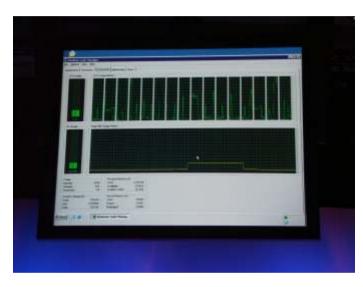
Hammer (AMD com 64 bits)

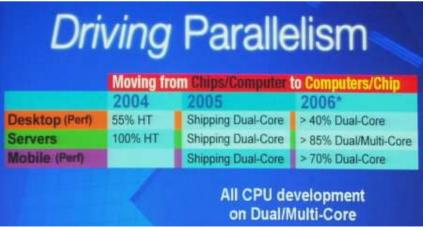

Estende o IA-32 para 64 bits:

□ A pipeline possui mais dois estágios (12 contra 10) que a arquitectura K7 (Athlon XP)

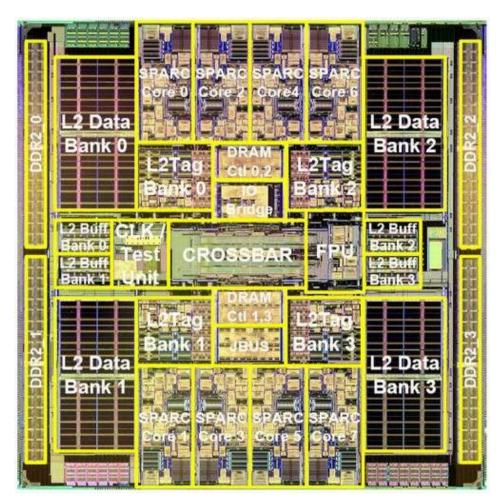

Hammer (cont.)

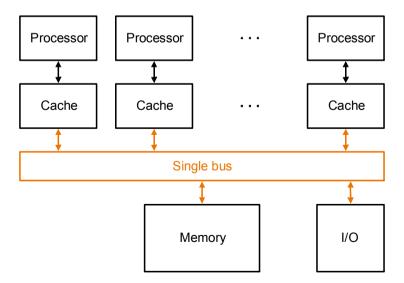

- Integra o controlador de memória do próprio chip e 2 ligações externas (Hyper Transport) para ligação a outros processadores.
- O Hyper Transport permite a ligação até 8 processadores sem recurso a componentes adicionais:




A configuração multiprocessador assemelha-se mais ao tipo CC-NUMA, uma vez que cada processador possui o seu controlador de memória e a largura de banda disponível para a memória local é superior à disponibilizada pelo Hyper Transport, embora a velocidade do Hyper Transport escale com a velocidade do processador

Yonah (centrino dual-core)




UltraSparc T1

- 8 cores
- 32 *threads* simultâneas (4/core)
- 4 caches L2

Memória partilhada centralizada (CC-UMA, CC-NUMA)

- Vários processadores partilham um barramento de acesso à memória
- As caches de cada processador contribuem para reduzir o tráfego no barramento e a latência dos acessos à memória
- um valor pode estar replicado em vários sítios => são necessários mecanismos para assegurar a coesão entre as caches dos vários processadores e a memória
- A largura de banda de acesso à memória é partilhada pelos vários processadores => limitação à escalabilidade deste tipo de arquitectura:

Memória distribuída – processadores conectados por uma rede de interligação (CC-NUMA, passagem de mensagens)

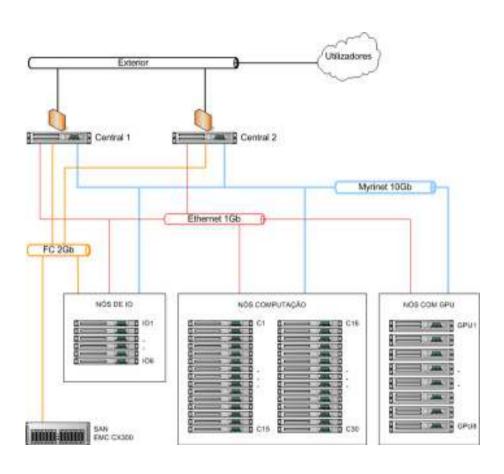
 Os sistemas interligados por um barramento tendem a limitar o número de processadores que efectivamente podem ser ligados

 A alternativa reside na utilização de uma rede dedicada à interligação dos vários processadores, possuindo cada processador a sua memória

dedicada

Cluster de máquinas

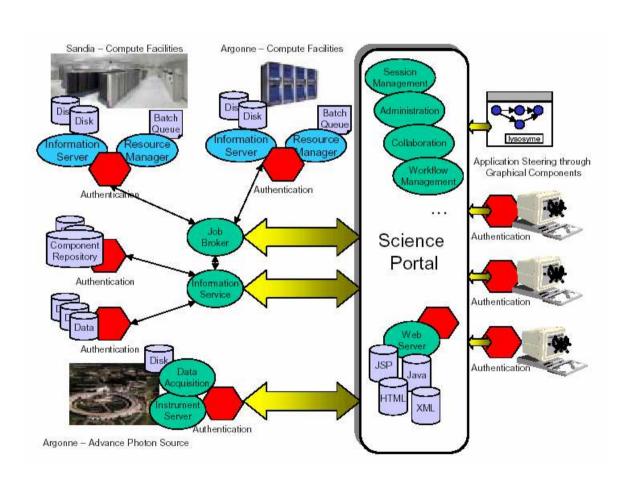
- Constituídos pode HW "normal", interligados por uma rede de alta velocidade (Gbit/s com muito baixa latência)
- Cada nodo de processamento pode ser uma máquina de memória partilhada com vários processadores
- Cada nodo possui uma cópia do SO
- Alta disponibilidade: quando falha uma máquina basta substituí-la por outra
- Custos de administração na ordem do número de máquinas
- Exemplo (Cluster investigação da Universidade do Minho 2006):
 - 8 nodos com SAN FC 3TB
 - 8 nodos com NVIDIA 7800 GTX


CPU	Processador	Freq. Relógio	Memória Actual/Máxima	Comunicação	Nodos	Máximo de nodos
8	AMD Athlon MP	1,5 GHz	4GB/16 GB	250 MB/s, 10us (2,0 Gbit/s)	2-way	4
14	Intel Xeon	3,2 GHz	10 GB / 112 GB	250 MB/s, 10us (2,0 Gbit/s)	2-way	7
96	Intel Xeon	3,0 GHz 2,0 GHz	96GB / 768GB	1 GB/s, 3us (10 Gbit/s)	2-way / 4-way	48

Computação paralela : Cluster Search <u>Se</u>rvices and <u>A</u>dvanced <u>R</u>esearch <u>C</u>omputing with <u>H</u>TC/<u>H</u>PC clusters

- 30 nós duplo Xeon3.2GHz, 2 GB RAM
- 8 nós duplo Xeon-dual core2.0 GHz, 4 GB RAM
- □ rede 10Gbit/s Myrinet
- armazenamento central SAN com 3TB
- □ Total de 92 cores, 92 GB RAM!

Computação paralela : Cluster Search <u>Se</u>rvices and <u>A</u>dvanced <u>R</u>esearch <u>C</u>omputing with <u>H</u>TC/<u>H</u>PC clusters



JOBNAME	USERNAME	STATE	PROC	REMAINING	STARTTIME
11019	mrocha	Running		4:19:20	
10976	hpinto	Running		1:23:58:47	Tue Sep 19 13:11:13
10977	hpinto	Running		2:16:11:29	Mon Sep 18 21:23:55
10818	cris	Running		8:07:46:43	Tue Sep 19 12:59:09
10938	mrocha	Running		9:20:19:42	Tue Sep 12 17:32:08
10939	mrocha	Running		9:20:20:23	Tue Sep 12 17:32:49
10940	mrocha	Running		9:20:20:25	Tue Sep 12 17:32:51
10941	mrocha	Running			Tue Sep 12 17:32:57
10996	rbrito	Running		10:05:00:16	Sun Sep 17 06:12:42
10984	rbrito	Running		11:09:10:29	Mon Sep 18 10:22:55
11004	exp	Running		13:15:55:09	Mon Sep 18 05:07:35
10942	mrocha	Running		14:00:20:39	Tue Sep 12 17:33:05
10943	mrocha	Running		14:00:20:41	Tue Sep 12 17:33:07
10944	mrocha	Running		14:00:20:43	Tue Sep 12 17:33:09
11026	mrocha	Running		20:16:25:28	Mon Sep 18 23:37:54
11027	mrocha	Running		20:16:26:35	Mon Sep 18 23:39:01
11028	mrocha	Running		20:16:27:28	Mon Sep 18 23:39:54 Mon Sep 18 23:41:11
11029	mrocha mrocha	Running			•
11030	mrocha mrocha	Running Running		20:16:29:40 20:16:30:55	Mon Sep 18 23:42:06 Mon Sep 18 23:43:21
11031 11032	mrocha	-		20:16:30:55	Mon Sep 18 23:44:29
11032	mrocha	Running Running		20:16:32:03	Mon Sep 18 23:44:53
11033	mrocha	Running		20:16:32:27	Mon Sep 18 23:44:58
1054	nmama	Running		54:08:55:04	•
10577	nmama	Running		64:13:33:41	Thu Aug 31 18:46:07
10570	nmama	Running		64:13:33:41	Thu Aug 31 18:46:07
10579		Running		64:13:33:44	Thu Aug 31 18:46:10
10581	nmama nmama	Running		75:05:35:10	Mon Sep 11 10:47:36
10301	пшаша	Ruming	1	73:03:33:10	non sep 11 10:47:30
28 Active Jo	bs 44 of	60 Proc	essor	s Active (73.	33%)
	23 of	30 Node	s Act	ive (76.	67%)
IDLE JOBS					
		STATE	PROC	WCLIMIT	QUEUETIME
OUDWARL	USERNAME	SIAIL	PROC	WCLINII	QUEUEIIME
O Idle Jobs					
DIOCUED TODG					
BLOCKED JOBS JOBNAME	USERNAME	STATE	PROC	WCLIMIT	QUEUETIME
OODWANE	OJEKWANE	JIMIL	rkoc	wchinii	QUE OLI THE
10819	cris	Idle	1	8:08:00:00	Wed Aug 30 01:24:02
10820	cris	Idle	1	8:08:00:00	Wed Aug 30 01:24:02
10972	rbrito	Idle	4		Fri Sep 15 09:58:25

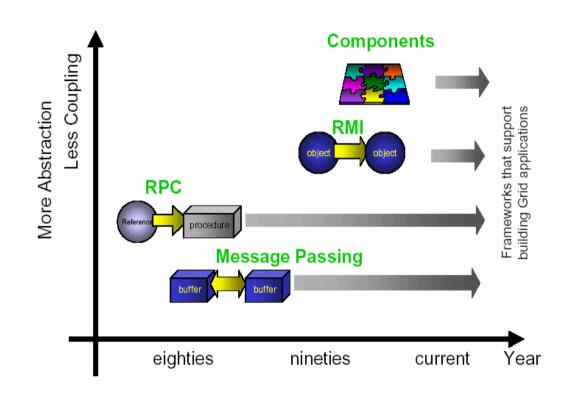
GRID

- Pode ser a próxima geração da internet
- "A computational grid is a hardware and software infrastructure that provides dependable, consistent, pervasive, and inexpensive access to high-end computational capabilities.", Foster 1998.
- "coordinated resource sharing and problem solving in dynamic, multi-institutional virtual organizations.", Foster and Al, 2000.
- A partilha de recursos é altamente controlada, com os fornecedores e os utilizadores dos recursos a definirem claramente o que é partilhado, que está autorizada a utilizar cada recurso e em que condições a partilha ocorre.
- a coordenação de recursos não deve ser centralizada (os vários recursos encontram-se em domínios diferentes)
- deve utilizar protocolos standard e abertos
- deve fornecer vários níveis, não triviais, de serviço
- requer novos paradigmas de programação? (os recursos dinâmicos, altamente heterogéneos e sujeitos a grandes variações de desempenho)
- pode tornar, a longo prazo, os supercomputadores dispensáveis?

Aplicações de GRID

- Evolução das arquitecturas de computadores (Grid)
 - **CERN LCG**

Site Reports	GIIS Host	<u>totalCPU</u>	<u>freeCPU</u>	<u>runJob</u>	<u>waitJob</u>	<u>seAvail</u> <u>TB</u>	<u>seUsed</u> <u>TB</u>
CERN-PROD	prod-bdii.cern.ch	18228	251	1153	0	931.40	465.66
INFN-T1	ce03-lcg.cr.cnaf.infn.it	2826	1905	259	4444	93.55	46.62
FZK-LCG2	lcg-gridka-ce.fzk.de	2656	1408	12	0	45.56	11.24
IN2P3-CC	cclcgip01.in2p3.fr	1581	1406	171	4	16.98	0.62
<u>USCMS-FNAL-WC1</u>	cmslcgce.fnal.gov	965	163	1584	9294	127.49	29.06
RAL-LCG2	site-bdii.gridpp.rl.ac.uk	858	0	99	13	52.66	60.30
SARA-LISA	mu9.matrix.sara.nl	714	132	2	0	8.44	12.16
QMUL-eScience	ce01.esc.qmul.ac.uk	574	341	111	0	13.28	3.65
TORONTO-LCG2	bigmac-lcg- ce.physics.utoronto.ca	491	69	31	3	1.12	0.37
<u>UKI-LT2-IC-LeSC</u>	mars- ce.mars.lesc.doc.ic.ac.uk	400	338	94	0	0.01	0.00
<u>UKI-NORTHGRID-MAN-HEP</u>	ce01.tier2.hep.manchester.ac. uk	400	289	111	0	0	0
IN2P3-LPC	clrlcgce02.in2p3.fr	360	240	120	1	2.71	0.46
INFN-CATANIA	grid012.ct.infn.it	338	68	148	0	2.67	0.86
INFN-LNL-2	t2-ce-02.lnl.infn.it	316	188	64	3	0.72	1.23
Taiwan-LCG2	lcg00125.grid.sinica.edu.tw	284	201	82	3	10.54	13.22
DESY-HH	grid-giis.desy.de	284	150	145	29	8.93	3.44
scotgrid-gla	ce1-gla.scotgrid.ac.uk	262	262	0	0	3.58	0.39
CYFRONET-LCG2	zeus02.cyf-kr.edu.pl	260	206	0	48884	0.35	1.64
WARSAW-EGEE	ce.polgrid.pl	256	9	228	1	3.05	0
•••	•••	• • •	• • •	• • •	• • •	• • •	• • •
		totalCPU	freeCPU	runJob	waitJo b	seAvail TB	seUsed TB
		39411	12247	6955	17199 5	3433.62	1712.81


Iniciativa nacional GRID

(www.gridcomputing.pt)

- "apoiar o desenvolvimento de estruturas de suporte à computação distribuída para a partilha de recursos na resolução de problemas complexos com necessidade de processamento intensivo de dados"
- "assegurar o desenvolvimento de competências e capacidades nacionais de interesse estratégico para a evolução deste tipo de computação distribuída"

Tecnologias para desenvolvimento de aplicações em GRID

