

2. Number Systems (1) We use daily a positional number system. A number is represented by a string of decimal digits, where each digit position has an associated weight. 5365 = 5*1000 + 3*100 + 6*10 + 5*1 162.39 = 1*100 + 6*10 + 2*1 + 3*0.1 + 9*0.01 A number D of the form d₁d₀. d_{.1}d_{.2}d_{.3} has the value: D = d₁*10¹ + d₀*10⁰ + d_{.1}*10⁻¹ + d_{.2}*10² + d_{.3}*10^{.3} 10 is called the base or the radix. Generally, the base can be any integer r >= 2 and a digit position i has weight rⁱ.

Natália Bebiano da Providência, 2+2=11, série "O Prazer da Matemática", Gradiva, Lisboa, 2001. ISBN 972-622-809-1.

2. Number Systems

- Binary Numbers -

- Digital circuits have signals that are normally in one of two conditions (0 or 1, LOW or HIGH, charged or discharged).
- These signals represent binary digits (<u>bits</u>), that can have 2 possible values (0 or 1).
- The binary base (r=2) is used to represent numbers in digital systems.
- Examples of binary numbers and their decimal equivalents:
 - $11010_2 = 1*16 + 1*8 + 0*4 + 1*2 + 0*1 = 26_{10}$
 - $100111_2 = 1*32 + 0*16 + 0*8 + 1*4 + 1*2 + 1*1 = 39_{10}$
 - $10.011_2 = 1*2 + 0*1 + 0*0.5 + 1*0.25 + 1*0.125 = 2.375_{10}$
- MSB: most significant bit; LSB: least significant bit.

2. Number Systems

- Octal and Hexadecimal Numbers (1) -

- The <u>octal</u> number system uses base 8 (r=8). It requires 8 digits, so it uses digits 0-7.
- The <u>hexadecimal</u> number system uses base 16 (r=16). It requires 16 digits, so it uses digits 0-9 and letters A-F.
- These number systems are useful for representing multibit numbers, because their bases are powers of 2.
- Octal digits can be represented by 3 bits, while hexadecimal digits can be represented by 4 bits.
- The octal number system was popular in the 70s, because certain computers had their front-panel lights arranged in groups of 3.
- Today, octal numbers are not used much, because of the preponderance of 8-bit bytes machines.

2. Number Systems

- Octal and Hexadecimal Numbers (2) -

- It is difficult to extract individual byte values in multibyte quantities represented in the octal system.
- What are the octal values of the 4 bytes in the 32-bit number with the octal representation 12345670123₈?
- 01 010 011 100 101 110 111 000 001 010 011₂ The 4 bytes in octal are: 123₈ 227₈ 160₈ 123₈
- In the hexadecimal system, 2 digits represent a 8-bit byte, and 2n digits represent an n-byte word.
- Each pair of digits represent a byte.
- A 4-bit hexadecimal digit is sometimes called a nibble.

2. Number Systems - Octal and Hexadecimal Numbers (3)							
- Ut	orenal	неха	Jecima Jant String	Maudachai	(3) ##		
â	â	b	000	Ď	0000		
1	1	4	001	1	000		
1.0	2	2	010	2	0011		
11	3	3	DE L	3	001		
200	4	4	100		GID		
221	5	5	201	5	dip:		
11.0	6	6	11.0	6	0110		
111	7	7	11.1	7	0111		
1000	8	iD		8	1000		
1001	9	11	-		1001		
1010	32	12	-	Α.	1010		
101t	11	13	-	The second se	1011		
1100	12	14	-	c	1100		
1156	13	15	-	n	1101		
1112	34	16	-	E	1110		
1111	15	17	-	F	1111		

2. Number Systems - Conversions (2) - In general, conversions between two bases cannot be done by simple substitutions. Arithmetic operations are required. • Examples of conversions to the decimal base: - $10001010_2 = 1^{+}2^{7} + 0^{+}2^{6} + 0^{+}2^{5} + 0^{+}2^{4} + 1^{+}2^{3} + 0^{+}2^{2} + 1^{+}2^{1} + 0^{+}2^{0} = 138_{10}$ - $4063_8 = 4^{+}8^3 + 0^{+}8^2 + 6^{+}8^1 + 3^{+}8^0 = 2099_{10}$ $- 311.74_8 = 3^*8^2 + 1^*8^1 + 1^*8^0 + 7^*8^{-1} + 4^*8^{-2} = 201,9375_{10}$ $- 19F_{16} = 1^{*}16^{2} + 9^{*}16^{1} + 15^{*}16^{0} = 415_{10}$ $- 134.02_5 = 1^*5^2 + 3^*5^1 + 4^*5^0 + 0^*5^{-1} + 2^*5^{-2} = 44,08_{10}$

- 34÷2 = 17 remainder 0 - 17÷2 = 8 remainder 1
- 8÷2 = 4 remainder 0
- 4÷2 = 2 remainder 0
- 2÷2 = 1 remainder 0
- 1÷2 = 0 remainder 1

2. Number Systems - Conversions (4) -

Example of Decimal to Octal Conversions (2099₁₀ = 4063₈)

- 2099÷8 = 262 remainder 3
- 262÷8 = 32 remainder 6
- 32÷8 = 4 remainder 0
- 4÷8 = 0 remainder 4
- Example of Decimal to Hexadecimal Conversions (415₁₀ = 19F₁₆)
 - 415÷16 = 25 remainder 15 (F)
 - 25÷16 = 1 remainder 9
 - 1÷16 = 0 remainder 1

2. Number Systems - Addition of Binary Numbers -- Addition and Subtraction of Non-Decimal Numbers use the same technique that we use for decimal numbers. The only difference is that the table are distinct.

- 7 Fom 7 - Table for addition of two binary digits. a D o C. L α a ۵ • Similar tables can be built for other bases. a. t ٥ ¢
- Example of a binary addition:

D

1

D

£.

1 Ð.

0 0 1 0 0 t

1 D

a 1

i. α

1 1

2. Number Systems - Representation of Negative Numbers -

- · There are many ways to represent negative numbers with bits.
 - Signed-Magnitude Representation
 - Complement Number Systems
 - Radix-Complement Representation <u>Two's-Complement Representation</u>
 - Diminished Radix-Complement Representation
 - · One's-Complement Representation
 - Excess Representations

2. Number Systems - Signed-Magnitude Representation -

- · A number consists of a magnitude and a symbol indicating whether the magnitude is positive or negative.
- In binary systems, we use an extra bit (usually the MSB) to indicate the sign (0=plus, 1=minus).
- Some 8-bit signed-magnitude integers: $0000000_2 = +0_{10}$ 01010101₂ = +85₁₀ $01111111_{2} = +127_{10}$ 11010101₂ = -85₁₀ $11111111_{2} = -127_{10}$ $1000000_2 = -0_{10}$
- For n bits, number $\in \{-2^{n-1}+1...2^{n-1}-1\}$; n=8, number $\in \{-127...+127\}$.
- There are two representations of zero: "+0" e "-0".

2. Number Systems - Two's-Complement Representation -

- The radix-complement is called 2's-complement, for binary numbers. Most computers use it to represent negative numbers.
- The MSB of a number serves as the sign bit. •
- The weight of the MSB is -2ⁿ⁻¹. The other bits have weight +2ⁱ.
- For n bits, number $\in \{-2^{n-1}...2^{n-1}-1\}$; n=8, number $\in \{-128...+127\}$.
- Only one representation of zero ⇒ an extra negative number.
- · Some 8-bit integers and their two's complements:
 - $+17_{10} = 00010001_2 \implies 11101110_2 + 1 = 11101111_2 = -17_{10}$
 - 0₁₀ = 0000000₂ ⇒ $11111111_2 + 1 = \underline{1}0000000_2 = 0_{10}$
 - -128₁₀ = 10000000₂ ⇒ $01111111_2 + 1 = 1000000_2 = -128_{10}$

2. Number Systems

- One's-Complement Representation -

- The diminished radix-complement is called 1's-complement, for binary numbers.
- The MSB of a number serves as the sign bit.
- The weight of the MSB is -2ⁿ⁻¹+1. The other bits have weight +2ⁱ.
- For n bits, number $\in \{-2^{n-1}+1...2^{n-1}-1\}$; n=8, number $\in \{-127...+127\}$.
- Two representations of zero (00000000 and 1111111).
- · Some 8-bit integers and their one's complements :
- $+17_{10} = 00010001_2 \implies 11101110_2 = -17_{10}$
 - $+0_{10} = 0000000_2$ ⇒ $11111111_2 = -0_{10}$
 - -127₁₀ = 10000000₂ ⇒ $01111111_{2} = +127_{10}$

2. Number Systems - Why Two's-Complement? -Tech Oran' Signal Hard to build a digital

finere a

riara to balla a algital	For invest	Campaneous	Complement	Steps funder	
circuit that adds	-5	1000	1000	-	9000
signed-magnitude	-7	1091	1000	110	9001
signed-magnitude	-8	101.0	1007	1110	301.0
numbers.	-5	101.1	1010	1.101	991
	-4	1530	1011	1.940	0100
In 1's-complement,	-3	3141	11.00	1011	4101
	-2	111.0	18.08	1010	0110
there are two zero	-1	10.1	1130	1.001	911.1
representations.	0	10080	11110:0000	1008 or 9380	1,000
representations.	1	0001	4000	0001	1.001
A 1's-complement	1	901.0	0010	0010	1010
'	1	441.1	0011	0071	1.01.1
adder is more	4	0100	91.00	0100	1,100
complex that a 2's	-5	0.631	0101	0101	1.101
1	6	0110	9130	9110	1,110
complement adder.	100 T.C.	40.1	9131	-0170	110

2. Number Systems - Two's-Complement Addition and Subtraction (1) -Subhitation of positive number • We can add +n, by counting up 0000 (clockwise) n times. • We can subtract +n, by counting down (counterclockwise) n times. Valid results if the discontinuity 1100 010 between -8 and +7 is not crossed. We can also subtract +n, by 0101 counting up (clockwise) 16-n times. 100 0111 1000 Addition of positive numbers

2 Ni		- C	- + .					
2. Nu	mpe	гSy	Ste	ems				
- Binary Co								
- Dinary CO		Decima	mu	IIIDEI S	-			
Doonlo profor to dool with	Sectori digit	860 (R4W)	5471	famone-1	Dipationy	1-aut-al-1		
People prefer to deal with	ů.	2000	000	0011	FEDORAL.	10000000		
decimal numbers.	1	0001	080	0.108	1100010	01010000		
A decimal number is	1	801.0	0810	0101	esociae.	001000030		
i a dooliniai nambon io	x .	800.3	0811	0116	1101080	000100000		
represented by a string of	4	6100	0100	9111	411.008G	00010003		
bits	5	6101	DED.	1.001	1000081	000001000		
DILS.	6	\$110	1102	1.001	1000010	100000100		
A code is a set of bit	T	8111	1392	1018	1000100	00000010		
		1000	1191	1011	1001080	00000003		
strings in which different		100.1	110.	1104	101.0090	0000000000		
strings represent different	Marinet multi-amount							
numbers (entities).		101.0	0168	0006	00000000	400000000		
()		1001	0119	6001	4093081	000000000		
A particular combination of		1890	Ø111.	9018	1090010	000000018		
bits is a code word.		1801	1000	1.101	8090011	0000000011		
DILS IS a COUR WOLD.		111.0	1.001	1.118	apaces!	GEOREDUCE 1		
		10.1	1019	1011				

	4	<u> </u>			~ ` `	1914	ame			
			Num					כ		
			- Char	acter (Codes	: (2) -				
		Dylaybe, development								
والرقرق	Acer (had)	000 0	007 1	010 2	011	184 4	MIT S	210	77	
0000	0	NUL	DLE	SP.	0				P	
1000	t	SOE	DCT	10	2	A	0		T.	
0010	2	STK	DC5		.2			b		
0011	3	UTX	DC3	=	-1	0	8	÷σ		
0010	4	DOT	DC4	5		1000	. 7	d	-t-	
0101	3	ENQ	NAR	8	5	10	11	-		
0110	6	ADK	51178	&		F	11 1	= 2	× .	
0111	T	811.	HLD.	18 C	2	13	w.	g		
1000	4	115	CAN	1	1.0	16	л Т	9 5 1		
1991		HT	EM	2	2	I	- 3	1		
1010	A	1.7	SU8			3	z	j.		
1011	D	VT.	139C	+		ĸ	1	ĸ	- 31	
1109	C .	-FE	FS	- 22		- Le	N.	1	1	
1101	D	CR	CS	(4)	- 90	N ER	3	π.	- F	
1110	¥	50	105	÷.		24		12		
11.11	1	51	UN	1		0		0	THEL.	