Sistemas Digitais I

LESI - 2° ano
Lesson 2 - Number Systems

Prof. J oão Miguel Fernandes

(miguel@di.uminho.pt)

Dept. Informática

Universidade do Minho
Escola de Engenharia

2. Number Systems

- Positional Number Systems (1) -

- We use daily a positional number system.
- A number is represented by a string of decimal digits, where each digit position has an associated weight.
- $5365=5^{*} 1000+3^{*} 100+6^{*} 10+5^{*} 1$
$-162.39=1^{\star} 100+6^{*} 10+2^{*} 1+3^{*} 0.1+9^{*} 0.01$
- A number D of the form $d_{1} d_{0} \cdot d_{-1} d_{-2} d_{-3}$ has the value: $D=d_{1}{ }^{*} 10^{1}+d_{0}{ }^{*} 10^{0}+d_{-1}{ }^{*} 10^{-1}+d_{-2} * 10^{-2}+d_{-3}{ }^{*} 10^{-3}$
- 10 is called the base or the radix.
- Generally, the base can be any integer $\mathrm{r}>=2$ and a digit position i has weight ri.

2. Number Systems

- Positional Number Systems (2) -
- The book "2+2=11" has a mathematically wrong title if we use the decimal base.
- In which base is the title correct?

- Natália Bebiano da Providência $2+2=11$, série "O Prazer da Matemática", Gradiva, Lisboa, 2001. ISBN 972-622-809-1.

2. Number Systems
 - Binary Numbers -

- Digital circuits have signals that are normally in one of two conditions (0 or 1, LOW or HIGH, charged or discharged).
- These signals represent binary digits (bits), that can have 2 possible values (0 or 1).
- The binary base ($\mathrm{r}=2$) is used to represent numbers in digital systems.
- Examples of binary numbers and their decimal equivalents:
- $11010_{2}=1 * 16+1 * 8+0 * 4+1 * 2+0 * 1=26_{10}$
$-100111_{2}=1 * 32+0 * 16+0 * 8+1 * 4+1 * 2+1 * 1=39_{10}$
- $10.011_{2}=1^{*} 2+0^{*} 1+0^{*} 0.5+1^{*} 0.25+1^{*} 0.125=2.375_{10}$
- MSB: most significant bit; LSB: least significant bit.

2. Number Systems

- Octal and Hexadecimal Numbers (1) -
- The octal number system uses base 8 ($\mathrm{r}=8$). It requires 8 digits, so it uses digits 0-7.
- The hexadecimal number system uses base $16(r=16)$. It requires 16 digits, so it uses digits 0-9 and letters A-F.
- These number systems are useful for representing multibit numbers, because their bases are powers of 2 .
- Octal digits can be represented by 3 bits, while hexadecimal digits can be represented by 4 bits.
- The octal number system was popular in the 70 s, because certain computers had their front-panel lights arranged in groups of 3 .
- Today, octal numbers are not used much, because of the preponderance of 8-bit bytes machines.

2. Number Systems

- Octal and Hexadecimal Numbers (2) -
- It is difficult to extract individual byte values in multibyte quantities represented in the octal system.
- What are the octal values of the 4 bytes in the 32 -bit number with the octal representation 12345670123_{8} ?
- $01010011100101110111000001010011_{2}$ The 4 bytes in octal are: $123_{8} 227_{8} 160_{8} 123_{8}$
- In the hexadecimal system, 2 digits represent a 8 -bit byte, and $2 n$ digits represent an n-byte word.
- Each pair of digits represent a byte.
- A 4-bit hexadecimal digit is sometimes called a nibble.

2. Number Systems

- Octal and Hexadecimal Numbers (3) -

Smay	averat	Ond		Mantroter	$\frac{4 . \operatorname{wat}}{4}$
a	a	6	see	-	seed
1	1	1	eet	1	seen
ta	2	2	ta	2	2010
4	3	3	\%t	3	2011
332	4	4	330	4	dite
33	s	s	33	3	dies
140	6	σ	Ha	t	${ }^{1010}$
itt	,	J	itt	7	2111
1ece	1	16	-	\%	tsee
16et	9	11	-	-	H6er
163	32	12	-	A	thab
	11	13	-	P	teil
1156	12	14	-	c	H20
1350	13	13	-	a	H61
1123	14	16	-	5	1210
1112	15	17	-	F	ti11

2. Number Systems
 - Conversions (2)

- In general, conversions between two bases cannot be done by simple substitutions. Arithmetic operations are required.
- Examples of conversions to the decimal base:
- $\mathbf{1 0 0 0 1 0 1 0 ~}_{2}=1 * 2^{7}+0 * 2^{6}+0^{*} 2^{5}+0^{*} 2^{4}+1 * 2^{3}+0^{*} 2^{2}+1^{*} 2^{1}+0^{*} 2^{0}=138_{10}$
$-4063_{8}=4^{*} 8^{3}+0^{*} 8^{2}+6^{*} 8^{1}+3^{* 8} 8^{0}=2099_{10}$
$-311.74_{8}=3^{* 2} 8^{2}+1^{*} 8^{1}+1^{*} 8^{0}+7^{*} 8^{-1}+4^{*} 8^{-2}=201,9375_{10}$
- $19 \mathrm{~F}_{16}=1^{*} 16^{2}+9^{*} 16^{1}+15^{*} 16^{0}=415_{10}$
- $134.02_{5}=1 * 5^{2}+3^{* 51}+4 * 5^{0}+0 * 5^{-1}+2 * 5^{-2}=44,08_{10}$

2. Number Systems

- Conversions (4) -
- Example of Decimal to Octal Conversions $\left(2099_{10}=4063_{8}\right)$
- 2099 $\div 8=262$ remainder 3
- 262 $\div 8=32$ remainder 6
- $32 \div 8=4$ remainder 0
- $4 \div 8=0$ remainder 4
- Example of Decimal to Hexadecimal Conversions $\left(415_{10}=19 F_{16}\right)$
- $415 \div 16=25$ remainder 15 (F)
- 25 $\div 16=1$ remainder 9
- $1 \div 16=0$ remainder 1

2. Number Systems

- Conversions (1) -
- It is easy to convert a binary number to octal or hexadecimal, and vice versa.
- Binary - Octal
$110100101000_{2}=110100101000_{2}=6450_{8}$
$11000110111010_{2}=011000110111010_{2}=30672_{8}$
- Binary-Hexadecimal
$110100101000_{2}=110100101000_{2}=$ D28 $_{16}$
$11000110111010_{2}=0011000110111010_{2}=31 \mathrm{BA}_{16}$
- Octal - Binary
$1324_{8}=001011010100_{2}=1011010100_{2}$
- Hexadecimal - Binary
- $19 F_{16}=000110011111_{2}=110011111_{2}$

2. Number Systems
 - Conversions (3) -

- Example of Decimal to Binary Conversions $\left(138_{10}=10001010_{2}\right)$
- $138 \div 2=69$ remainder 0
- $69 \div 2=34$ remainder 1
- $34 \div 2=17$ remainder 0
- $17 \div 2=8$ remainder 1
- $8 \div 2=4$ remainder 0
- $4 \div 2=2$ remainder 0
- $2 \div 2=1$ remainder 0
- $1 \div 2=0$ remainder 1

2. Number Systems

- Addition of Binary Numbers -
- Addition and Subtraction of Non-Decimal Numbers use the same technique that we use for decimal numbers.
- The only difference is that the table are distinct
- Table for addition of two binary digits.
- Similar tables can be built for other bases.
- Example of a binary addition:

$\mathrm{cm}^{\text {n }}$	*	\%	50	
a	D	-	c	
a	-	1	c	
0	1	-	0	1
9	1	1	1	0
t	0	-	-	
1	c	1	t	
1	1	\bigcirc	1	o
1	1	1	1	

2. Number Systems

- Representation of Negative Numbers -
- There are many ways to represent negative numbers with bits.
- Signed-Magnitude Representation
- Complement Number Systems
- Radix-Complement Representation
- Two's-Complement Representation
- Diminished Radix-Complement Representation
- One's-Complement Representation
- Excess Representations

2. Number Systems

- Two's-Complement Representation -
- The radix-complement is called 2's-complement, for binary numbers. Most computers use it to represent negative numbers.
- The MSB of a number serves as the sign bit.
- The weight of the MSB is -2^{n-1}. The other bits have weight $+2^{i}$.
- For n bits, number $\in\left\{-2^{n-1} \ldots 2^{n-1}-1\right\} ; n=8$, number $\in\{-128 \ldots+127\}$.
- Only one representation of zero \Rightarrow an extra negative number.
- Some 8-bit integers and their two's complements:
$-+17_{10}=0_{00010001_{2}} \quad \Rightarrow \quad 11101110_{2}+1=11101111_{2}=-17_{10}$
$-0_{10}=00000000_{2} \quad \Rightarrow \quad 11111111_{2}+1=100000000_{2}=0_{10}$
$--128_{10}=10000000_{2} \quad \Rightarrow \quad 01111111_{2}+1=10000000_{2}=-128_{10}$

2. Number Systems

- Signed-Magnitude Representation -
- A number consists of a magnitude and a symbol indicating whether the magnitude is positive or negative.
- In binary systems, we use an extra bit (usually the MSB) to indicate the sign ($0=$ plus, $1=$ minus).
- Some 8-bit signed-magnitude integers:
$01010101_{2}=+85_{10} \quad 01111111_{2}=+127_{10}$ $11010101_{2}=-85_{10} \quad 11111111_{2}=-127_{10}$
$00000000_{2}=+0_{10}$

Fornbits, number $\in\left\{-2^{n-1}+1\right.$. 2

- There are two representations of zero: " +0 " e " -0 ".
- The diminished radix-complement is called 1's-complement, for binary numbers.
- The MSB of a number serves as the sign bit.
- The weight of the MSB is $-2^{n-1}+1$. The other bits have weight +2 .
- For n bits, number $\in\left\{-2^{n-1}+1 \ldots 2^{n-1}-1\right\} ; n=8$, number $\in\{-127 \ldots+127\}$.
- Two representations of zero (00000000 and 11111111).
- Some 8-bit integers and their one's complements :
$-+17_{10}=00010001_{2} \quad \Rightarrow \quad 11101110_{2}=-17_{10}$
$-+0_{10}=00000000_{2} \quad \Rightarrow \quad 11111111_{2}=-0_{10}$
$--127_{10}=10000000_{2} \quad \Rightarrow \quad 0111111_{2}=+127_{10}$

2. Number Systems

- Why Two's-Complement? -
- Hard to build a digital circuit that adds signed-magnitude numbers.
- In 1's-complement, there are two zero representations
- A 1's-complement adder is more complex that a 2's complement adder.

nown	$\xrightarrow{\text { Tomben }}$	cosm.	4	arn
-	vos	-	-	axe
\rightarrow	कn!	now	\%	क)
\rightarrow	mob	x00	य10	sue
-	${ }^{21}$	2000	เ13	201
\rightarrow	130	พ11	(18)	axo
\rightarrow	131	${ }^{110}$	1011	4 ml
-	17\%		107	ant
-1	**I	บ1	1007	4 m
-	9m	(tiosomes	texamm	tax
'	Sal	Ssa	san	${ }^{001}$
1	seo	व10	(0)	tase
1	sai	231	min	(a)
4	930	9180	9×3	(100
5	¢13:	atel	\%35	(601
*	atho	ath	ม\%	t170
,	am	atı	ain	1 IH

2. Number Systems

- Two's-Complement Addition and Subtraction (1) -
- We can add $+n$, by counting up (clockwise) n times.
- We can subtract $+n$, by counting down (counterclockwise) n times
- Valid results if the discontinuity between -8 and +7 is not crossed.
- We can also subtract $+n$, by counting up (clockwise) 16-n times.

2. Number Systems

- Two's-Complement Addition and Subtraction (2) -
- Overflow occurs when an addition produces a result that exceeds the range of the number system.
- Addition of 2 numbers with different signs never produces overflow.
- An addition overflows if the signs of the addends are the same and the sign of the sum is different form the addends' sign.
- Examples of overflowed additions:

2. Number Systems

- Two's-Complement Addition and Subtraction (3) -
- The same adder circuit can be used to handle both 2'scomplement and unsigned numbers.
- However the results must be interpreted differently.
- Valid results if the discontinuity between 15 and 0 is not crossed.

2. Number Systems
 - Gray Code (1) -

- Input sensor indicates a mechanical position.
- Problems may arise at certain boundaries.
- Boundary between 001 and 010 regions (2 bits change).
- A solution is to devise a digital code in which only one bit changes between
 successive codes.

2. Number Systems

- Gray Code (2) -
- Gray code solves that problem!
- Only one bit changes at each border.
- Gray codes are also used in Karnaugh maps, since adjacent cells must differ in just one input variable.

2. Number Systems

- Character Codes (1) -
- A string of bits need not represent a number.
- In fact most of the information processed by computers is nonnumeric.
- The most common type of nonnumeric data is text: strings of characters from some character set.
- Each character is represented in the computer by a bit string (code) according to an established convention.
- The most commonly used character code is ASCII (American Standard Code for Information Interchange).
- ASCII represents each character with a 7-bit string, yielding a total of 128 characters.

Stab, 0_{5}	Mow	2. Number Systems - Character Codes (2) - b/b,by fowerd							
		0	${ }^{\text {en }}$	$\underset{t}{146}$	ars	$\stackrel{19}{4}$	$\stackrel{M 1}{3}$	ne	${ }^{17}$
000	0	KLi.	Di.	5	-	*	,	-	-
0001	t	S0,	DCA	2	2	a	Q	a	₹
0010	1	STX	DC2	-	3	\square	*	b	r
0011	3	UTX	DC. 1	\%	3	e	ε	a	*
vep	4	bor	DCA	3	?	D	\%	d	t
401	5	Eiso	Na,	*	,	\square	11	-	4
418	6	ADS	5 mm	4	1	7	T	1	,
411	T	nn.	1 TIT	-	,	\%	v	g	v
120	${ }^{*}$	115	CON	I	*	\because	\pm	b	*
101	$\stackrel{ }{*}$	HI	EM	?	,	1	\geq	1	$\%$
ท10	A	17	Su	.	2	5	z	j	*
1311	$\stackrel{\square}{8}$	${ }_{\text {VT }}$	150	*	,	K	1	k	1
แ6	c	${ }^{\text {f }}$	15	,	*	b	1	1	1
161	D	${ }^{\text {cR }}$	6s	-	*	N	3.	=	1
1116	$\stackrel{1}{1}$	50	K	,	*	s	*	12	-
1111	1	5	${ }^{45}$	1	\%	0	-	-	TİL
ASCII (Standard no. X3.4-1968 of the ANSI).									

