Sistemas Digitais I LESI - 2° ano

Lesson 3 - Boolean Algebra

Prof. João Miguel Fernandes
 (miguel@di.uminho.pt)

Dept. Informática

UNIVERSIDADE DO MINHO
ESCOLA DE ENGENHARIA

- The success of computer technology is primarily based on simplicity of designing digital circuits and ease of their manufacture.
- Digital circuits are composed of basic processing elements, called gates, and basic memory elements, called flip-flops.
- The simplicity in digital circuit design is due to the fact that input and output signals of each gate or flip-flop can assume only two values, 0 and 1.
- The changes in signal values are governed by laws of Boolean algebra.
- The fact that Boolean algebra is finite and richer in properties than ordinary algebra leads to simple optimisation techniques for functions.
- In order to learn techniques for design of digital circuits, we must understand the properties of Boolean algebra.

- Binary Signals (1) -

- Digital logic hides the analog world by mapping the infinite set of real values into 2 subsets (0 and 1).
- A logic value, 0 or 1, is often called a <u>binary digit</u> (bit).
- With n bits, 2ⁿ different entities are represented.
- When using electronic circuits, digital designers often use the words "LOW" and "HIGH", in place of "0" and "1".
- The assignment of 0 to LOW and 1 to HIGH is called <u>positive</u> logic. The opposite assignment is called <u>negative logic</u>.
- Other technologies can be used to represent bits with physical states.

3. Boolean Algebra - Binary Signals (2) -

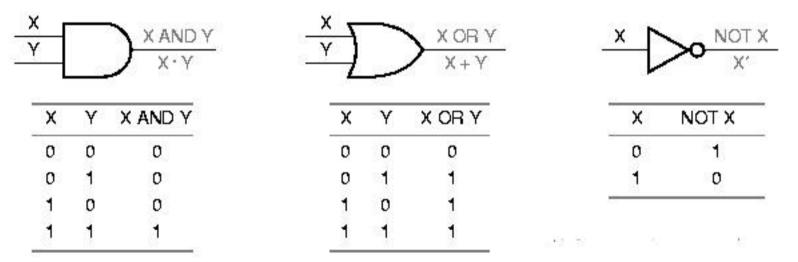
	State Rej	presenting Bit
Technology	2 <u>7</u>	1
Pneumatic logic	Fluid at low pressure	Fluid at high pressure
Relay logic	⊂ireuit open	Circuit closed
Complementary meta⊦oxide semiconductor(⊂MOS) logic	0–1.5 V	3.5–5.0 V
Transistor-transistor logic (TTL)	0-0.8 V	2.0–5.0 V
Fiber optics	Lightoff	Lighton
Dynamic memory	Capacitor discharged	Capacitor c harged
Nonvolatile, erasable memory	Electrons trapped	Electrons released
Bipolar read-only memory	Fuse blown	Firse intact
Bubble memory	No magnetic bubble	Bubble present
Magnetic tape or disk	Flux direction "north"	Flux direction "south"
Polymer memory	Molecule in state A	Molecule in state B
Read-only compact disc	No pit	Pit
Rewriteable compact disc	Dye in crystalline state	Dye in noncrystalline state

- Combinational vs. Sequential Systems -

- A <u>combinational</u> logic system is one whose outputs depend only on its current inputs.
- A combinational system can be described by a <u>truth table</u>.
- The outputs of a <u>sequential</u> logic circuit depend not only on the current inputs but also on the past sequence of inputs \Rightarrow memory.
- A sequential system can be described by a <u>state table</u>.
- A combinational system may contain any number of logic gates but no feedback loops.
- A <u>feedback loop</u> is a signal path of a circuit that allows the output of a gate to propagate back to the input of that same gate.
- Feedback loops generally create sequential circuit behaviour.

3. Boolean Algebra - Gates (1) -

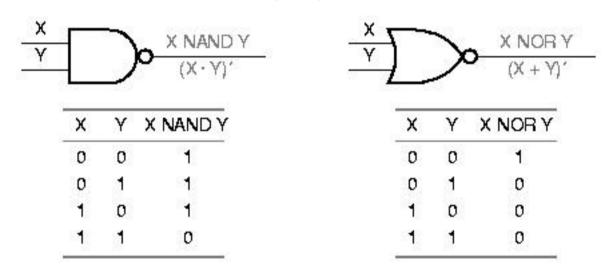
 Three basic gates (AND, OR, NOT) are sufficient to build any combinational digital logic system. They form a complete set.



- The symbols and truth tables for AND and OR may be extended to gates with any number of inputs.
- The <u>bubble</u> on the inverter output denotes "inverting" behaviour.

3. Boolean Algebra - Gates (2) -

 Two more logic functions are obtained by combining NOT with an AND or OR function in a single gate.



• The symbols and truth tables for NAND and NOR may also be extended to gates with any number of inputs.

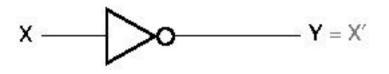
3. Boolean Algebra - Switching Algebra -

- In 1854, G. Boole (1815-1865) introduced the formalism that we use for the systematic treatment of logic which is now called <u>Boolean Algebra</u>.
- In 1938, C. Shannon (1916-2001) applied this algebra to prove that the properties of electrical switching circuits can be represented by a 2-valued Boolean Algebra, which is called <u>Switching Algebra.</u>

• We use a symbolic variable (ex. X) to represent the condition of a logic signal, which is in one of two possible values ("0" or "1").

3. Boolean Algebra - Axioms (1) -

- The <u>axioms</u> (or postulates) of a mathematical system are a minimal set of basic definitions that we assume to be true.
- The first axioms embody the digital abstraction:
 (A1) X=0 if X≠1
 (A1') X=1 if X≠0
- We stated these axioms as a pair, the only difference being the interchange of the symbols 0 and 1.
- This applies to all the axioms and is the basis of <u>duality</u>.
- The next axioms embody the complement notation:
 (A2) If X=0, then X'=1
 (A2') If X=1, then X'=0

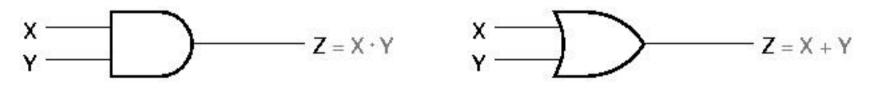


• We use a prime (') to denote an inverter's function.

3. Boolean Algebra - Axioms (2) -

The last three pairs of axioms state the formal definitions of the AND (logical multiplication) and OR (logical addition) operations:

(A3) $0 \cdot 0 = 0$ (A3') 1 + 1 = 1(A4) $1 \cdot 1 = 1$ (A4) $1 \cdot 1 = 1$ (A5) $0 \cdot 1 = 1 \cdot 0 = 0$ (A5') 1 + 0 = 0 + 1 = 1



- By convention, in a logic expression involving both multiplication and addition, multiplication has precedence.
- The expression $X \cdot Y + Y \cdot Z'$ is equivalent to $(X \cdot Y) + (Y \cdot Z')$.
- The axioms (A1-A5, A1'-A5') completely define Boolean algebra.

3. Boolean Algebra - Theorems (1) -

- <u>Theorems</u> are statements, known to be true, that allow us to manipulate algebraic expressions to have simpler analysis or more efficient synthesis of the corresponding circuits.
- Theorems involving a single variable:
 - (T1) X+0 = X $(T1') X\cdot1 = X$ (Identities)(T2) X+1 = 1 $(T2') X\cdot0 = 0$ (Null elements)(T3) X+X = X $(T3') X\cdotX = X$ (Idempotency)(T4) (X')' = X $(T5') X\cdotX' = 0$ (Involution)(T5) X+X' = 1 $(T5') X\cdotX' = 0$ (Complements)
- These theorems can be proved to be true. Let us prove T1:
 [X=0] 0+0=0 (true, according to A4')
 [X=1] 1+0=1 (true, according to A5')

3. Boolean Algebra - Theorems (2) -

- Theorems involving two or three variables: (T6) X+Y = Y+X (T6') $X\cdot Y = Y\cdot X$ (Commutativity) (T7) (X+Y)+Z = X+(Y+Z) (T7') $(X\cdot Y)\cdot Z = X\cdot(Y\cdot Z)$ (Associativity) (T8) $X\cdot Y+X\cdot Z = X\cdot(Y+Z)$ (T8') $(X+Y)\cdot(X+Z) = X+Y\cdot Z$ (Distributivity) (T9) $X+X\cdot Y = X$ (T9') $X\cdot(X+Y) = X$ (Covering) (T10) $X\cdot Y+X\cdot Y' = X$ (T10') $(X+Y)\cdot(X+Y') = X$ (Combining) (T11) $X\cdot Y+X'\cdot Z+Y\cdot Z = X\cdot Y+X'\cdot Z$ (Consensus) (T11') $(X+Y)\cdot(X'+Z)\cdot(Y+Z) = (X+Y)\cdot(X'+Z)$
- Attention to theorem T8' which is not true for integers and reals.
- T9 and T10 are used in the minimisation of logic functions.

3. Boolean Algebra - Theorems (3) -

- Several important theorems are true for an arbitrary number of variables.
- Theorems involving n variables: (T12) $X+X+ \ldots +X = X$ Generalised Idempotency (T12') $X\cdot X \cdot \ldots \cdot X = X$ (T13) $(X_1 \cdot X_2 \cdot \ldots \cdot X_n)' = X_1' + X_2' + \ldots + X_n'$ DeMorgan's theorems (T13') $(X_1 + X_2 + \ldots + X_n)' = X_1' \cdot X_2' \cdot \ldots \cdot X_n'$ (T14) $[F(X_1, X_2, \ldots, X_n, +, \cdot)]' = F(X_1', X_2', \ldots, X_n', \cdot, +)$ Generalised DeMorgan's th. (T15) $F(X_1, X_2, \ldots, X_n) = X_1 \cdot F(1, X_2, \ldots, X_n) + X_1' \cdot F(0, X_2, \ldots, X_n)$ Shannon's (T15') $F(X_1, X_2, \ldots, X_n) = [X_1 + F(0, X_2, \ldots, X_n)] \cdot [X_1' + F(1, X_2, \ldots, X_n)]$ Shannon's (T15') $F(X_1, X_2, \ldots, X_n) = [X_1 + F(0, X_2, \ldots, X_n)] \cdot [X_1' + F(1, X_2, \ldots, X_n)]$

3. Boolean Algebra - Theorems (4) -

- DeMorgan's theorem (T13 and T13') for n=2: (X·Y)' = X'+Y' (X+Y)' = X'·Y'
- DeMorgan's theorem gives a procedure for complementing a logic function.
- DeMorgan's theorem can be used to convert AND/OR expressions to OR/AND expressions.

A A

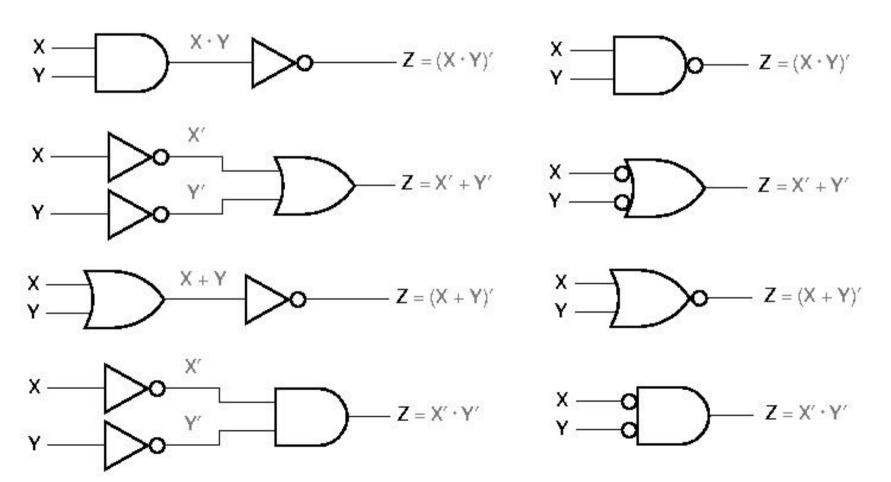
Augustus De Morgan (1806-1871)

• Example:

Z = A' B' C + A' B C + A B' C + A B C' $Z' = (A + B + C') \cdot (A + B' + C') \cdot (A' + B + C') \cdot (A' + B' + C)$

3. Boolean Algebra - Theorems (5) -

Equivalent gates according to DeMorgan's theorem



3. Boolean Algebra - Theorems (6) -

- Since Boolean algebra has only two elements, we can also show the validity of these theorems by using truth tables.
- To do this, a truth table is built for each side of the equation that appears in the theorem.
- Then both sides of the equation are checked to see if they yield identical results for all the combinations of variable values.
- Let us prove DeMorgan's theorem (T13 and T13') for n=2: (X+Y)' = X'·Y' (X+Y)' = X'·Y'

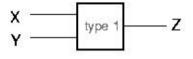
Х	Y	X	Y	$\overline{X+Y}$	X•Y
0	0	1	1	1	1
0	1	1	0	0	0
1	0	0	1	0	0
1	1	0	0	0	0

X	Y	x	Y	<u>X•Y</u>	$\overline{X+Y}$
0	0	1	1		1
0	1	1	0	1	1
1	0	0	1	1	1
1	1	0	0	0	0

3. Boolean Algebra - Duality (1) -

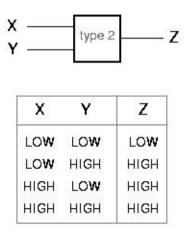
- Theorems were presented in pairs.
- The prime version of a theorem is obtained from the unprimed version by swapping "0" and "1", and "." and "+".
- <u>Principle of Duality</u>: Any theorem or identity in Boolean algebra remains true if 0 and 1 are swapped and · and + are swapped throughout.
- Duality is important because it doubles the usefulness of everything about Boolean algebra and manipulation of logic functions.
- The <u>dual</u> of a logic expression is the same expression with + and \cdot swapped: $F^{D}(X_{1}, X_{2}, ..., X_{n}, +, \cdot, ') = F(X_{1}, X_{2}, ..., X_{n}, \cdot, +, ')$.
- Do not confuse duality with DeMorgan's theorems! $[F(X_1, X_2, ..., X_n, +, \cdot)]' = F(X_1', X_2', ..., X_n', \cdot, +)$ $[F(X_1, X_2, ..., X_n)]' = F^D(X_1', X_2', ..., X_n')$

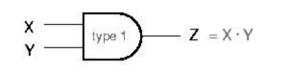
3. Boolean Algebra - Duality (2) -

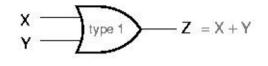


Y	Z
LOW	LOW
HIGH	LOW
LOW	LOW
HIGH	HIGH
	HIGH LOW

Electric function

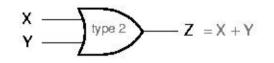






х	Y	Z
0	0	0
0 0	1	0
1	0	0
1	1	1

Positive-logic



X	Y	Z
0	0	0
0 0	1	1
1	0	1
1	1	1

x	Y	Z
1	1	1
1	0	1
0	1	1
0 0	0	0

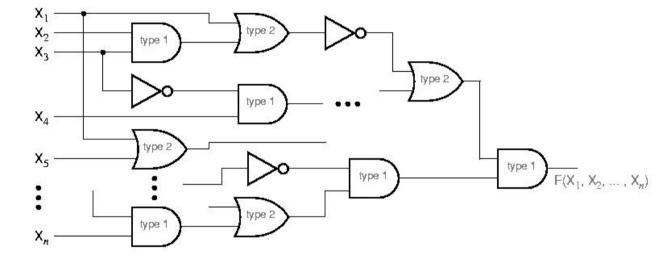
Negative-logic

$$X = type 2$$
 $Z = X \cdot Y$

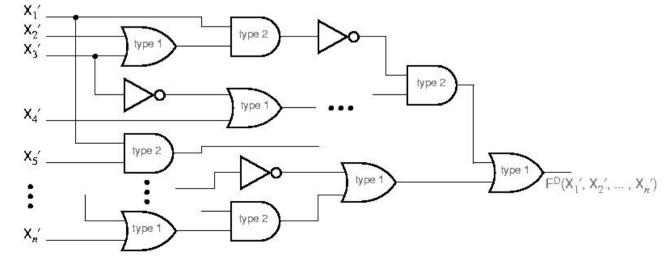
x	Y	Z
1	1	1
1	0	0
0 0	1	0
0	0	0

3. Boolean Algebra - Duality (3) -

Positive-logic



Negative-logic



- Standard Representation (1) -

- The most basic representation of a logic function is a truth table.
- A <u>truth table</u> lists the output of the circuit for every possible input combination.
- There are 2ⁿ rows in a truth table for an n-variable function.

Row	X	Y	Z	Ę.	Row	Х	Y	Z	Ē
0	0	0	0	F(0,0,0)	0	0	0	0	1
1	0	0		F(0,0,1)	1	0	0	<u>t</u>	0
2	0	ŝ.	0	F(0,1,0)	2	0	I.	0	0
3	0	1		F(0,1,1)	3	0	i,	1	1
4	1	0	0	F(1,0,0)	4	ľ	0	Q	1
5	Ĩ	0		F(1,0,1)	5	୍ବାର୍	0	1	0
6	1	ŝ.	0	F(1,1,0)	6	ся <mark>ў</mark>	I.	0	1
7	1	<u>i</u>	ß	F(1,1,1)	7	2 1 2	12	1	1

There are 2⁸ (8=2³) different logic functions for 3 variables.

- Standard Representation (2) -

- Truth tables can be converted to algebraic expressions.
- A <u>literal</u> is a variable or the complement of a variable. Ex: X, Y, X'.
- A <u>product term</u> is a single literal or a logical product of two or more literals. Ex: Z', W·X·Y, W·X'·Y'.
- A <u>sum-of-products</u> (SOP) is a logical sum of product terms.
 Ex: Z' + W·X·Y.
- A <u>sum term</u> is a single literal or a logical sum of two or more literals. Ex: Z', W+X+Y, W+X'+Y'.
- A <u>product-of-sums</u> (POS) is a logical product of sum terms.
 Ex: Z' · (W+X+Y).

- Standard Representation (3) -

- A <u>normal term</u> is a product or sum term in which no variable appears more than once.
 Examples (**non**-normal terms): W·X·X'·Z', W'+Y'+Z+W'.
- A n-variable <u>minterm</u> is a normal product term with n literals. Examples (with 4 variables): W·X·Y·Z', W'·X'·Y·Z.
- A n-variable <u>maxterm</u> is a normal sum term with n literals. Examples (with 4 variables): W+X+Y+Z', W'+X'+Y+Z.
- There is a correspondence between the truth table and minterms and maxterms.
- A minterm is a product term that is 1 in one row of the truth table.
- A maxterm is a sum term that is 0 in one row of the truth table.

- Standard Representation (4) -

Minterms and maxterms for a 3-variable function F(X,Y,Z)

Row	Х	Y	Ζ	F	Minterm	Maxterm
0	0	0	0	F(0,0,0)	X'-Y'-Z'	X + Y + Z
3	0	0		F(0,0,1)	X'•Y'•Z	X + Y + Z'
2	0		0	F(0, 1,0)	X'•Y•Z'	X + Y' + Z
3	0	L)	l,	F(0,1,1)	X'·Y·Z	X + Y'+ Z'
4	R.	0	0	F(1,0,0)	X - Y'- Z'	X'+Y+Z
S	ľ	0	ĺ	F(1,0,1)	X ·Y'·Z	X'+ Y + Z'
6	E.		0	F(1,1,0)	$X\cdot Y\cdot Z'$	X'+ Y'+ Z
7	1	ŧ.	ß	F(1,1,1)	X·Y·Z	X'+Y'+Z'

- Standard Representation (5) -

- An n-variable minterm can be represented by an n-bit integer (the minterm number).
- In minterm i, a variable appears complemented if the respective bit in the binary representation of i is 0; otherwise it is uncomplemented.
- For example, row 5 (101) is related to minterm X·Y'·Z.
- In maxterm i, a variable appears complemented if the corresponding bit in the binary representation of i is 1; otherwise it is unprimed.
- For example, row 5 (101) is related to maxterm X'+Y+Z'.
- To specify the minterms and maxterms, it is mandatory to know the number of variables in the function and their order.

- Standard Representation (6) -

- Based on the correspondence between the truth table and the <u>minterms</u>, an algebraic representation of a logic function can be created.
- The <u>canonical sum</u> of a logic function is a sum of the minterms corresponding to truth table rows for which the function is 1.
- From the table: $F = \sum_{X,Y,Z} (0,3,4,6,7) = X' \cdot Y' \cdot Z' + X' \cdot Y \cdot Z + X \cdot Y' \cdot Z' + X \cdot Y \cdot Z' + X \cdot Y \cdot Z'$
- The notation $\sum_{X,Y,Z} (0,3,4,6,7)$ is a <u>minterm list</u> and means the sum of minterms 0,3,4,6, and 7, with variables X, Y, and Z.
- The minterm list is also known as the <u>on-set</u> for the logic function.

Row	Х	Y	Ζ	Ē
0	0	0	0	Į
1	0	0	Į.	0
2	0	1	0	Q
3	0	ţ)	1	1
4	1	0	0	1
5	्रहु	0	L.	0
6	1	1	0	1
7	8 1 8	1	ł.	1

- Standard Representation (7) -

- Based on the correspondence between the truth table and the <u>maxterms</u>, an algebraic representation of a logic function can be created.
- The <u>canonical product</u> of a function is a product of the maxterms corresponding to input combinations for which the function is 0.
- From the table: $F = \prod_{X,Y,Z} (1,2,5) = (X+Y+Z') \cdot (X+Y'+Z) \cdot (X'+Y+Z')$
- The notation $\prod_{X,Y,Z} (1,2,5)$ is a <u>maxterm list</u> and means the product of maxterms 1,2, and 5, with variables X, Y, and Z.
- The maxterm list is also known as the <u>off-set</u> for the logic function.

Row	Х	Y	Ζ	F
0	0	0	0	ĵ
1	0	0	Į.	0
2	0	1	0	0
3	0	ţ)	L.	1
4	1	0	0	1
5	्रह	0	l,	0
6	ЧÇ.	Ř	0	1
7	8 1 8	10	ł,	1

- Standard Representation (8) -

- It is easy to convert between a minterm list and a maxterm list.
- For a function of n variables, the minterms and maxterms are in the set {0, 1, ..., 2ⁿ-1}.
- A minterm or maxterm list contains a subset of these numbers.
- To switch between the lists, one takes the set complement.
- Examples:

 $\sum_{X,Y} (0,1,2,3) = \prod_{A,B,C} (4,5,6,7)$ $\sum_{X,Y} (1) = \prod_{X,Y} (0,2,3)$ $\sum_{W,X,Y,Z} (1,2,3,5,8,12,13) = \prod_{W,X,Y,Z} (0,4,6,7,9,10,11,14,15)$

- Standard Representation (9) -

- We have learned 5 possible representations for a combinational logic function.
 - A truth table;
 - An algebraic sum of minterms (the canonical sum);
 - A minterm list, using the Σ notation;
 - An algebraic product of maxterms (the canonical product);
 - A maxterm list, using the \prod notation;
- Each one of these representations specifies exactly the same information.
- Given any of them, we can derive the other four using a simple mechanical process.

3. Boolean Algebra - Examples (1) -

- Ex.1: Let F = X·Y + X·Y'·Z + X'·Y·Z. Derive the expression for F' in the product of sums form.
- F' = (XY + XY'Z + X'YZ)'
 - = $(XY)' \cdot (XY'Z)' \cdot (X'YZ)'$
 - = (X'+Y')(X'+Y+Z')(X+Y'+Z')
- Ex.2: Express the function $G(X,Y,Z) = X + Y' \cdot Z$ as a sum of minterms.
- $G = X + Y \cdot Z$
 - $= X \cdot (Y + Y') \cdot (Z + Z') + Y \cdot Z \cdot (X + X')$
 - = XYZ + XYZ' + XY'Z + XY'Z' + XYZ + X'YZ
 - = X'YZ + XY'Z' + XY'Z + XYZ' + XYZ
 - $= \sum_{X,Y,Z} (3,4,5,6,7)$

3. Boolean Algebra - Examples (2) -

- Ex.3: Derive the product-of-maxterms form for $H = X' \cdot Y' + X \cdot Z$.
- H = X'Y' + XZ
 - = (X'Y'+X)(X'Y'+Z)
 - = (X'+X)(Y'+X)(X'+Z)(Y'+Z)
 - = (X+Y')(X'+Z)(Y'+Z)
- Each OR term in the expression is missing one variable:

- X+Y' = X+Y'+ZZ' = (X+Y'+Z)(X+Y'+Z')

- X' + Z = X' + Z + YY' = (X' + Y + Z)(X' + Y' + Z)

- Y' + Z = Y' + Z + XX' = (X + Y' + Z)(X' + Y' + Z)
- Finally we combine these terms:

$$H = (X+Y'+Z)(X+Y'+Z')(X'+Y+Z)(X'+Y'+Z)$$
$$\prod_{X,Y,Z} (2,3,4,6)$$

3. Boolean Algebra - Examples (3) -

• Ex.4: Derive the product-of-maxterms form for $H = X' \cdot Y' + X \cdot Z$.

Х	Y	Ζ	Н
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

- From the table, we obtain:
 - $H = \prod_{X,Y,Z} (2,3,4,6)$ $H = \sum_{X,Y,Z} (0,1,5,7)$
- Compare this solution with the solution of ex.3.
- Ex.5: Derive a standard form with a reduced number of operators for J = XYZ + XYZ' + XY'Z + X'YZ.
- J = XYZ + XYZ' + XYZ + XY'Z + XYZ + X'YZXY(Z+Z') + X(Y+Y')Z + (X+X')YZXY'+XZ+YZ