Sistemas Digitais I LESI - 2° ano

Lesson 2 - Number Systems

Prof. João Miguel Fernandes

(miguel@di.uminho.pt)

Dept. Informática

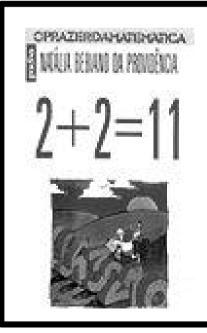
UNIVERSIDADE DO MINHO
ESCOLA DE ENGENHARIA

- Positional Number Systems (1) -

- We use daily a <u>positional number system</u>.
- A number is represented by a string of decimal digits, where each digit position has an associated weight.
 - $5365 = 5^*1000 + 3^*100 + 6^*10 + 5^*1$
 - $162.39 = 1^{*}100 + 6^{*}10 + 2^{*}1 + 3^{*}0.1 + 9^{*}0.01$
- A number D of the form $d_1 d_0 \cdot d_{-1} d_{-2} d_{-3}$ has the value: D = $d_1^* 10^1 + d_0^* 10^0 + d_{-1}^* 10^{-1} + d_{-2}^* 10^{-2} + d_{-3}^* 10^{-3}$
- 10 is called the <u>base</u> or the <u>radix</u>.
- Generally, the base can be any integer r >= 2 and a digit position i has weight rⁱ.

- Positional Number Systems (2) -

- The book "2+2=11" has a mathematically wrong title if we use the decimal base.
- In which base is the title correct?



 Natália Bebiano da Providência, 2+2=11, série "O Prazer da Matemática", Gradiva, Lisboa, 2001. ISBN 972-622-809-1.

2. Number Systems - Binary Numbers -

- Digital circuits have signals that are normally in one of two conditions (0 or 1, LOW or HIGH, charged or discharged).
- These signals represent binary digits (bits), that can have 2 possible values (0 or 1).
- The binary base (r=2) is used to represent numbers in digital systems.
- Examples of binary numbers and their decimal equivalents:
 - $11010_2 = 1^*16 + 1^*8 + 0^*4 + 1^*2 + 0^*1 = 26_{10}$
 - $100111_2 = 1^*32 + 0^*16 + 0^*8 + 1^*4 + 1^*2 + 1^*1 = 39_{10}$
 - $10.011_2 = 1^*2 + 0^*1 + 0^*0.5 + 1^*0.25 + 1^*0.125 = 2.375_{10}$
- <u>MSB</u>: most significant bit; <u>LSB</u>: least significant bit.

- Octal and Hexadecimal Numbers (1) -

- The <u>octal</u> number system uses base 8 (r=8). It requires 8 digits, so it uses digits 0-7.
- The <u>hexadecimal</u> number system uses base 16 (r=16). It requires 16 digits, so it uses digits 0-9 and letters A-F.
- These number systems are useful for representing multibit numbers, because their bases are powers of 2.
- Octal digits can be represented by 3 bits, while hexadecimal digits can be represented by 4 bits.
- The octal number system was popular in the 70s, because certain computers had their front-panel lights arranged in groups of 3.
- Today, octal numbers are not used much, because of the preponderance of 8-bit bytes machines.

- Octal and Hexadecimal Numbers (2) -

- It is difficult to extract individual byte values in multibyte quantities represented in the octal system.
- What are the octal values of the 4 bytes in the 32-bit number with the octal representation 12345670123₈?
- 01 010 011 100 101 110 111 000 001 010 011₂ The 4 bytes in octal are: $123_8 227_8 160_8 123_8$
- In the hexadecimal system, 2 digits represent a 8-bit byte, and 2n digits represent an n-byte word.
- Each pair of digits represent a byte.
- A 4-bit hexadecimal digit is sometimes called a <u>nibble</u>.

- Octal and Hexadecimal Numbers (3) -

Binary	Decimal	Octai	3-Bit String	Hexadecimal	4-Bit String
0	0	O	000	0	0000
1	1	1	001	1	0001
10	Z	Z	010	2	0010
11	з	3	01 1	3	0011
100	4	4	100	4	0100
101	5	5	101	5	0101
110	6	6	110	6	0110
111	7	7	111	7	0111
1000	8	10	8 8	8	1000
1001	9	11	8 8	9	1001
1010	10	1 Z	8	A	1010
1011	11	13	8 	в	1011
1100	12	14	8 8	C	1100
1101	13	15	8	D	1101
1110	14	16	8 	E	1110
1111	15	17	8 8	F	1111

2. Number Systems - Conversions (1) -

- It is easy to convert a binary number to octal or hexadecimal, and vice versa.
- Binary Octal
 - $110100101000_2 = 110\ 100\ 101\ 000_2 = 6450_8$
 - $11000110111010_2 = 011\ 000\ 110\ 111\ 010_2 = 30672_8$
- Binary Hexadecimal
 - $110100101000_2 = 1101\ 0010\ 1000_2 = D28_{16}$
 - $11000110111010_2 = 0011\ 0001\ 1011\ 1010_2 = 31BA_{16}$
- Octal Binary
 - $1324_8 = 001\ 011\ 010\ 100_2 = 1011010100_2$
- Hexadecimal Binary
 - $19F_{16} = 0001 \ 1001 \ 1111_2 = 110011111_2$

2. Number Systems - Conversions (2) -

- In general, conversions between two bases cannot be done by simple substitutions. Arithmetic operations are required.
- Examples of conversions to the decimal base:
 - $10001010_2 = 1^{*}2^7 + 0^{*}2^6 + 0^{*}2^5 + 0^{*}2^4 + 1^{*}2^3 + 0^{*}2^2 + 1^{*}2^1 + 0^{*}2^0 = 138_{10}$
 - $4063_8 = 4^*8^3 + 0^*8^2 + 6^*8^1 + 3^*8^0 = 2099_{10}$
 - $311.74_8 = 3^*8^2 + 1^*8^1 + 1^*8^0 + 7^*8^{-1} + 4^*8^{-2} = 201,9375_{10}$

$$- 19F_{16} = 1^*16^2 + 9^*16^1 + 15^*16^0 = 415_{10}$$

 $- 134.02_5 = 1^*5^2 + 3^*5^1 + 4^*5^0 + 0^*5^{-1} + 2^*5^{-2} = 44,08_{10}$

2. Number Systems - Conversions (3) -

- Example of Decimal to Binary Conversions $(138_{10} = 10001010_2)$
 - 138÷2 = 69 remainder 0
 - 69÷2 = 34 remainder 1
 - 34÷2 = 17 remainder 0
 - 17÷2 = 8 remainder 1
 - 8÷2 = 4 remainder 0
 - 4÷2 = 2 remainder 0
 - $2 \div 2 = 1$ remainder 0
 - $1 \div 2 = 0$ remainder 1

2. Number Systems - Conversions (4) -

- Example of Decimal to Octal Conversions $(2099_{10} = 4063_8)$
 - 2099÷8 = 262 remainder 3
 - 262÷8 = 32 remainder 6
 - 32÷8 = 4 remainder 0
 - $4 \div 8 = 0$ remainder 4
- Example of Decimal to Hexadecimal Conversions $(415_{10} = 19F_{16})$
 - 415÷16 = 25 remainder 15 (F)
 - 25÷16 = 1 remainder 9
 - 1÷16 = 0 remainder 1

- Addition of Binary Numbers -

- Addition and Subtraction of Non-Decimal Numbers use the same technique that we use for decimal numbers.
- The only difference is that the table are distinct.
- Table for addition of two binary digits.
- Similar tables can be built for other bases.
- Example of a binary addition:

⊂ _{in}	x	y	Cout	3
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

- Representation of Negative Numbers -

- There are many ways to represent negative numbers with bits.
 - Signed-Magnitude Representation
 - Complement Number Systems
 - Radix-Complement Representation
 - <u>Two's-Complement Representation</u>
 - Diminished Radix-Complement Representation
 - One's-Complement Representation
 - Excess Representations

- Signed-Magnitude Representation -

- A number consists of a magnitude and a symbol indicating whether the magnitude is positive or negative.
- In binary systems, we use an extra bit (usually the MSB) to indicate the sign (0=plus, 1=minus).
- Some 8-bit signed-magnitude integers: $01010101_2 = +85_{10}$ $11010101_2 = -85_{10}$ $01111111_2 = +127_{10}$ $00000000_2 = +0_{10}$ $10000000_2 = -0_{10}$
- For n bits, number $\in \{-2^{n-1}+1...2^{n-1}-1\}$; n=8, number $\in \{-127...+127\}$.
- There are two representations of zero: "+0" e "-0".

- Two's-Complement Representation -

- The radix-complement is called 2's-complement, for binary numbers. Most computers use it to represent negative numbers.
- The MSB of a number serves as the sign bit.
- The weight of the MSB is -2^{n-1} . The other bits have weight $+2^{i}$.
- For n bits, number $\in \{-2^{n-1}...2^{n-1}-1\}$; n=8, number $\in \{-128...+127\}$.
- Only one representation of zero \Rightarrow an extra negative number.
- Some 8-bit integers and their two's complements:
 - $+17_{10} = 00010001_2 \implies 11101110_2 + 1 = 11101111_2 = -17_{10}$
 - $0_{10} = 00000000_2 \implies 1111111_2 + 1 = \underline{1} \ 0000000_2 = 0_{10}$
 - $-128_{10} = 1000000_2 \implies 0111111_2 + 1 = 1000000_2 = -128_{10}$

- One's-Complement Representation -

- The diminished radix-complement is called 1's-complement, for binary numbers.
- The MSB of a number serves as the sign bit.
- The weight of the MSB is $-2^{n-1}+1$. The other bits have weight $+2^{i}$.
- For n bits, number $\in \{-2^{n-1}+1...2^{n-1}-1\}$; n=8, number $\in \{-127...+127\}$.
- Two representations of zero (00000000 and 1111111).
- Some 8-bit integers and their one's complements :
 - $+17_{10} = 00010001_2 \implies 11101110_2 = -17_{10}$
 - $+0_{10} = 0000000_2 \implies 11111111_2 = -0_{10}$
 - $-127_{10} = 1000000_2 \implies 01111111_2 = +127_{10}$

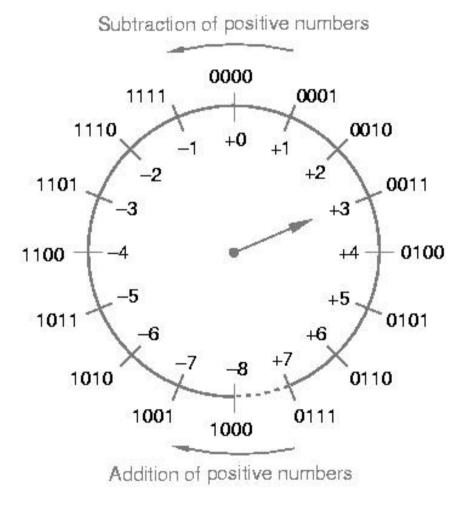
2. Number Systems - Why Two's-Complement? -

- Hard to build a digital circuit that adds signed-magnitude numbers.
- In 1's-complement, there are two zero representations.
- A 1's-complement adder is more complex that a 2's complement adder.

Decimal	Two's Complement	Ones' Complement	Signed Magnitude	Excess 2 ^{m-1}	
-8	1000	8 7 - 1 8	0 7 - 1 0	0000	
-7	1001	1000	1111	0001	
-6	1010	1001	1110	0010	
-5	1011	1010	1101	0011	
-4	1 100	1011	1100	0100	
-3	1 10 1	1100	1011	0101	
-2	1110	1101	1010	0110	
-1	1111	1110	1001	0111	
0	0000	1111 or 0000	1000 or 0000	1000	
1	0001	0001	0001	1001	
2	0010	0010	0010	1010	
3	0011	0011	0011	1011	
4	0100	0100	0100	1 100	
5	0101	0101	0101	1 10 1	
6	0110	0110	0110	1110	
7	0111	0111	0111	1111	

- Two's-Complement Addition and Subtraction (1) -

- We can add +n, by counting up (clockwise) n times.
- We can subtract +n, by counting down (counterclockwise) n times.
- Valid results if the discontinuity between -8 and +7 is <u>not</u> crossed.
- We can also subtract +n, by counting up (clockwise) 16-n times.



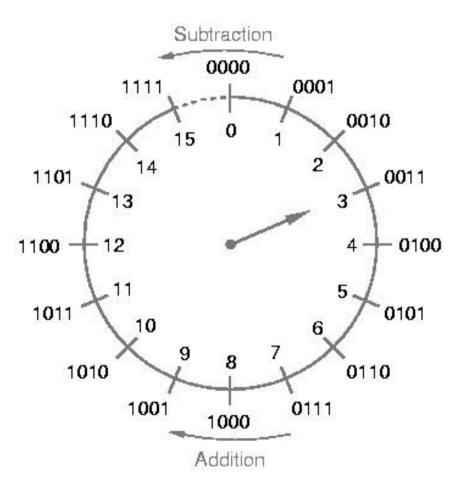
- Two's-Complement Addition and Subtraction (2) -

- <u>Overflow</u> occurs when an addition produces a result that exceeds the range of the number system.
- Addition of 2 numbers with different signs <u>never</u> produces overflow.
- An addition overflows if the signs of the addends are the same and the sign of the sum is different form the addends' sign.
- Examples of overflowed additions:

	-3	1101		+5	0101	
	+ -6	1010		+ +6	0110	
-	-9	1 0111	= +7	+11	1011	= -5
	-8	1000		+7	0111	
	+ -8	1000		+ +7	0111	
-	-16	1 0000	= 0	+ 14	1110	= -2

- Two's-Complement Addition and Subtraction (3) -

- The same adder circuit can be used to handle both 2'scomplement and unsigned numbers.
- However the results must be interpreted differently.
- Valid results if the discontinuity between 15 and 0 is not crossed.



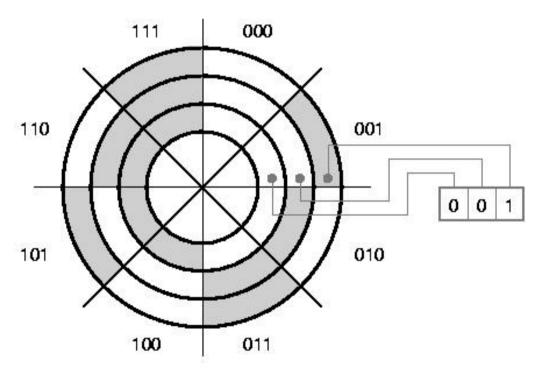
- Binary Codes for Decimal Numbers -

- People prefer to deal with decimal numbers.
- A decimal number is represented by a string of bits.
- A <u>code</u> is a set of bit strings in which different strings represent different numbers (entities).
- A particular combination of bits is a <u>code word</u>.

Decimal digit	BCD (8421)	2421	Excess-3	Biquinary	1-out-of-10	
0	0000	0000	0011	0100001	1000000000	
l	0001	0001	0100	0100010	0100000000	
2	0010	0010	0101	0100100	0010000000	
3	0011	0011	0110	0101000	0001000000	
4	0100	0100	0111	0110000	0000100000	
5	0101	1011	1000	1000001	0000010000	
6	0110	1100	1001	1000010	0000001000	
7	0111	1101	1010	1000100	0000000100	
8	1000	1110	1011	1001000	0000000010	
9 1001		1111	1 100	1010000	0000000001	
		Unusex	l code words			
	1010	0101	0000	0000000	0000000000	
	1011	0110	0001	0000001	0000000011	
	1 100	0111	0010	0000010	0000000101	
	1101	1000	1 10 1	0000011	0000000110	
	1110	1001	1110	0000101	0000000111	
	1111	1010	1111		2222	

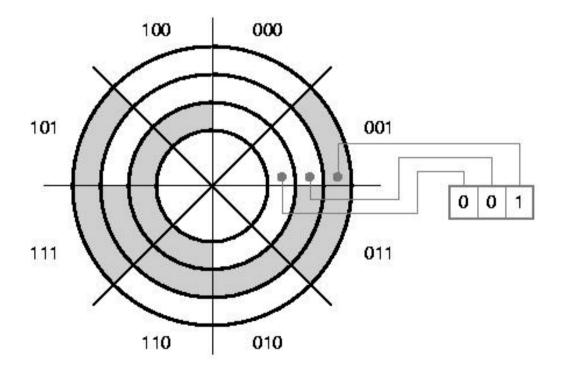
2. Number Systems - Gray Code (1) -

- Input sensor indicates a mechanical position.
- Problems may arise at certain boundaries.
- Boundary between 001 and 010 regions (2 bits change).
- A solution is to devise a digital code in which only one bit changes between successive codes.



2. Number Systems - Gray Code (2) -

- <u>Gray code</u> solves that problem!
- Only one bit changes at each border.
- Gray codes are also used in Karnaugh maps, since adjacent cells must differ in just one input variable.



2. Number Systems - Character Codes (1) -

• A string of bits need not represent a number.

- In fact most of the information processed by computers is nonnumeric.
- The most common type of nonnumeric data is text: strings of characters from some character set.
- Each character is represented in the computer by a bit string (code) according to an established convention.
- The most commonly used character code is ASCII (American Standard Code for Information Interchange).
- ASCII represents each character with a 7-bit string, yielding a total of 128 characters.

- Character Codes (2) -

		vgoso4 (comminy							
b3b2b1b0	Row (hex)	000	001 1	010 2	011 3	100 4	101 5	110 6	111 7
0000	0	NUL.	DLE	SP	0	G	Р	82	р
0001	1	SOH	DC1	1	1	A	Q	а	Р
0010	2	STX	DC2		2	в	R	ь	r
0011	3	ETX	DC3	#	3	C	8	c	в
0100	4	EOT	DC4	\$	3 4	D	т	đ	t
0101	5	ENQ	NAK	8	5	Е	U	e	u
0110	6	ACK	SYN	&	6	F	V	f	v
0111	7	BEL	ETB		7	G	W	g	w
1000	8	BS	CAN	ť.	8	н	х	h	x
1001	9	HT	EM	>	9	I	Y	i	Y
1010	A	LF	SUB		1	J	z	j	z
1011	В	VT	ESC	2. + 2	1	К	[k	-{
1100	C	FF	FS	5.25	<	L	1	1	6
1101	D	CR	GS	828	=	м]	m	
1110	E	SO	RS	2	>	N	3 8 5	n	
1111	F	SI	US	1	7	0	_	0	DEL

b₈b₅b₄ (column)

ASCII (Standard no. X3.4-1968 of the ANSI).